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Data-Free Prior Model for
Facial Action Unit Recognition

Yonggqiang Li, Jixu Chen, Yongping Zhao, and Qiang Ji

Abstract—Facial action recognition is concerned with recognizing the local facial motions from image or video. In recent years,
besides the development of facial feature extraction techniques and classification techniques, prior models have been introduced to
capture the dynamic and semantic relationships among facial action units. Previous works have shown that combining the prior models
with the image measurements can yield improved performance in AU recognition. Most of these prior models, however, are learned
from data, and their performance hence largely depends on both the quality and quantity of the training data. These data-trained prior
models cannot generalize well to new databases, where the learned AU relationships are not present. To alleviate this problem, we
propose a knowledge-driven prior model for AU recognition, which is learned exclusively from the generic domain knowledge that
governs AU behaviors, and no training data are used. Experimental results show that, with no training data but generic domain
knowledge, the proposed knowledge-driven model achieves comparable results to the data-driven model for specific database and
significantly outperforms the data-driven models when generalizing to new data set.

Index Terms—Facial action units recognition, Bayesian networks, knowledge-driven model

1 INTRODUCTION

FACIAL behavior analysis is an important issue in many
applications, for example, affective computing, psycho-
logical phenomena, agent-human communication. Besides
recognizing six basic facial expressions directly, techniques
have also been developed to automatically recognize facial
action units (AUs). According to the facial action coding
system (FACS) developed by Ekman and Friesen [18], AUs
represent the muscular activity that produces momentary
changes in facial appearance. Although only a small
number of distinctive AUs are defined, over 7,000 different
AU combinations have been observed so far [27]. Therefore,
FACS is demonstrated to be a powerful means for detecting
and measuring a large number of facial expressions by
virtually observing a small set of muscular actions.

Most current AU recognition techniques are image data
driven, and they try to classify each AU or certain AU
combinations independently and statically, ignoring the
semantic relationships among AUs and the dynamics of
AUs. Hence, these approaches cannot always recognize
AUs robustly due to the richness, ambiguity, and dynamic
nature of facial actions, as well as due to image uncertainty
and individual differences. Therefore, prior models are
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built to capture the spatial-temporal relationships among
AUs. AU recognition can then be performed more robustly
by combining the prior model with the image measure-
ments. Hidden Markov models (HMMs) [14], [4], Bayesian
network (BN), and dynamic Bayesian network (DBN) [10],
[9] are all employed to model the spatial-temporal relation-
ships among AUs and achieved improvement over techni-
ques based on the image observations alone, especially for
AUs that are hard to recognize but have strong relation-
ships with other AUs. Furthermore, when the image
measurement is not reliable due to either image noise or
the inherent deficiencies with image measurement meth-
ods, employing a prior model can effectively improve the
robustness and the accuracy of the final results.

The use of prior models, however, faces a bottleneck:
Learning the model often requires a large amount of reliable
and representative training data. Collecting training data
(labeling facial actions) often proves to be difficult in real
applications, since the effort for training human experts to
manually score the AUs is expensive and time-consuming,
and the reliability of manually coding AUs is inherently
attenuated by the subjectivity of human coder. In addition,
despite the best efforts of the database creators, there is
always built-in bias in database for computer vision
research, such that the model trained on one data set
cannot generalize to another data set [3]. Torralba and Efros
[3] evaluate the generalization performance of an SVM and
off-the-shelf approach [12] for car/person classification/
detection task across six databases, which are all collected
from internet. The results show that there is a dramatic drop
of performance in all tasks and classes when testing on a
different test set. For instance, for the car classification task,
the average performance obtained when training and
testing on the same data set is 53.4 percent, which drops
to 27.5 percent when applied to different data sets. For AU
recognition problem, prior models learned from data also
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Fig. 1. The flowchart of our AU recognition system.

cannot generalize well to other databases where the
relationships of AUs are not represented in the training
data. In contrast to the data-driven model, we present a
knowledge-driven model, which is exclusively based on
domain knowledge, and no training data are used in our
approach. Our work contains the following facets:

1. First, we systematically identify and represent the
prior knowledge about AUs as constraints on
parameters and constraints on data samples.

2. Second, we propose different methods to capture the
prior knowledge. Specifically, we introduce an
effective sampling method to acquire pseudodata
samples and use the distribution of the samples to
capture the knowledge.

3. Finally, we propose to learn the prior model from the
pseudodata through constrained parameter learning.

Fig. 1 gives the flowchart of our AU recognition system.
The system consists of three major components: knowledge
extraction and representation, prior model learning, and AU
recognition using the prior model and image measurements.
The emphasis of this research is on the first two compo-
nents, where we introduce methods to identify generic AU
knowledge, to capture them, and to use them to train the
prior model. Given the prior model, AU recognition can be
performed by combining the prior model with the image
measurements through a probabilistic inference.

2 RELATED WORKS

Over the past decades, there has been extensive research in
computer vision on facial expression analysis. Current
methods in this area can be grouped into two classes:
image-driven method and model-based method. In this
section, we will present a brief review of the previous works
based on these two classes.

2.1 Image-Driven Method

Image-driven method for facial action analysis focuses on
recognizing facial actions by observing the representative

facial appearance changes. In general, image-driven meth-
ods can be divided into two categories: geometric feature-
based approach and appearance feature-based approach.

2.1.1 Geometric Feature-Based Approach

Geometric feature-based approaches focus on detecting the
location of facial salient points (corners of the eyes, mouth,
etc.) [35], [16], and the shapes of the facial components
(eyes, mouth, etc.) [2], [41], [42]. The points or shapes are
tracked throughout the video, from which features on their
relative position, mutual spatial position, speed, accelera-
tion, and so on, are derived. Chang et al. [2] built a
probabilistic recognition algorithm based on the manifold
subspace of aligned face appearances, which is modeled by
58 facial landmarks. Valstar and Pantic [35] located and
tracked a set of facial landmarks and extracted a set of
spatial-temporal features from the trajectories, and then,
they used a rule-based approach to detect AUs and their
temporal segments. Geometric feature-based approaches
are more robust to changes in illumination and differences
between individuals, but they may fail at some certain AUs,
for example, AU15 (Lip Corner Depressor), AU14 (Dim-
pler), the activation of which involve little displacements of
facial fiducial points but changes in skin texture. For
extensive survey of facial expression analysis done in the
recent years, readers are referred to [30], [40].

2.1.2 Appearance Feature-Based Approach

Facial behavior results in changes of face surface and skin
texture. Appearance feature-based approaches try to cap-
ture such changes, for example, wrinkles, bulges, furrows.
Mahoor et al. [11] transformed 45 AAM-based facial points
into Gabor coefficient, and then classify AU combinations
using a sparse representation classifier that outperforms
SVM and nearest neighbor. Bartlett et al. [21], [15], [22]
investigated different features, such as optical flow, explicit
feature measurement (i.e., length of wrinkles and degree of
eye opening), ICA, and Gabor wavelets, and reported that
Gabor wavelets render the best results [22]. Haar features
[1], [38] and local binary patterns (LBP) [39] are all well
used in expression classification. Tian et al. [16], [17]
studied combining the geometric and appearance features
together and claimed that the geometric features outper-
form the appearance-based features, yet using both yields
the best result.

Most recently, dynamic appearance descriptors are
introduced for activity recognition, which can be seen as
an extension of appearance-based approach. Valstar et al.
[36] encoded face motion into motion history images (MHI),
while Koelstra et al. [32] developed two approaches to
model the dynamics and appearances in the face region of
an input video: An extended MHI and a method based on
nonrigid registration using free-form deformations. Zhao
and Pietikaine [37] used volume LBP to recognize dynamic
texture and extended to facial image analysis.

2.2 Model-Based Method

The common weakness of the image-driven methods is that
they tend to recognize each AU or certain AU combination
individually and statically directly from the image data,
ignoring the semantic and dynamic relationships among
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AUgs, although some of them analyze the temporal proper-
ties of facial features. Model-based methods overcome this
weakness by making use of the relationships among AUs
and recognize various AUs simultaneously. Lien et al. [14]
employed a set of HMMs to represent the evolution of facial
actions in time. The classification is performed by choosing
the AU or AU combination that maximizes the likelihood of
the extracted facial features generated by the associated
HMM. Valstar and Pantic [4] used a combination of SVMs
and HMMs and outperformed the SVM method for almost
every AU by considering the temporal evolution of facial
action. Both methods exploit the temporal dependencies
among AUs. They, however, fail to exploit the spatial
dependencies among AUs. To remedy this problem, Tong
et al. [10], [9] employed a DBN to systematically model the
spatiotemporal relationships among AUs and achieved a
marked improvement over the image observation, espe-
cially for AUs that are hard to recognize but have strong
relationships with other AUs. The use of prior model can
effectively handle the noisy image observation, but the
data-driven models suffer the following drawbacks: First,
training the data-driven model needs a large amount of
annotated and representative data, which sometimes
proves to be hard to achieve for AU recognition problem;
Second, data-driven prior model depends on specific
database [10], and cannot generalize well to other data-
bases. A separate DBN model is, therefore, needed for each
data set.

Recently, to address this issue, researchers in machine
learning try to incorporate domain knowledge into model
learning process to reduce the dependence on training data.
Most of these approaches incorporate qualitative prior
knowledge, for example, constraints on parameters, into the
parameters learning process by formulating the learning as
a constrained optimization problem [5], [8], [7]. While
effective, often with a closed solution, the knowledge
constraints used by these methods are limited to simple
linear constraints on parameters. Liao and Ji [8] included
more complex constraints with an iterative optimization
procedure. Campos and Ji [13] proposed a method that
allows both hard constraints and soft constraints. Mao and
Lebanon [6] used soft Bayesian prior to regulate the
maximum likelihood (ML) score and introduce the concept
of model uncertainty with a maximum a posterior estima-
tion. There are two main limitations with these approaches:
First, most of these approaches do not explain the source of
the constraints, and the domain knowledge they use is
limited to a few simple qualitative constraints; Second, the
qualitative constraints in previous works are used as
supplementary information to data. During training, data
are still used.

2.3 Outstanding Features of Our Approach

In this paper, we propose a knowledge-driven method to
learn a prior AU model from different types of qualitative
knowledge. Compared to previous works, the proposed
method has the following features:

1. First, in contrast to the data-driven model, our
knowledge-driven model is totally learned from
the generic domain knowledge, and no training data

are used. Therefore, our model has no dependence
on the data and can generalize well to different data
sets. This is practically significant since acquiring the
annotated training data is an expensive, subjective,
and time-consuming process.

2. Second, although some methods have been pro-
posed to incorporate prior knowledge into model
learning, they, however, are limited to some simple
parameter constraints. And these methods still need
training data. In our method, we impose various
prior knowledge into our AU prior model without
using any training data.

3. Third, we introduce a unified Markov chain Monte
Carlo (MCMC) sampling method to simultaneously
incorporate these knowledge into the DBN model
learning by first converting the generic knowledge
into synthetic data, and then using the conventional
learning method to train the prior model from the
synthetic data. The new learning method allows
simultaneously incorporating different types knowl-
edge into the prior model in a principled manner.

In the remainder of this paper, we discuss our knowledge-

driven method in detail. We first present the definition of the
generic prior knowledge that we employ (Section 3). Then, a
knowledge-driven method to learn a AU prior model is
proposed (Section 4). We demonstrate the effectiveness of
our method on two databases and compare with the data-
driven model in Section 5.

3 GENERIC KNOWLEDGE ON FACIAL ACTIONS

In this section, we introduce the generic knowledge on
facial actions. They can be expressed as qualitative
constraints on individual AUs (Section 3.2), on group AUs
(Section 3.3), and on AU dynamics (Section 3.4). As
discussed below, the generic knowledge we used is
primarily from the study of the FACS, the consultation
with psychologists, an empirical analysis of facial anatomy,
and the previous studies. When extracting knowledge from
the databases, we strive to extract the general knowledge
that is applicable to all databases. Such knowledge only
supplements to the knowledge derived from the theories.

3.1 Causal Influence among AUs

According to FACS, there are a total of 33 exclusive facial
action descriptors, 30 of which are anatomically related to
the contraction of a specific set of facial muscles, which
generally lie from skull to skin and are innervated by facial
nerve. Unlike other skeletal muscles that attach to bones,
facial muscles attach to each other or to the skin. Fig. 2
shows facial muscles anatomy. Some facial muscles, their
actions, and the corresponding AUs are summarized in
Table 1.

Facial actions are related to each other both spatially and
dynamically to form a coherent and consistent facial
expression [29]. Through the study of the FACS [29], an
empirical analysis of facial anatomy and the consultation
with psychologists, we derive some constraints that govern
the motion of the facial actions. For example, AU2 (outer
brow raiser) and AU1 (inner brow raiser) are both related to
the muscle group of Occipito frontalis, as shown in Table 1,
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Fig. 2. Facial muscle anatomy. There are a total of 17 facial muscles
controlling different facial actions (adapted from [44]).

which is in the scalp and forehead that raises the eyebrows.
The contraction of the lateral part of this muscle group
produces AU2, while the contraction of the medial (or
central) portion of this muscle group produces AU1. Hence,
“AU2 is a difficult movement for most people to make
voluntarily without adding AU1” as described in FACS [29],
which means the appearance of AU2 increases the prob-
ability of the occurrence of AU1, and we call this a positive
influence from AU2 to AUL. To represent this qualitative
influence graphically, we link AU2 node to AU1 node with a
“+” sign to denote positive influence as shown in Fig. 3.

Fig. 3. AU causal influence network.

On the other hand, there are some other AUs whose
appearance will decrease the chance of the occurrence of
another AU. For example, when AU12 occurs (lip corner
puller), which is produced by the muscle group of
Zygomaticus Major, it will decrease the chance of the
occurrence of AU15 (lip corner depressor), which is
produced by the muscle group of depressor anguli oris. We
call this a negative influence from AU12 to AU15 and add a
link with “—" sign from AU12 to AU15. There are many
such empirical constraints, for example, mouth stretch
increases the chance of lips apart and decreases the chance
of cheek raiser and lip presser; cheek raiser and lid
compressor increases the chance of lip corner puller; outer
brow raiser increases the chance of inner brow raiser and
decreases the chance of nose wrinkler; lip tightener
increases the chance of lip presser; lip presser increases

TABLE 1
Muscles, Actions, and Corresponding AUs

Facial Muscles Actions

AUs

Occipito Frontalis

Draw scalp forward and raises eyebrows

s J N
AUl i AU =i

Procerus Pull the glabella down

Orbicularis Oculi

Spread tears across cornea and close eyelid tightly

Levator Labii Superioris Alaeque Nasi

Raise upper lip and wrinkles the nose

Zygomaticus Major and Minor

Draw angle of mouth upward

Depressor Anguli Oris

Draw angle of mouth downward

Depressor Labii Inferioris Lowers lower lip

Mentalis Draws chin up

Orbicularis Oris

Levator/depressor of lip and angle of mouth
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the chance of lip corner depressor and chin raiser. Through
the way we analyzed above, we construct a causal influence
network to represent these qualitative influence constraints,
as shown in Fig. 3, where every link between two AU nodes
has a sign to capture either the positive or negative influence
between two AUs, with a positive sign denoting positive
influence and a negative sign denoting negative influence.

3.2 Constraints on Individual AUs

Given the causal influence network, we can extract two
types of constraints on an AU;, depending on the number
of AUs that influence AU;. If AU; is either positively or
negatively influenced by only one AU (e.g., AUs in Fig. 3)
and let that AU be AU; we can then construct the
following constraints:

P(AU; =1| AU; =1) > P(AU; = 1| AU, = 0) )
if AU; positively influences AU;
P(AU; =1| AU; =1) < P(AU; =1 | AU; = 0)

2
if AU; negatively influences AU;. @

If, on the other hand, AU; is influenced by multiple AUs
(e.g., AU, in Fig. 3), assuming all influences are the same
(e.g., all are positive or all are negative) and denote all
positive influencing AUs as AUT and all negative
influencing AUs as AUY, we can construct the following
constraints:

P(AU; =1 AU” =1) > P(AU; =1 | AU” #£1)  (3)

P(AU; =1 AU =1) < P(AU; =1 | AUY #1),  (4)

where AUT =1 (or AUY =1) means the values of all
elements of AU (AU") are positive, while AU” # 1 (and
AUY +# 1) means that the values of some elements of AU”
(AU™) are not equal to 1, i.e., 0.

Finally, if AU; (e.g., AUis or AUj;) is influenced by a
combination of both positive AUs (AU”) and negative AUs
(AUY), we can construct the following constraint:

P(AU; =1 | AU” =1, AUY =0)
P(AU; = 1| AU" = 0,AUY =0) 5)
P(AU; =1 | AUp =1, AUY =1)
> P(AU; = 1| AU = 0,AU" =1).

Besides casual qualitative influence among AUs, there is
also distribution constraint on some AUs. In spontaneous
cases, some AUs (e.g., AU2) less likely occur. This means
the probability of some AUs in specific states is higher than
these AUs in other states. This type of knowledge can be

defined by a single distribution constraint. Let AU; be such
an AU, we then have

where 1 means AU presence and 0 means AU absence.

3.3 Constraints on Group AUs

Activating the AUs produces significant changes in the
shape of facial component. For example, activating AU27

TABLE 2
AU Combinations with Low Probability to
Occur in Spontaneous Facial Expressions

Eyebrow movement group
P(AU1=0,AU2=1,AU4=1)

Mouth movement group
P(AU12 = 1, AU15 = 0, AU17 = 1)
P(AU12 = 1, AU15 = 1, AU17 = 0)
P(AU12 = 1, AU15 = 1, AU17 = 1)

results in a widely open mouth; and activating AU4 makes
the eyebrow lower and pushed together. As a result, the
corresponding local facial component movements are also
controlled by the AUs. We divide the AUs we are going to
recognize into three groups based on facial component:

1. Eyebrow group. AU1l, AU2, and AU4, controlling

eyebrow movements.

2. Eyelids group. AU6 and AU7, controlling eyelids

movements.

3. Mouth group. AU12, AU15, and AU17, controlling

mouth movements.

In each group, we analyze the co-occurrence/coabsence
of the corresponding AUs based on their underlying
muscles and then derive corresponding probabilistic con-
straints. For example, three AUs (AU12, AU15, AU17)
control mouth movement, and through the empirical
analysis of facial anatomy and FACS [29], we found that,
AU15 and AU17 rarely occur with AU12 because of the
facial muscular constraints (as analyzed in Section 3.1).
Some previous studies, i.e., [10], also provide similar
supplemental evidences. Based on this understanding, we
list the AU combinations that have a low probability to
occur for each group in Table 2. The low probability for a
combination in Table 2 can be expressed as a constraint that
the probability of a AU combination is lower than the
probability of any other combination of the same group of
AUs. For example, for the eyebrow group, we have

P(AU1 =0,AU2 =1,AU4=1) %
< P(AU1 =1,AU2 = 1, AU4 = 1).
(AU1=1,AU2 =1,AU4 = 1) is one possible configuration
of the three AUs. There are a total of seven such
configurations, hence producing seven such constraints.

3.4 Constraints on AU Dynamics

Besides the static constraints, there are also dynamic
constraints that restrict the temporal evolutions among
AUs. In this work, we consider the following dynamic
constraints:

1. AU level dynamic constraint. We assume that each
individual AU varies smoothly in a spontaneous
expression. We can then model the relationship
between the state of AU in next time step AU'™ and
its state in current time step AU as follows:

P(AU™ =5 | AU' = 5) > P(AU"™ #£ s | AU' = s),
(8)

where s represents a binary state of 0 or 1.
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TABLE 3
AU Combinations between Two Consecutive Time Steps with
Low Probability to Occur in Spontaneous Facial Expressions

Low probability to occur

P(AU{ = 1, AU{; ' = 0, AU = 0)
P(AUL =0, AU =1, AU = 1)
P(AU} = 1, AUE™! = 0, AUI™! = 0)
P(AU} = 0, AUS ™t =1, AU = 1)

2. Expression level dynamic constraint. In spontaneous
facial behaviors, some AUs usually occur together to
express certain emotion. Furthermore, the multiple
AUs involved may not undergo the same develop-
ment simultaneously; instead, they often proceed in
sequence as the intensity of facial expression varies.
For example, Schmidt et al. [23] found that certain
AUs usually closely followed the appearance of
AU12 in smile expression. For 88 percent of the smile
data they collect, the appearance of AU12 was either
simultaneously with or closely followed by one or
more associated AUs, and for these smiles with
multiple AUs, AU6 was the first AU to follow AU12
in 47 percent. Messinger et al. [45] also show that
AU6 may follow AU12 (smile) or AU20 (cry) to act
as an enhancer to enhance the emotion. This means
that certain AU in next time step may be affected by
other AUs in the current time step. Analysis of other
expressions results in a similar conclusion. For
example, in “brow raise” expression, AU1 usually
follows the AU2 to enhance the expression. Similar
findings are found in [10]. Based on this under-
standing, we can obtain the expression level dy-
namic constraint: Some AUs have strong dynamic
dependencies, while other AUs have little or no
dynamic dependencies. AUs that are strongly
dependent on each other dynamically include
AU12, AU6, and AU2, AUI1. For example, AU12
often precedes AU6, while AU2 is often followed by
AU1. The AU combinations between two consecu-
tive time steps that have low probability to occur in
spontaneous expressions are listed in Table 3.

4 KNOWLEDGE-DRIVEN MODEL LEARNING

We propose a knowledge-driven method to learn a prior
AU model based on the above constraints. The learning
process is composed of two steps. The first step is to
produce the feasible model parameter samples that satisfy
the constraints. This is then followed by converting the
feasible model parameter samples into pseudodata (Sec-
tion 4.2). Finally, the prior AU model is learned from the
pseudodata (Section 4.3).

4.1 BN as the AU Prior Model

4.1.1 A BN Model for AU Recognition

Following the work in [10], [9], we propose to use the BN as
the prior model to capture the AU knowledge and to
perform AU recognition. The prior model probabilistically
encodes the soft and probabilistic constraints to capture the

Fig. 4. A BN AU prior model.

AU occurrence frequency. While correct for the majority of
the samples, these soft constraints may not be consistent
with every sample or certain expressions. For example,
AU12 decreases the probability of AU15 and AU17, but for
certain expressions, for example, smile control, AU12 may
occur frequently with AU15 and AU17 [48], [49]. While this
is a weakness of the proposed prior model, it is in fact the
case with any prior models since the prior models typically
improve the overall performance, but cannot guarantee to
be correct for every case.

A BN is a directed acyclic graph that represents a joint
probability distribution among a set of random variables.
Based on consultation with the domain expert and on the
work in [10], we construct a BN as shown in Fig. 4 to capture
the dependencies among facial AUs. In this BN model, big-
shaded nodes represent AUs, each of which has two states
(presence 1 and absence 0). The AU nodes are hidden, and
their true states are unknown. The small nodes represent the
corresponding image measurement of the hidden AU
nodes. A BN can be uniquely determined by a structure
and a set of parameters. The parameters of a BN consist of
the conditional probability distribution (CPD) for each node,
given its parents. The AU constraints discussed in Section 3.2
can be translated into constraints on the BN parameters. For
example, parameters for AU4 node are two conditional
probabilities, P(AU4| AU7=1) and P(AU4 | AUT =0).
Since AU7 has positive influence on AU4, according to
Fig. 4, we can get P(AU4 | AU7T = 1) > P(AU4 | AU7T =0) as
per (1), and we call this a monotonicity constraint on our BN
model parameters. There are such constraints for each node
except for the root node AU2, which follows the distribution
constraint as per (6), that can be expressed as P(AU2 = 1) <
P(AU2 = 0). The constraints on the BN model parameters
are summarized in Table 4.

4.1.2 A DBN Model for AU Recognition

The BN model we constructed can just model the static
relationships among AUs. To capture the dynamic depen-
dencies, we extend our model to DBN, which models the
temporal evolution of a set of random variables X over time.
A DBN can be defined by a pair of BNs (B, B_.): 1) the static
network Bj, as shown in Fig. 5a, captures the static
distribution over all variables XY in the initial time frame;
and 2) the transition network B_,, as shown in Fig. 5b,
specifies the transition probability P(X"™ | X*) for all ¢ in
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TABLE 4
Constraints on BN Model Parameters
AU node Constraints

AU2 P(AU2 = 1) < P(AU2 = 0)
AUl P(AU1|AU2 = 1) > P(AU1|AU2 = 0)
AU4 P(AU4|AUT = 1) > P(AUA|AUT = 0)
AU6 P(AUG|AU2 = 1) < P(AU6|AU2 = 0)
AU12 P(AU12|AU6 = 1) > P(AU12|AU6 = 0)
AUIS P(AU15|AU12 = 1) < P(AU15|AU12 = 0)
AU7 P(AUT|AU2 = 1) < P(AU7|AU2 = 0)

P(AU1T|AU15 = 0, AU12 = 1)
UL { P(AUL7|AU15 = 0, AU12 = 0) }

P(AU17|AU15 =1, AU12 = 1)
P(AU17|AU15 = 1, AU12 = 0)

finite time slices T. Given a DBN model, the joint probability
over all variables X’,..., X7 can be factorized by “unrol-
ling” the DBN into an extended static BN, as shown in
Fig. 5¢c, whose joint probability is computed as follows:

P, a") = Py () [[ Po. (a1 [2),  (9)

t=0

where 2! represents the sets of values taken by the random
variables X at time ¢, Pp,(2") captures the joint probability
of all variables in the static BN By, and Pg (z'*!|z!)
represents the transition probability that can be decom-
posed as

Py (a1 | a') = [[ Po_ (=" | pa(2f)),  (10)
=

where pa(zit!

) represents the parent configuration of
variable /™ in the transition network B_..

In this work, besides the dynamics within a single AU,
which depicts how a single AU; develops over time, we also
consider the dynamics among different AUs. As discussed
in Section 3.4, there are expression level dynamic con-
straints between two consecutive time steps, so we
manually set two dynamic links between different AUs,
which are from AUI2 at time ¢ — 1 to AU6 at time ¢ and
from AU2 at time ¢ — 1 to AU1 at time ¢, respectively, to
capture such constraints. Finally, the DBN structure as
shown in Fig. 6 is used to capture the spatial-temporal
relationships among AUs. The temporal links, i.e., the self-
pointed arrows and the dynamic links between AUs at two

(@) (b)

t-1

Fig. 6. The DBN for AU modeling. The self-arrow at each AU node
indicates the temporal relationship of a single AU from the previous time
step to the current time step. The arrow from AU; at time ¢ — 1 to AU;
(j #¢) at time ¢ indicates the temporal relationship between different
AUs. The small circle indicates the measurement for each AU.

time slices are used to impose the dynamic AU constraints
discussed in Section 3.4, ie., the temporal smoothness
constraint and the dynamic dependence constraint, respec-
tively. In the following section, we discuss the method to
learn the BN /DBN parameters from knowledge constraints.

4.2 Generating Parameter Samples and Pseudodata

In this section, we first introduce a sampling approach to
efficiently acquire the BN AU model parameter samples
(Section 4.2.1). Then, based on the parameter samples, we
generate pseudotraining data and pseudodata pairs
(Section 4.2.2).

4.2.1 Generating BN Parameter Samples
Based on the AU constraints discussed above, we propose
to generate parameter sample, i.e., a vector of CPDs for all
nodes. To effectively generate many instances satisfying the
parameter constraints as listed in Table 4, we use rejection
sampling method [20], which consists of two steps: First,
generate samples from a proposal distribution and then
reject the samples inconsistent with constraints. The second
step is simply checking the sample with each constraint.
The first step is more difficult because we need to generate
samples in a high-dimensional space. To explore the space
efficiently, we propose the following sampling method.
The basic idea is to generate more samples from the
current “unexplored” region, so that the whole space can
be explored more efficiently. Specifically, we define the
proposal distribution of the Ith parameter sample ¢'

Fig. 5. A pair of (a) static network B, and (b) transition network B_, defines the dynamic dependencies for three random variables X;, X,, and Xj;.

(c) The corresponding “unrolled” DBN for 7"+ 1 time slices.
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conditioned on the previous instances: p(¢' | 0'°1,... 6%).
This probability is higher when the sample is far from
previous instances.

Given the previous instances, we first define a kernel
density function with Gaussian kernel:

q@ |67, ....0Y

1 & 1 68 — 69| (11)
_llz(%UZ)D/Qexp{ 952 }a

=1

where D is the dimension of the sample (i.e.,, number of
model parameter), o represents the standard deviation (SD).
This function has high probability in the region close to
previous samples. Since we need to explore the regions that
have not been explored, our proposal distribution is defined
as follows:

PO 1071, 0" o 1/(2m0®) " — (0] 01, 0Y). (12)
1/(2m02)P/? is the largest possible value of ¢(¢' | 81, .., 6"

Now, the problem is how to generate a new sample 0
according to this proposal distribution. Considering the

constraints, we use the rejection sampling method as follows:

1. We first generate each element of a sample ¢' from a
uniform distribution.
2. Ifl=1,thissampleis alwaysaccepted; otherwise, this
. . Tipo, p(6 070" :
sampleis accepted with a probability W .This
can be easily implemented as subroutine:

a. Generate a number u from the uniform distribu-
tion over [0, 1/(2ro%)"/%;

b. if u<p@|67L,...,0Y, ¢ is accepted; other-
wise, it is rejected.

3. If ¢' is rejected, go back to Step 1 to generate another
sample, until the new sample is accepted.

4. Check the new sample (CPD) with the parameter
constraints as listed in Table 4, if the sample satisfy
all the constraints, add the new sample to the sample
set 0/ — C, otherwise reject this sample and go back
to Step 1.

5. If the sample set size | C | is smaller than L, then go
back to Step 1.

We can see that this algorithm includes two rejection
steps. Each sample is first tested by the proposal distribution
to make it far from previous instances. Then, the sample is
tested by the parameter constraints. Finally, we can get a
concise sample set satisfying the parameter constraints.
Given the parameter samples, we can simply find their mean
and use the mean as the parameters of the prior model. But
doing so will lose modeling accuracy since the sampled
parameters do not follow a Gaussian distribution. We
instead propose to generate pseudodata samples from each
parameter sample, which are further evaluated by the
constraints on data samples. The valid pseudosamples are
collectively used to train the prior model as detailed below.

4.2.2 Generating Pseudodata

Based on the BN parameter sample ; we generated above,
now we generate pseudodata D;, which is a vector
representing the AUs states in one time instant. Each BN
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parameter sample 6; and the BN structure together define a
joint probability distribution and represent the constraints.
We drew 500 samples, for example, D;,j =1,...,500, from
each 0;,i=1,...,k. Then, we combine all the samples
together as the pseudotraining data set. We use AU group
constraints to evaluate the data samples as follows:

We first generate a data sample D; from the joint
probability defined by 6;, check D; with AU group
constraints as listed in Table 2. If there is no such instance,
Dj is accepted; otherwise, D; is accepted with probability p
(we set it 0.1 in this work).

The pseudodata we generate above can only represent
static constraints. To incorporate the dynamic constraints,
we propose to generate pseudodata pairs (D'*!, D) that
include data of both the current and the next time step. This
dynamic sampling procedure is summarized as follows:

1. Sample the current time step data D' using the
above method.

2. Given D', we generate the next time step data D'
according to the AU level dynamic constraint. Since
this constraint is imposed on each AU separately, we
sampled each element of D! independently satis-
fying the AU level dynamic constraint.

3. Check D! with AU group constraints and check
pseudo data pair (D', D) with the expression level
dynamic constraint as listed in Table 3, respectively.
If this pair is infeasible, then reject it and go back
to Step 1.

4.3 Learning BN/DBN Parameters from Constraints

Given the BN /DBN structure, now we focus on learning the
parameters from pseudotraining data to infer each AU. We
first introduce the BN parameter learning method and then
extend it to DBN. Learning the parameters in a BN is to find
the most probable values @ for § that can best explain the
generated pseudotraining data. Let 65 indicates a prob-
ability parameter for a BN,

Oir = p(z] | pa’ (X)),

where i ranges over all the variables (nodes in the BN), j
ranges over all the possible parent instantiations for
variable X;, and k ranges over all the instantiations for X;
itself. Therefore, =¥ represents the kth state of variable X;,
and pa’(X;) is the jth configuration of the parent nodes of
X;. In this work, the “fitness” of parameters # and training
data D is quantified by the log-likelihood function
log(p(D | 6)), denoted as Lp(6). Assuming the pseudodata
we generated are independent, based on the conditional
independence assumptions in BNs, we have the log-
likelihood function in

(13)

n_o g T

Lo(0) =tog [TTTTT 05"

i=1 j=1 k=1

(14)

where n;j, is the count for the case that node X; has the state
k, with the state configuration j for its parent nodes; n is the
number of variables (nodes) in the BN; ¢; is the number of
parent configurations of X; node; and r; is the number of
instantiations of X;.
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(b)

Fig. 7. (a) Some example images from CK database (adapted from [19]).

(b) Some example images from FERA database.

Since we have got the complete pseudotraining data, an
ML estimation method can be described as a constrained
optimization problem, ie., maximize (15), subject to n
equality constraints (16):

Max  Lp(6) (15)
S.T. 9i(0) = Z Oijr. — 1 =10, (16)
=1

where g;; imposes the constraint that the parameters of each
node sums to 1 over all the states of that node, 1 <i<n
and 1 < j < g;. Solving the above equations, we can get

O = 2t
>k Migh

Since a DBN can be seen as a pair of BN (By, B_.) and the
static network B, is the same as the BN we learned above,
we only need to learn the transition network B_,. In
implementation, we consider each pseudodata pair as one
data sample for the transition network B_,, then we use
the same learning method above to learn the parameters of
the transition network B_,. Then, we combine the B, and
B_, together as the DBN model for AU recognition in the
following section.

5 EXPERIMENTS

5.1 Facial Expression Database

The proposed knowledge-driven model is tested on FACS
labeled images from two databases. The first database is the

Cohn-Kanade DFAT-504 (C-K) database [24], which con-
sists of more than 100 subjects covering different races,
ages, and genders. To extract the temporal relationships,
the C-K database is coded into AU labels frame by frame in
this work.

Furthermore, the FG 2011 facial expression recognition
and analysis challenge (FERA) database [28] is employed to
evaluate the generalization ability of our knowledge-driven
model. FERA database is a subset of the GEMEP corpus
[47], in which the subjects are all professional actors and are
coached by a professional director. The main differences
between Cohn-Kanada database and FERA database are as
follows: 1) The image sequences on FERA database contain
a complete temporal evolution of expression while that on
C-K database only reflect the evolution of the expression
starting from a neutral state and ending at the apex, but
without the relaxing period, 2) subjects on FERA database
are asked to perform spontaneous expression with natural
head movements, while subjects on C-K database only
perform simple AU combinations in frontal view face.
Examples from these two databases are shown in Fig. 7.

5.2 AU Measurement Extraction

When we estimate the AU state from the image, this prior
model is combined with image measurements to estimate
the posterior probability of AUs. In this work, we employ
Gabor features and an AdaBoost classifier for AU measure-
ments extraction. For each image, we first detect the eyes
through a boosted eye detector [43]. Then, the image is
normalized into 64 x 64 subimage based on the eye
positions. A set of six orientations and five scales Gabor
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filters are applied, and a 6 x 5 x 64 x 64 = 122,880 dimen-
sion feature vector is obtained for each image. Given the
image features, the AdaBoost classifier is then employed to
obtain the measurement for each AU. Through the training
process, the weights of the wrongly classified examples
are increased in each iteration, and AdaBoost forces the
classifier to focus on the most difficult samples in the
training set. And, thus, it results in an effective classifier. In
this work, the final classifier utilizes around 200 Gabor
features for each AU. Based on the image measurement e;
and ground truth AU;, we then train a likelihood function
that is a conditional probability of the AU measurement
given the actual AU values, P(e; | AU;). Note that we still
need training data to train the AU measurement method.
But such data are not used to train the prior model since
prior model trained using such data cannot generalize well
to a different data set as shown in our experiments.
Moreover, training a prior model typically needs much
more data than training a measurement model.

5.3 AU Recognition through BN/DBN Inference

In the above sections, we have learned the BN/DBN model
to represent the prior probability of AUs. Once the image
measurements are obtained, we can use them as the
evidence to estimate the true state of AUs through BN/
DBN model inference. Let AU; indicate the ¢th AU node,
and e; be the corresponding measurement. In BN inference,
the posterior probability of AUs can be estimated by
combining the likelihood from measurement with the prior
probability of AUs:

p(AUl,...,AUN | €1y

aeN)

N ‘
plei | AU [ [ p(AU; | Pa(AUY)). an

i=1 =1

=z

X

The first term is the likelihood term. The second term is the
product of the conditional probabilities of each AU node
AU; given its parents Pa(AU;), which are BN model
parameters that have been learned. In practice, the posterior
probability of each AU node can be estimated efficiently
through the belief propagation algorithm [25].

The DBN inference is similar to the BN inference except
for the dynamic transitions. Given the evidences until time
t:eft,... el?, the posterior probability p(AUf,..., AU, |
el®,...,el?) can be factorized and computed via the AU
model by performing the DBN updating process as
described in [26].

5.4 Convergence of a Knowledge-Driven Model

We employ the sampling scheme described in Section 4.2 to
harvest the parameter samples and pseudodata that are
consistent with our constraints. To study the convergence of
the parameter samples and pseudodata, we have calculated
the average SD of the generated parameter instances as a
function of the number of parameter samples (as shown in
Fig. 8a) and the SD of the model parameters as a function of
the size of pseudodata (as shown in Fig. 8b), respectively.
For Fig. 8b, we set the quantity of the parameter samples as
1,000 and generate different number of pseudodata from
each parameter instance.

2 [2]
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Fig. 8. Convergence of a knowledge-driven model. (a) Convergence of
parameter samples. (b) Convergence of data samples.

It is clear from Fig. 8a that the model parameter variation
starts stabilizing once the number of parameter samples
reaches 1,000. This demonstrates the efficiency of the
proposed sampling method. Likewise, Fig. 8b shows that
we need generate 500 data from each parameter sample to
have a stable estimation of the BN model parameter.

5.5 Comparison on Specific Database

We first test the prediction power of the proposed method
and compare with that of the data-driven prior model, on
specific database, i.e, on C-K database and on FERA
database respectively. Similar to the work in [10], a data-
driven prior model learns DBN model from the data. Since
the prior model should combine with image measurements
to infer the true state of each AU, we first extract AU
measurements through the AdaBoost classifier. We collect
8,000 images from C-K database and 5,000 images from
FERA database, and on both databases, we divide the data
into seven sections, each of which contains images from
different subjects. We adopt leave-one-fold-out cross
validation to evaluate our system.

5.5.1 Comparison with a Data-Driven Prior Model

Given the AU measurements, we fix one section data as
testing data and the other six sections as training data for a
data-driven prior model. The amount of training data
needed to train the data-driven DBN model can be
estimated by Hoeffding bound [46]: Pp(Tp & [p —¢,
p+e]) < 2e2M < 6, where Tp is the probability we want
to estimate, for example, a parameter in the DBN model, p
is the true probability, and M is the number of training
samples. From Hoeffding bound (setting ¢ =0.1 and
6 =0.01), we can get a minimum M = 265 for one parent
configuration. In this work, AU17 node at time ¢ has eight
parent configurations; hence, the amount of minimum
training samples needed is 265 x 8 = 2,120. Since we got
more training data than 2,120, we can train a stable data-
driven prior model. Fig. 9 shows the comparison results on
C-K and FERA database, respectively. We can see from
Fig. 9a that when testing on C-K database, DBN learned
from knowledge (DBN knowledge) significantly improves
the measurements (AdaBoost). The average F1 measure
(F1 =254 where P is precision and R is recall) for all
AUs increases from 69.76 percent for AdaBoost to 78.09 per-
cent for DBN knowledge. The improvement mainly comes
from the AUs that are hard to detect but have strong
relationship with other AUs. For instance, the activation of
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Fig. 9. Comparison of a knowledge-driven prior model with a data-driven prior model on (a) C-K database and (b) FERA database, respectively.

AU1 and AU2 induces less changes in skin texture and are
not well recognized by the AdaBoost. Fortunately, the
probability of these two action’s co-occurrence is high,
because they are contracted by the same facial muscle
group. By employing such relationship, the DBN knowl-
edge improves the F1 measure of AUl from 50.96 to
66.95 percent, and that of AU2 from 43.58 to 56.83 percent.
Similarly, by employing the co-occurrence relationship
between AU15 and AU17, and the coabsence relationship
of these two AUs with AU12, the F1 measure of AU15 is
increased from 70.09 to 82.68 percent, and that of AU17 is
increased from 69.40 to 78.70 percent. Additionally, for
comparison, we also evaluate the DBN learned from full
training data (DBN data). Its average F1 measure is
79.61 percent, which is slightly better than that of DBN
knowledge (78.09). These results are extremely encoura-
ging, as the proposed model uses no training data but
domain specific yet generic knowledge to achieve compar-
able recognition results to DBN learned from full training
data. We repeat this experiment on FERA data set as shown
in Fig. 9b. The DBN knowledge improves the average
recognition results (F1 measure) from 46.03 percent
(AdaBoost) to 50.88 percent, and DBN data achieve an
average F1 measure of 52.62 percent. Experiments on both
data sets prove the prediction power of the proposed
method that is practically significant, since in many
applications, acquiring the annotated training data is an

expensive, subjective, and time-consuming process, yet
there are always plenty of domain knowledge that is often
ignored. Note both the data-driven and the knowledge-
driven prior model yield improved performance on the C-K
database even though its expressions are posed. This is
because the constraints we extract on AUs are based mainly
on study of facial anatomy and FACS coding. These
constraints hence also apply to posed expressions. But the
performance improvement should be larger for the non-
posed expression since some of the constraints such as the
group and dynamic constraints are derived mainly from the
spontaneous expression.

5.5.2 Comparison with State-of-the-Art Methods

There are lots of works about expression recognition
evaluated on C-K database, and Table 5 shows the
comparison of the proposed knowledge-driven model with
some earlier works. Our results in term of classification rate
are better than most previous works. Bartlett et al. [15] and
Lucey et al. [31] both achieve high accuracy AU recognition
rate, but these two approaches are all image based, which
usually evaluate only on the initial and peak frames, while
our method is sequence based and we consider the whole
sequence, in the middle of which the AUs are much more
difficult to recognize. For a fair comparison, we also
evaluate our method only on the initial and the peak
frames, and we achieve a classification rate of 97.02 percent,
which is better than that in [15] (94.8 percent) and [31]

TABLE 5
Comparison of Our Work with Some Earlier Works on CK Database
[ Author | features | classification [ AUs [ CR [ FI |

Bartlett et al. 2005 [15]. Gabor filters AdaBoost+SVM 17 94.8
Bartlett et al. 2006 [21] Gabor filters AdaBoost+SVM 20 90.9
Whitehill and Omlin 2006 [1] | Haar wavelets AdaBoost 11 924
Littlewort et al. 2006 [22] Gabor filters AdaBoost+SVM 7 924
Lucey et al. 2007 [31] AAM SVM 15 95.5
Valstar & Pantic 2006[34]. tracked facial points | AdaBoost+SVM 15 90.2 72.9
Tong el al. 2007 [10] Gabor filters AdaBoost+DBN 14 93.3
Koelstra el al. 2010[32] FFD GentleBoost+HMM 18 89.8 72.1
Valstar & Pantic 2012 [35] tracked facial points | GentleSSVM+HMM | 22 91.7 59.6
This work Gabor filter AdaBoost+DBN 8 92.78 | 78.09
This work* Gabor filter AdaBoost+BN 8 97.02 | 86.80

This work* means employing BN as prior model and evaluate only on the initial and peak frames
AU = No. of AUs recognized, CR = Classification Rate, F1 = F1 measure
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TABLE 7

Parameters of AU7 Node for Three Different Models

P(AUT = 1]AU2 = 0)

P(AUT = 1[AU2 = 1)

DBN-CK 0.1705 0.0033
DBN-FERA 0.4267 0.3211
DBN-Knowledge | 0.3842 0.2475

138
TABLE 6
Results for Testing for Eight AUs on CK Data Set

AUs | FI FI[35] | FI[32] | FI[34]
1 65.95 | 82.6 86.89 | 87.6
2 56.83 | 83.3 90.00 94.0
4 71.01 | 63.0 73.13 87.4
6 93.83 | 80.0 80.00 88.0

7 86.52 | 29.0 46.75 76.9
12 88.24 | 83.6 83.72 92.1
15 83.68 | 36.1 70.27 30.0
17 78.70 76.29

Avg | 78.09 | 65.37 75.88 79.43

F1 = F1 measure of our model

F1 [35] = F1 Valstar & Pantic 2012[35]
F1 [32] = F1 Koelstra el al. 2010[32]
F1 [34] = F1 Valstar & Pantic 2006[34]

(95.5 percent). In addition, the classification rate is often less
informative, especially when the data are unbalanced.
So, we also report our results in term of F1 measure
(a harmonic mean of precision and recall rate), which is a
more comprehensive metric. From Table 5, we can see that
the proposed method significantly outperforms the three
earlier works who also reported their results using F1
measure. Since these three works recognize more AUs, we
also make a deep comparison on each individual AU as
shown in Table 6. On average, our method achieves better
or similar results, but it is interesting that these three works
get much better results at AU1 and AU2, while our method
significantly outperforms them for AU15. Valstar and
Pantic [35], [34] employ geometric features, and Koelstra
el al. [32] use free-form deformations features that are all
powerful to detect AUs such as AUl and AU2, the
activations of which are characterized by large morpholo-
gical changes but less changes in skin texture. On the other
hand, the activation of AU15 involves distinct changes in
skin texture without large displacements of facial fiducial
points, and hence, Valstar and Pantic [35], [34] fail at AU15.
On FERA database, Valstar et al. [33] provided the baseline
system for FERA challenge 2011, which employed LBP
features and SVM classifier and achieved an average F1
measure of 44.30 percent for the same eight target AUs as in
this work, while the proposed knowledge-driven model
achieves an average F1 measure of 50.88 percent.
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(Ignoring the Dynamic Dependency)

5.6 Comparison across Different Databases

5.6.1 Comparison with a Data-Driven Prior Model

In this section, we compare the generalization ability of the
proposed knowledge-driven prior model with data-driven
prior model on C-K database and on FERA database,
respectively. As mentioned above, we have got the AU
measurements, and on both databases, we fix one section as
testing data. Fig. 10 shows the experimental results.

From Fig. 10a, we can see that when testing on C-K
database, DBN knowledge consistently outperforms DBN-
FERA (DBN trained on FERA database) on all AUs, and
the improvements on some certain AUs are significant.
For example, DBN-FERA achieves a F1 measure of
75.54 percent for AU7, and 71.89 percent for AU15, while
DBN knowledge achieves a F1 measure of 86.52 percent for
AU7, and 82.68 percent for AU15. This means that when
prior model trained on FERA applying to C-K data set, it
may fail on some certain AUs, i.e., AU7, AU15, vice versa as
shown in Fig. 10b. This is because that every data set has its
own built-in bias, i.e., the relationship of AU7 with other
AUs on FERA data set is not exactly the same as that on C-K
data set. This is in particular the case since C-K database
consists of posed expression, while FERA data set contains
spontaneous expression. At the same time, the DBN
knowledge captures the most generic knowledge in the
domain, and the parameters of DBN knowledge will not be
far from all data sets. To clearly demonstrate this point, we
list the parameters of AU7 node (ignoring the dynamic
dependency) for three different models in Table 7. From
Table 7, we can see that the parameters of DBN knowledge
lie between the parameters of DBN-CK and DBN-FERA just
as we analyzed.

Though on specific data set, DBN knowledge may
achieve a slightly worse result compared to DBN data
(DBN model trained on specific data set as shown in
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Fig. 10. Comparison of the generalization ability of DBN learned from data and DBN learned from generic knowledge. (a) Test on C-K database.

(b) Test on FERA database.
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TABLE 8
Comparison of Knowledge-Driven Model and
Data-Driven Model on CK and FERA Data Set, Respectively

TABLE 9
Comparison of Generalization Ability

(a)

‘ Test On CK Test On FERA ‘ Test On FERA ‘
DBN-F | DBN-K | DBN-C | DBN-C | DBN-K | DBN-F SVM-L-C | DBN-K | SVM-R-C | DBN-K | AdB-C | DBN-K
F1 | 73.90 78.09 ‘ 79.61 46.71 50.88 ‘ 52.62 ‘ F1 | 24.56 ‘ 39.28 ‘ 25.51 ‘ 40.62 ‘ 31.15 ‘ 39.01 ‘
F1 = F1 measure, DBN-F = DBN-FERA (trained on FERA database) ()
DBN-K = DBN-Knowledge, DBN-C = DBN-CK (trained on CK database)
Test On CK ‘
SVM-L-F | DBN-K | SVM-R-F | DBN-K | AdB-F | DBN-K
F1 | 19.92 ‘ 34.27 30.95 ‘ 40.28 ‘ 35.38 ‘ 43.00 ‘

Section 5.5.1), which is also encouraging because we do not
use any data for the training purpose of DBN knowledge,
when generalizing to different data sets, DBN knowledge
significantly outperforms DBN data, which is another
benefit of using the knowledge-driven model. Table 8
summarizes the average recognition results of knowledge-
driven model and data-driven model on CK and FERA data
sets, respectively.

To further compare the knowledge-driven model with
data-driven model, we combine the C-K and FERA
databases together to train a prior model (DBN com-
bined) and test on C-K and FERA data sets, respectively.
Fig. 11 shows the experimental results. From Fig. 11, we
can see that combining data from different data sets to
train the prior model did not get better results than
model trained on the same data set. This is mainly
because that each data set has its own built-in bias, and
combing data from other data sets will also involve these
bias. For instance, DBN combined achieved an average F1
measure of 77.76 percent on CK data set, which is slightly
worse than DBN knowledge (78.09 percent) and DBN-CK
(79.61 percent). Experiments on FERA data set also show
the same fact: DBN combined achieved an average F1
measure of 50.58 percent, while DBN knowledge and
DBN-FERA achieved an average F1 measure of 50.88 and
52.62 percent, respectively.

5.6.2 Comparison with Image-Driven Methods

In this section, we compare the generalization ability of
using image-driven method along and combining image-
driven method with the prior model. We first train three
kinds image-driven models on C-K database: SVM with
liner kernel function (SVM-L-C), SVM with RBF kernel
function (SVM-R-C) and AdaBoost (AdaB-C). We use the
same feature set: Gabor features selected by AdaBoost.
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F1 = F1 measure, DBN-K = DBN-Knowledge
SVM-L-C/F = SVM with liner kernel (trained on CK/FERA database)
SVM-R-C/F = SVM with RBF kernel (trained on CK/FERA database)
AdB-C/F = AdaBoost (trained on CK/FERA database)
(a) Train on CK and test on FERA database. (b) Train on FERA and test
on CK database.

We test these three models on FERA data set, and since
there is large bias between C-K and FERA data sets, all
these three image-driven models achieve low recognition
results. By combining the low image measurements with
the knowledge-driven prior model, we get significant
improvements (as shown in Table 9a). Although the final
results are still worse than the model trained and tested on
the same data set (F1 measure of 46.03 percent), the F1
measure improvement by the prior model is significant.
Note that we do not use any FERA data for the training
purpose of either the measurement or the prior model. For
a complete comparison, we also train image-driven
methods on FERA and test on C-K data set and combine
the image measurements with the knowledge-driven prior
model (as shown in Table 9b). We can reach the same
conclusion that combining the prior model can improve
the generalization ability of image-drive methods.

6 CoNcLUSION AND FUTURE WORK

In this work, we propose a knowledge-driven prior model
based on a DBN to model the spatial-temporal relationships
among AUs to further improve over the image-driven
methods, which usually recognize AUs or AU combinations
individually and statically. Unlike traditional data-driven
prior model, our model is completely learned from generic
prior knowledge, which can be expressed as qualitative
constraints on individual AUs, on group AUs, and on AU
dynamics. We introduce a unified MCMC method to
simultaneously incorporate these knowledge into the DBN
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Fig. 11. Comparison of a knowledge-driven model with a data-driven prior model learned from combined data on (a) C-K database and (b) FERA

database, respectively.
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model learning in a principled manner. As shown in the
experiments, the prior model integrated with the feature
extraction method yields significant improvement for AU
recognition over using a computer vision technique alone.
Furthermore, with no training data but generic domain
knowledge, the proposed knowledge-driven prior model
achieves comparable results to the data-driven prior model
for specific database and significantly outperforms the data-
driven prior model when generalizing to new data set.
While the DBN prior model captures the typical and
significant relationships among AUs for a majority of the
samples, it may not be consistent with every sample. In fact,
it may introduce bias. For those samples inconsistent with
the prior model, the prior model may not improve
recognition on these samples. While this is a weakness of
the proposed prior model, it is in fact the case with any
prior models.

In this paper, we have demonstrated the performance of
the proposed methods on two databases. In the future, we
will further validate their performance on more sponta-
neous expression databases even though we expect they
will work equally well. In addition, we will further study
facial anatomy to identify additional knowledge that
governs facial muscle movements, with a focus on knowl-
edge that controls the dynamic behavior of facial expres-
sions. Applying this knowledge-driven learning approach
to domain adaptation and to other computer vision
problems is another future work.
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