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Simultaneous Facial Feature Tracking and Facial
Expression Recognition
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Abstract—The tracking and recognition of facial activities
from images or videos have attracted great attention in computer
vision field. Facial activities are characterized by three levels.
First, in the bottom level, facial feature points around each
facial component, i.e., eyebrow, mouth, etc., capture the detailed
face shape information. Second, in the middle level, facial action
units, defined in the facial action coding system, represent the
contraction of a specific set of facial muscles, i.e., lid tightener,
eyebrow raiser, etc. Finally, in the top level, six prototypical facial
expressions represent the global facial muscle movement and are
commonly used to describe the human emotion states. In contrast
to the mainstream approaches, which usually only focus on one or
two levels of facial activities, and track (or recognize) them sep-
arately, this paper introduces a unified probabilistic framework
based on the dynamic Bayesian network to simultaneously and
coherently represent the facial evolvement in different levels, their
interactions and their observations. Advanced machine learning
methods are introduced to learn the model based on both training
data and subjective prior knowledge. Given the model and the
measurements of facial motions, all three levels of facial activities
are simultaneously recognized through a probabilistic inference.
Extensive experiments are performed to illustrate the feasibility
and effectiveness of the proposed model on all three level facial
activities.

Index Terms— Bayesian network, expression recognition, facial
action unit recognition, facial feature tracking, simultaneous
tracking and recognition.

I. INTRODUCTION

HE recovery of facial activities in image sequence is

an important and challenging problem. In recent years,
plenty of computer vision techniques have been developed
to track or recognize facial activities in three levels. First,
in the bottom level, facial feature tracking, which usually
detects and tracks prominent facial feature points (i.e., the
facial landmarks) surrounding facial components (i.e., mouth,
eyebrow, etc.), captures the detailed face shape information.
Second, facial actions recognition, i.e., recognize facial Action
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Units (AUs) defined in the Facial Action Coding System
(FACS) [1], try to recognize some meaningful facial activities
(i.e., lid tightener, eyebrow raiser, etc.). In the top level, facial
expression analysis attempts to recognize facial expressions
that represent the human emotional states.

The facial feature tracking, AU recognition and expression
recognition represent the facial activities in three levels from
local to global, and they are interdependent problems. For
example, facial feature tracking can be used in the feature
extraction stage in expression/AUs recognition, and expres-
sion/AUs recognition results can provide a prior distribution
for facial feature points. However, most current methods only
track or recognize the facial activities in one or two levels,
and track them separately, either ignoring their interactions or
limiting the interaction to one way. In addition, the estimates
obtained by image-based methods in each level are always
uncertain and ambiguous because of noise, occlusion and the
imperfect nature of the vision algorithm.

In this paper, in contrast to the mainstream approaches, we
build a probabilistic model based on the Dynamic Bayesian
Network (DBN) to capture the facial interactions at different
levels. Hence, in the proposed model, the flow of information
is two-way, not only bottom-up, but also top-down. In partic-
ular, not only the facial feature tracking can contribute to the
expression/AUs recognition, but also the expression/AU recog-
nition helps to further improve the facial feature tracking per-
formance. Given the proposed model, all three levels of facial
activities are recovered simultaneously through a probabilistic
inference by systematically combining the measurements from
multiple sources at different levels of abstraction.

The proposed facial activity recognition system consists of
two main stages: offline facial activity model construction and
online facial motion measurement and inference. Specifically,
using training data and subjective domain knowledge, the
facial activity model is constructed offline. During the online
recognition, as shown in Fig. 1, various computer vision
techniques are used to track the facial feature points, and
to get the measurements of facial motions, i.e., AUs. These
measurements are then used as evidence to infer the true states
of the three level facial activities simultaneously.

The paper is divided as follows: In Sec. II, we present a brief
review on the related works on facial activity analysis; Sec. III
describes the details of facial activity modeling, i.e., modeling
the relationships between facial features and AUs (Sec. I1I-B),
modeling the semantic relationships among AUs (Sec. III-C),
and modeling the relationships between AUs and expressions
(Sec. III-D); In Sec. IV, we construct the dynamic dependency
and present a complete facial action model; Sec. V shows the
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Fig. 1. Flowchart of the online facial activity recognition system.

experimental results on two databases. The paper concludes in
Sec. VI with a summary of our work and its future extensions.

II. RELATED WORKS

In this section, we are going to introduce the related
works on facial feature tracking, expression/AUs recogni-
tion and simultaneous facial activity tracking/recognition,
respectively.

A. Facial Feature Tracking

Facial feature points encode critical information about face
shape and face shape deformation. Accurate location and
tracking of facial feature points are important in the appli-
cations such as animation, computer graphics, etc. Gener-
ally, the facial feature points tracking technologies could be
classified into two categories: model free and model-based
tracking algorithms. Model free approaches [47]-[49] are
general purpose point trackers without the prior knowledge
of the object. Each feature point is usually detected and
tracked individually by performing a local search for the
best matching position. However, the model free methods
are susceptible to the inevitable tracking errors due to the
aperture problem, noise, and occlusion. Model based methods,
such as Active Shape Model (ASM) [3], Active Appearance
Model (AAM) [4], Direct Appearance Model (DAM) [5], etc.,
on the other hand, focus on explicitly modeling the shape
of the objects. The ASM proposed by Cootes et al. [3],
is a popular statistical model-based approach to represent
deformable objects, where shapes are represented by a set of
feature points. Feature points are first searched individually,
and then Principal Component Analysis (PCA) is applied
to analyze the models of shape variation so that the object
shape can only deform in specific ways found in the training
data. Robust parameter estimation and Gabor wavelets have
also been employed in ASM to improve the robustness and
accuracy of feature point search [6], [7]. The AAM [4] and
DAM [5] are subsequently proposed to combine constraints of
both shape variation and texture variation.

In the conventional statistical models, e.g. ASM, the feature
points positions are updated (or projected) simultaneously,
which indicates that the interactions within feature points
are interdependent. Intuitively, human faces have a sophis-
ticated structure, and a simple parallel mechanism may not
be adequate to describe the interactions among facial feature

points. For example, whether the eye is open or closed will
not affect the localization of mouth or nose. Tong et al. [8]
developed an ASM based two-level hierarchical face shape
model, in which they used multi-state ASM model for each
face component to capture the local structural details. For
example, for mouth, they used three ASMs to represent the
three states of mouth, i.e., widely open, open and closed.
However, the discrete states still cannot describe the details
of each facial component movement, i.e., only three discrete
states are not sufficient to describe all mouth movements. At
the same time, facial action units inherently characterize face
component movements, therefore, involving AUs information
during facial feature points tracking may help further improve
the tracking performance.

B. Expression/AUs Recognition

Facial expression recognition systems usually try to recog-
nize either six expressions or the AUs. Over the past decades,
there has been extensive research on facial expression analy-
sis [9], [14], [16], [21], [24]. Current methods in this area
can be grouped into two categories: image-based methods and
model-based methods.

Image-based approaches, which focus on recognizing facial
actions by observing the representative facial appearance
changes, usually try to classify expression or AUs indepen-
dently and statically. This kind of method usually consists of
two key stages. First, various facial features, such as optical
flow [9], [10], explicit feature measurement (e.g., length of
wrinkles and degree of eye opening) [16], Haar features [11],
[37], Local Binary Patterns (LBP) features [31], [32], indepen-
dent component analysis (ICA) [12], feature points [47], Gabor
wavelets [14], etc., are extracted to represent the facial gestures
or facial movements. Given the extracted facial features, the
expression/AUs are identified by recognition engines, such
as Neural Networks [15], [16], Support Vector Machines
(SVM) [14], [20], rule-based approach [21], AdaBoost clas-
sifiers, Sparse Representation (SR) classifiers [33], [34], etc.
A survey about expression recognition can be found in [22].

The common weakness of image-based methods for AU
recognition is that they tend to recognize each AU or certain
AU combinations individually and statically directly from the
image data, ignoring the semantic and dynamic relationships
among AUs, although some of them analyze the temporal
properties of facial features, e.g., [17], [45]. Model-based
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methods overcome this weakness by making use of the rela-
tionships among AUs, and recognize the AUs simultaneously.
Lien et al. [23] employed a set of Hidden Markov Models
(HMMs) to represent the facial actions evolution in time. The
classification is performed by choosing the AU or AU com-
bination that maximizes the likelihood of the extracted facial
features generated by the associated HMM. Valstar et al. [18]
used a combination of SVMs and HMMs, and outperformed
the SVM method for almost every AU by modeling the tempo-
ral evolution of facial actions. Both methods exploit the tem-
poral dependencies among AUs. They, however, fail to exploit
the spatial dependencies among AUs. To remedy this problem,
Tong and Ji [24], [25] employed a Dynamic Bayesian net-
work to systematically model the spatiotemporal relationships
among AUs, and achieved significant improvement over the
image-based method. In this paper, besides modeling the spa-
tial and temporal relationships among AUs, we also make use
of the information of expression and facial feature points, and
more importantly, the coupling and interactions among them.

C. Simultaneous Facial Activity Tracking/Recognition

The idea of combining tracking with recognition has been
attempted before, such as simultaneous facial feature tracking
and expression recognition [47], [50], [51], and integrating
face tracking with video coding [27]. However, in most of
these works, the interaction between facial feature tracking
and facial expression recognition is one-way, i.e., facial feature
tracking results are fed to facial expression recognition [47],
[51]. There is no feedback from the recognition results to
facial feature tracking. Most recently, Dornaika et al. [26] and
Chen & Ji [30] improved the facial feature tracking perfor-
mance by involving the facial expression recognition results.
However, in [26], they only modeled six expressions and they
need to retrain the model for a new subject, while in [30], they
represented all upper facial action units in one vector node and
in such a way, they ignored the semantic relationships among
AUs, which is a key point to improve the AU recognition
accuracy.

Compared to the previous related works, this paper has the
following features.

1) First, we build a DBN model to explicitly model the
two-way interactions between different levels of facial
activities. In this way, not only the expression and AUs
recognition can benefit from the facial feature tracking
results, but also the expression recognition can help
improve the facial feature tracking performance.

2) Second, we recognize all three levels of facial activities
simultaneously. Given the facial action model and image
observations, all three levels of facial activities are esti-
mated simultaneously through a probabilistic inference
by systematically integrating visual measurements with
the proposed model.

III. FACIAL ACTIVITY MODELING
A. Overview of the Facial Activity Model

1) Single Dynamic Model: The graphical representation
of the traditional tracking algorithm, i.e., Kalman Filter, is
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Fig. 2. Comparison of different tracking models. (a) Traditional tracking
model. (b) Tracking model with switch node. (c) Proposed facial activity
tracking model.

shown in Fig. 2(a). X, is the current hidden state, e.g., image
coordinates of the facial feature points, we want to track,
and M; is the current image measurement (Hereafter, the
shaded nodes represent measurements, i.e., estimates, and the
unshaded nodes denote the hidden states). The directed links
are quantified by the conditional probabilities, e.g., the link
from X; to M; is captured by the likelihood P (M;|X;), and the
link from X,_; to X, by the first order dynamic P(X;|X;_1).

For online tracking, we want to estimate the posterior
probability based on the previous posterior probability and the
current measurement

P(X:|My;)

P(M;1X:) P(X( | X)) P(X;i—1IM1—1). (D)

Xi—1
M., is the measurement sequence from frame 1 to 7. If both
X; and M; are continuous and all the conditional probabilities
are linear Gaussian, this model is a Linear Dynamic System
(LDS).

2) Dynamic Model With Switching Node: The above track-
ing model has only one single dynamic P(X;|X;_1), and
this dynamic is fixed for the whole sequence. But for many
applications, we hope that the dynamic can “switch” according
to different states. Therefore, researchers introduce a switch
node to control the underling dynamic system [28], [29].
For the switching dynamic model, the switch node represents
different states and for each state, there are particular pre-
dominant movement patterns. The works in [26] and [30] also
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involved multi-dynamics, and their idea can be interpreted as
the graphical model in Fig. 2(b). The S; is the switch node,
and for each state of S;, there is a specific transition parameter
P(X:|X;-1, S¢) to model the dynamic between X; and X,_;.
Through this model, X; and S; can be tracked simultaneously,
and their posterior probability is

P(X¢, Si|My) o< P(M;|X;) P(X¢|X:-1,5)
Xi—1,8-1
P(St|St—1)P(Xt—1;St—l|M1:t—l) (2)

In [26], they proposed to use particle filtering to estimate this
posterior probability.

3) Our Facial Activity Model: Dynamic Bayesian network
is a directed graphical model, and compared to the dynamic
models above, DBN is more general to capture complex
relationships among variables. We propose to employ DBN to
model the spatiotemporal dependencies among all three levels
of facial activities (facial feature points, AUs and expression)
as shown in Fig. 2(c) [Fig. 2(c) is not the final DBN model, but
a graphical representation of the causal relationships between
different levels of facial activities]. The E; node in the top
level represents the current expression; AU; represents a set
of AUs; X; denotes the facial feature points we are going to
track; M AU; and M X, are the corresponding measurements of
AUs and the facial feature points, respectively. The three levels
are organized hierarchically in a causal manner such that the
level above is the cause while the level below is the effect.
Specifically, the global facial expression is the main cause
to produce certain AU configurations, which in turn causes
local muscle movements, and hence feature points movements.
For example, a global facial expression (e.g., Happiness)
dictates the AU configurations, which in turn dictates the facial
muscle movement and hence the facial feature point positions.

For the facial expression in the top level, we will focus
on recognizing six basic facial expressions, i.e., happiness,
surprise, sadness, fear, disgust and anger. Though psycholo-
gists agree presently that there are ten basic emotions [54],
most current research in facial expression recognition mainly
focuses on six major emotions, partially because they are
the most basic, and culturally and ethnically independent
expressions and partially because most current facial expres-
sion databases provide the six emotion labels. Given the
measurement sequences, all three level facial activities are
estimated simultaneously through a probabilistic inference via
DBN (section. IV-C). And the optimal states are tracked by
maximizing this posterior

Ef, AU}, X; = argmaxg, Au,,x,
P(E[,AU[,X['MAU]:[,MXl:[). (3)

B. Modeling the Relationships Between Facial Features and
AUs

In this paper, we will track 26 facial feature points as shown
in Fig. 3 and recognize 15 AUs, i.e., AUI, 2, 4,5, 6,7, 9,
12, 15, 17, 23, 24, 25, 26 and 27 as summarized in Table I.
The selection of AUs to be recognized is mainly based on the
AUs occurrence frequency, their importance to characterize the
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Fig. 3. Facial feature points used in the algorithm.
TABLE I

L1ST OF AUS AND THEIR INTERPRETATIONS

AUl AU2 AU4 AU5
4 1 .
Inner brow raiser Outer brow raiser Brow lowerer Upper lid raiser
AU6 AU7 AU9 AU12
-~ : - —
>, H —
Cheek raiser Lid t{ghtener Nose wrinkler Lip corner puller
AUI15 AU17 AU23 AU24
- i s i o
-SSR
— & ) = )
{ . P &\
Lip corner depressor Chin raiser Lip tightener Lip pressor
AU25 AU26 AU27
-— - g ‘
=i = =
Lip part Jaw drop Mouth stretch

6 expressions, and the amount of annotation available. The
15 AUs we propose to recognize are all most commonly
occurring AUs, and they are primary and crucial to describe
the six basic expressions. They are also widely annotated.
Though we only investigate 15 AUs in this paper, the proposed
framework is not restricted to recognizing these AUs, given
an adequate training data set. Facial action units control
the movement of face components and therefore, control the
movement of facial feature points. For instance, activating
AU27 (mouth stretch) results in a widely open mouth; and
activating AU4 (brow lowerer) makes the eyebrows lower
and pushed together. At the same time, the deformation of
facial feature points reflects the action of AUs. Therefore, we
could directly connect the related AUs to the corresponding
feature points around each facial component to represent the
casual relationships between them. Take Mouth for example,
we use a continuous node Xmouth to represent 8 facial fea-
ture points around mouth, and link AUs that control mouth
movement to this node. However, directly connecting all
related AUs to one facial component would result in too
many AU combinations, most of which rarely occur in daily
life. For example, there are eight AUs controlling mouth
movement and they collectively produce 28 potential AU
combinations. But through the analysis of the database, there
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Fig. 4. Modeling the relationships between facial feature points and

AUs (Cp/p/N/m are the intermediate nodes; XEyebrow/Eye/Nose/Mouth
are the facial feature nodes around each face component and
MEyebrow/Eye /Nose/Mouth are the corresponding measurement nodes).

are only eight common AUs or AU combinations for the
mouth. Thus, only a set of common AUs or AU combinations,
which produce significant facial actions, are sufficient to con-
trol the face component movement. As a result, we introduce
an intermediate node, e.g., “Cys,” to model the correlations
among AUs and to reduce the number of AU combinations.
Fig. 4 shows the modeling for the relationships between facial
feature points and AUs for each facial component.

Each AU node has two discrete states which represent the
“presence/absence” states of the AU. The intermediate nodes
(i.e., “Cp,) “Cg,) “Cn, and “Cy”) are discrete nodes, each
mode of which represents a specific AU/AU combination
related to the face components. The Conditional Probability
Table (CPT) P(C;i|pa(C;)) for each intermediate node C;
is set manually based on the data analysis, where pa(C;)
represents the parents of node C;. For instance, “Cp” has five
modes, each of which represents the presence of an AU or AU
combination related to the eyebrow movement. We assign the
parameter P(Cp = 0|AU1 =0, AU2 =0, AU4 =0) =0.9
to represent the eyebrow at the neutral state, whereas
P(Cp =1|AU1 =1,AU2 =1, AU4 = 0) = 0.9 to represent
that the eyebrow is entirely raised up.

The facial feature nodes (i.e., XEyebrow, XEyes XNose and
XMouth) have continuous states and are represented by contin-
uous vectors, which are the relative image coordinates between
the current frame and the neutral frame. Given the local AUs,
the Conditional Probability Distribution (CPD) of the facial
feature points can be represented as a Gaussian distribution,
e.g., for mouth

P(XMouth|Cyx = k) ~ N(XMouth| 4k, Zk) “4)

with the mean shape vector uj; and covariance matrix Zj.

The facial feature measurement nodes are continuous vector
nodes that have the same dimension as their parents. The CPD
for the measurement are modeled as linear Gaussian, e.g., for
mouth

P (MMouth| XMouth = x) ~ N(Mmoun|W - x + Uy, Zx) ()

with the mean shape vector uy, regression matrix W, and
covariance matrix X,. These parameters can be learned
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from training data using expectation maximization (EM)
estimation.

C. Modeling Semantic Relationships Among AUs

In the above section, we modeled the relationships between
facial feature points and AUs. Detecting each AU statically
and individually is difficult due to the variety, ambiguity, and
dynamic nature of facial actions, as well as the image uncer-
tainty and individual differences. Moreover, when AUs occur
in a combination, they may be nonadditive: that is, the appear-
ance of an AU in a combination is different from its standalone
appearance. Fortunately, there are some inherent relationships
among AUs, as described in the FACS manual [1]. We can
summarize the relationships among AUs into two categories,
i.e., co-occurrence relationships and mutual exclusion rela-
tionships. The co-occurrence relationships characterize some
groups of AUs, which usually appear together to show mean-
ingful facial displays, e.g., AUI+AU24-AUS54AU264-AU27
to show surprise expression; AU6+AU12+AU2S5 to show hap-
piness expression; AU14+AU4+AU15+AU17 to show sadness
expression.

On the other hand, based on the alternative rules provided
in the FACS manual, some AUs are mutually exclusive since
“it may not be possible anatomically to do both AUs simul-
taneously” or “the logic of FACS precludes the scoring of
both AUs” [1]. For instance, one can not perform AU25 (lip
part) with AU23 (lip tightener) or AU24 (lip pressor) simul-
taneously. The rules provided in [1] are basic, generic and
deterministic. They are not sufficient enough to characterize all
the dependencies among AUs, in particular some relationships
that are expression and database dependent. Hence, in this
paper, we propose to learn from the data to capture additional
relationships among AUs.

Tong et al. [25] employed a Bayesian network to model
the co-occurrence and mutual exclusion relationships among
AUs, and achieved significant improvement for AU recogni-
tion compared to image-based methods. Following the work
in [25], we also employ a Bayesian network (BN) to model the
dependencies among AUs. A BN is a directed acyclic graph
(DAG) that represents a joint probability distribution among a
set of variables. In a BN, its structure captures the dependency
among variables, i.e., the dependency among AUs in this
paper, and the dependency is characterized by a conditional
probability table (CPT), i.e., 8, for each AU node given its
parents. Hence, we employ a structure learning algorithm to
identify a structure of the DAG, given the training data. The
structure learning is to find a structure G that maximizes
a score function. In this paper, we employ the Bayesian
Information Criterion (BIC) score function [40] which is
defined as follows:

log Num

sp(G) = m@ax log P(D|G,0) — Dimg (6)

where the first term evaluates how well the network fits the
data D; the second term is a penalty relating to the complexity
of the network; log P(D|G, 0) is the log-likelihood function
of parameters 6 with respect to data D and structure G; Num
is the number of training data; and Dimg is the number
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Fig. 5.

Learned structure from training data.

of independent parameters, i.e., the number of independent
entries in 6.

Cassio et al. [13] developed a Bayesian Network structure
learning algorithm which is not dependent on the initial
structure and guarantees a global optimality with respect to
BIC score. In this paper, we employ the structure learning
method [13] to learn the dependencies among AUs. To sim-
plify the model, we use the constraints that each AU node has
at most two parents. The learned structure is shown in Fig. 5.

D. Modeling the Relationships Between AUs and Expression

In this section, we will add Expression node at the top
level of the model. Expression represents the global face move-
ment and it is generally believed that the six basic expressions
(happiness, sadness, anger, disgust, fear and surprise) can
be described linguistically using culture and ethnically inde-
pendent AUs, e.g., activating AU6+AU12+AU25 produces
happiness expression, as shown in Fig. 6(a).

We group AUs according to different expressions as listed
in Table II. But inferring expression from AUs is not simply
to transfer the combination of several AUs directly to certain
expression. Naturally, combining AUs belonging to the same
category increases the degree of belief in classifying to that
category, as shown in Fig. 6(a) (the combination of AU6 and
AUI12 increases the likelihood of classifying as happiness).
However, combining AUs across different categories may
result in the following situations: First, an AU combination
belonging to a different facial expression, e.g., when AUl
occurs alone, it indicates a sadness, and when AU5 occurs
alone, it indicates a surprise, however, the combination of
AUl and AUS increases the probability of fear as shown in
Fig. 6(b); Second, increasing ambiguity, e.g., when AU26 (jaw
drop), an AU for surprise, combines with AUI, an AU for
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(b)

Fig. 6. AU combinations. (a) AU124+AU6 (two AUs from the same
category) enhances classification to happiness. (b) AUI4+AUS (two AUs from
different categories) becomes a fear. (¢) AU26+AUI (two AUs from different
categories) increases ambiguity between a surprise and a fear.

TABLE 11
GROUPING AUS ACCORDING TO DIFFERENT EXPRESSIONS

Emotion Corresponding AUs

Surprise AUS, AU26, AU27, AU1+AU2
Happiness | AU6, AU12, AU25

Sadness AU1, AU4, AU15, AU17
Disgust AU9, AU17

Anger AU4, AUS5, AU7, AU23, AU24
Fear AU4, AUI+AUS5, AUS+AU7

sadness, the degree of belief in surprise is reduced and the
ambiguity of classification may be increased as illustrated in
Fig. 6(c).

These relationships and uncertainties are systematically
represented by our final facial activity model as shown in
Fig. 8. At the top level of the final model, we introduce six
expression nodes, (i.e., Surp, Sad, Ang, Hap, Dis and Fea),
which have binary states to represent “absence/presence” of
each expression. We link each expression node to the cor-
responding AUs as listed in Table II. The parameter of each
expression node is the prior distribution, i.e., P(Exp), and the
self dynamic dependency, i.e., P(Exp;|Exp;—1). Expressions
are inferred from their relationships with AUs and reasoning
over time. In principle, our approach allows a facial expression
to be a probabilistic combination of any relevant facial AUs.

IV. MODELING THE DYNAMIC RELATIONSHIPS
A. Constructing Dynamic Structure

So far, we have constructed a Bayesian network to repre-
sent the static relationships among facial feature points, AUs
and expressions. In this section, we extend it to a dynamic
Bayesian network by adding dynamic links.

In general, a DBN is made up of interconnected time slices
of static BNs, and the relationships between two neighboring
time slices are modeled by an HMM such that variables at
time ¢ are influenced by other variables at time 7, as well as
by the corresponding random variables at time ¢t — 1 only. The
exact time difference between ¢+ — 1 and ¢ is determined by
the temporal resolution of the image sequence, i.e., the frame
rate of the recorded videos, which is critical for setting the
temporal relationships. For instance, for each AU, its temporal
evolution consists of a complete temporal segment lasting from
1/4 of a second, e.g., a blink, to several minutes, e.g., a jaw
clench, as described in [21]. Hence, if we choose a small
time duration, e.g., a single frame, we may capture many
irrelevant events, whereas if we choose many frames as a
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duration, the dynamic relationships may not be captured. For
instance, Fig. 7 shows how a smile is developed in an image
sequence: first, AU12 is contracted at the 4th frame to express
a slight smile, and then, AU6 and AU25 are triggered at the
5th and 6th frame respectively to enhance the happiness. As
the intensity of happiness increases, AU12 first reaches its
highest intensity level, and then, AU6 and AU25 reach their
apexes, respectively. Based on this understanding, as well as
the temporal characteristics of the AUs we intend to recognize,
we empirically set the time duration as 1/6 second.

In the proposed framework, we consider two types of
conditional dependencies for variables at two adjacent time
slices. The first type, e.g., an arc from AU; node at time ¢ — 1
to that node at time ¢, depicts how a single variable develops
over time. For the expression and the facial feature nodes, we
only consider this type dynamic. The second type, e.g., an arc
from AU; at time t — 1 to AU;(j # i) at time ¢, depicts how
AU, at the previous time step affects AU;(j # i) at the current
time step. We consider this type dynamic for AU nodes.

The dynamic dependencies among AUs are espe-
cially important for understanding spontaneous expression.

For example, K. Schmidt ez al. [35] found that certain action
units usually closely follow the appearance of AU12 in smile
expression. For 88% of the smile data they collect, the
appearance of AU12 was either simultaneously with or closely
followed by one or more associated action units, and for these
smiles with multiple action units, AU6 was the first action
unit to follow AU12 in 47%. Similar findings are found by
Tong et al [20]. Based on this understanding and the analysis
of the database, we link AU2 and AU12 at time ¢t — 1 to
AUS and AUG6 at time ¢ respectively to capture the second
type dynamics. Fig. 8 gives the whole picture of the dynamic
BN, including the shaded visual measurement nodes. For
presentation clarity, we use the self-arrows to indicate the first
type of temporal links as described above.

B. DBN Parameters Learning

Given the DBN structure and the definition of the CPDs, we
need to learn the parameters from training data. In this learning
process, we manually labeled the expressions, AUs and facial
feature points for some sequences collected from the extended
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Cohn and Kanade database [46] frame by frame. Learning
the parameters in a DBN is actually similar to learning the
parameters for a static BN. During DBN learning, we treat
the DBN as an expanded BN consisting of two-slice static
BNs connected through the temporal variables, as shown in
Fig. 8. Based on the conditional independencies encoded in
DBN, we can learn the parameters individually for each local
structure. In this way, the quantity of training data required
is much smaller than that for a larger network structure. For
instance, for the AU and expression model, since all nodes
are discrete and let ¢;;; represent the conditional probability
of node i being in kth state, given the jth configuration of its
parents

Oijk = P(xf|pa’ (X)) (7

where i ranges over all the variables (nodes in the BN),
J ranges over all the possible parent instantiations for variable
X;, and k ranges over all the instantiations for X; itself. There-
fore, xf‘ represents the kth state of variable X;, and pa’(X;) is
the jth configuration of the parent nodes of X;. For example, a
node AU { 5 as shown in Fig. 8, represents the presence/absence
of AUIS5 at time step ¢, with two binary instantiations (0, 1).
The parents of AU|5 are AU}, AU{;, SAD" and AU{S_I, each
of which also has two binary instantiations. Hence, there are
16 parent configurations for AU|5 node.

Given the dataset, the goal of learning parameters is to find
the most probable values for 6. These values best explain
the dataset D, which can be quantified by the log likelihood
function log(p(D|0)), denoted as Lp(#). In a BN, every
variable is conditionally independent of its non-descendants
given its parents (Markov condition), which can be expressed
P(X1,...,X,) =1I; P(Xilpa(X;)) (X; represents a variable
in the AU and Expression BN network). Based on this prop-
erty, and assuming that samples are drawn independently from
the underlying distribution, we have

no g T

Lp@®) = logH H H H?jilik (8)

i=1j=1k=1

where n;j; is the count for the case that node X; has the
state k, with the state configuration j for its parent nodes;
n is the number of variables (nodes) in the BN; ¢; is the
number of parent configurations of X; node; r; is the number
of instantiations of X;. Since we have complete training
data, the learning process can be described as a constrained
optimization problem as follows:

argmax Lp(©0)  si. gij(0)=> Oijx—1=0 (9
k=1

where g;;(¢) = 0 imposes that distributions defined for
each variable given a parent configuration sums one over all
variable states. This problem has its global optimum solution at
Oijk = nijk/ 2 i Nijk-

For the facial feature model, e.g., the Mouth model, we
need to learn a mean shape vector and a covariance matrix
for each state of the intermediate node, e.g, the Cy node.
Since the intermediate node is hidden, in this paper, we
employ expectation maximization (EM) estimation to learn
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these Gaussian parameters. To evaluate the quantity of training
data needed for learning the facial activity model, we perform
a sensitivity study of model learning on different amounts
of training data. For this purpose, the Kullback—Leibler (KL)
divergences of the parameters are computed versus the number
of training samples. The convergence behaviors for local
models, i.e., AUs model, “Eyebrow” model, “Eye” model,
“Nose” model, and “Mouth” model, are shown in Fig. 9.

In Fig. 9 we can observe that, when the amount of training
data is larger than 3000, all local models converge and have
similar K-L divergences. To demonstrate the learning effect,
we draw 200 samples from the learned CPDs of the “Mouth”
node: P(Xmouth|Cp) as shown in Fig. 10 (The Xnouth node
in our model represents the relative image coordinates. For
clarity, we draw the samples by adding a constant neutral
shape: P(Xmouth + C|Cpy), where C is a constant neutral
shape). From Fig. 10 we can observe that AUs can provide
prior distribution for facial feature points, since given different
AUs, facial feature point samples drawn from the learnt
distribution can reflect the mouth movement shape.

C. DBN Inference

In the above sections, we have learned the DBN model
to represent the three level facial activities. During tracking
and recognition, this prior DBN model is combined with the
likelihood of the measurements, i.e., estimates for each node,
to infer the posterior probability. Therefore, the estimation
contains two steps in our framework. First, we employ various
image-based methods to acquire the necessary estimates. For
AUs, we employ a technique based on the AdaBoost classifier
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Fig. 10.  Mouth shape variations given different AU combinations. We
draw 200 samples for the learned CPDs. (a) P(Xmouth + CIAU12 = 1).
(b) P(XMouth + CIAU12 =1, AU25 = 1). (¢) P(XMouth + CIAU25 =1,
AU27 =1). C is the mouth neutral shape (red lines).

and Gabor features [43] to obtain AU estimates. For facial
feature points, we first use the detection method [8] to obtain
the feature points on the neutral face (the subject is asked to
perform neutral face in the first frame of the sequence). Then
the feature points are tracked using the state-of-the-art facial
feature tracker [8], which is based on Gabor wavelet matching
and active shape model. In this paper, we infer expressions
directly from the corresponding AUs, which means we do
not employ any image-based method to obtain the estimates
for expression nodes. Without node estimates, the hidden
expression nodes can still help improve the recognition and
tracking performance because of the built-in interactions, as
well as the temporal relationships among levels.

Once the image estimates are obtained, we can use them
as the evidence to infer the true states of hidden nodes by
maximizing the posterior probability as Eq. 3. Let E’, AU/, .,
X{;eature (Feature stands for Eyebrow, Eye, Nose, Mouth)
represent the nodes for Expression, N target AUs and facial
feature points at time 7. Given the available evidence until time
t: MXZ/]:N, M ;(:éemure’ where MXZ/]:N indicates the estimates
of N target AUs nodes from time 1 to ¢ while M }géeamre
represents the estimates of facial feature nodes from time 1
to ¢, the probability P(E’, AU].y, X{:eature|M/1{Z/]:N , M}{éwure
can be factorized and computed via the facial action model by

performing the DBN updating process as follows [42]:

1) Prediction: Given the estimated probability distribution

-1 t—1 t—1 1:t—1 1:1—1
P(Et > AUl:N > XFeqture|MAU1;N’ MXpeam,e)’
which is already inferred at time step ¢ — 1,
we could calculate the predicted probability
1it—1 lit—1 :
P(Et’ AUlt:N’ X{:eature MAlt/kN ’ Mxéeam,e) by using

the standard BN inference algorithm, such as a version
of junction tree algorithm [52].
2) Rollup: Remove time slice  — 1 and use the prediction
t t t 1:it—1 1:t—1 .
P(E ’AUI:N’_XFeatureIMAUl;N’ Xreauye) TOT the 7 slice
as the new prior.

2567

3) Estimation: Add new observations at time ¢ and calcu-
late the probability distribution over the current state
t t t 1:t 1:t :
P(E ; AU}y Xpearure [ MAl, . 0 MXFeamre)' Finally, add
the slice for 7 + 1.

This way, we obtain the posterior probability of each
hidden node, given the observed measurements. Because of
the recursive nature of the inference process as well as the
simple network topology, the inference can be implemented
rather efficiently.

V. EXPERIMENTS

The proposed model is evaluated on two databases, i.e.,
the extended Cohn-Kanade (CK+) database [46], and the
M&M Initiative (MMI) facial expression database [53]. CK+
database has by 22% larger number of sequences and 27%
more number of subjects as compared the original Cohn-
Kanade (CK) database [44]. One significant benefit of CK+
database compared to CK database is that the emotion labels
on CK+ database are revised, while before the emotion labels
were those that the actors have been told to express. CK
and CK+ databases have been widely used for evaluating
facial activity recognition system. Using CK+ database has
several advantages: this database demonstrates diversity over
the subjects and it involves multiple-AU expressions. The
results on the CK+ database will be used to compare with
other published methods. Besides, in order to evaluate the gen-
eralization ability of the proposed model, we train the model
on CK+ database and test on the M&M Initiative (MMI) facial
expression database collected by Pantic ef al. [53]. The MMI
facial expression database is recorded in true color with a
frame rate of 24 fps. The advantage of using this database
is that it contains a large number of videos that display facial
expressions with a neutral-apex-neutral evolution.

A. Evaluation on Extended Cohn—Kanade Database

We collect 309 sequences from 90 subjects that contain the
major six expressions from the CK+ database, 227 sequences
of which are labeled frame by frame in this paper (all facial
feature points, AUs and expressions). We adopt leave-one-
subject-out cross validation, and for each iteration, while the
semantic dependencies of the facial action model are trained
with all labeled training images, the dynamic dependencies
are learnt only using the sequences containing frame by frame
labels. Given the AU and facial feature points measurements,
the proposed model recognizes all three level facial activi-
ties simultaneously through a probabilistic inference. In the
following, we are going to demonstrate the performance for
each level individually.

1) Facial Feature Tracking: We tracked the facial feature
point measurements through an active shape model (ASM)
based approach [8], which first searches each point locally
and then constrains the feature points based on the ASM
model, so that the feature points can only deform in specific
ways found in the training data. The ASM model is trained
using 500 keyframes selected from the training data, which are
8-bit gray images with 640 x 480 image resolution. All the
26 facial feature point positions are manually labeled in each
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TABLE III
ERRORS OF TRACKING FACIAL FEATURE POINTS ON CK+ DATABASE BY
USING THE BASELINE METHOD [8], AAM MODEL [46], AND THE
PROPOSED MODEL, RESPECTIVELY (FOR THE AAM MODEL,
WE SELECTED 20 FEATURE POINTS FROM [46] THAT WE
ALSO TRACKED IN THIS RESEARCH)

Eyebrow | Eye | Nose | Mouth Total
Baseline method [8] 3.75 243 3.10 3.97 3.31
AAM model [46] 3.43 236 | 2.76 3.65 3.05
Proposed model 2.98 1.53 | 243 3.45 2.59

training image. For ASM analysis, the principal orthogonal
modes in the shape model stand for 95% of the shape variation.
Since the face region is normalized and scaled based on the
detected eye positions, the tracking model is invariant to scale
change. The trained ASM model performs well when the
expression changes slowly, but may fail when there is a large
and sudden expression change. At the same time, our model
can detect AUs accurately, especially when there is a large
expression change. The accurately detected AUs provide a
prior distribution for the facial feature points, which helps infer
the true point positions.

To evaluate the performance of the tracking method,
the distance error metric is defined per frame as:
l|pi,j — Pi,jll2/D1(j), where Dy (j) is the interocular distance
measured at frame j, p; ; is the tracked position of feature
point i, and p;; is the labeled position. By modeling the
interaction between facial feature points and AUs, our model
reduces the average feature tracking error from 3.31 percent
for the baseline method to 2.59 percent for the proposed
model, a relative improvement of 21.75 percent. We also
make a comparison with the active appearance model (AAM).
Lucey et al., [46] providled AAM model tracking results
on the CK+ database, and we selected 20 feature points
from [46] that we also tracked for the same subjects in this
paper. The comparison is listed in Table III. From Table III
we can see that, AAM model outperforms the ASM based
tracking method [8], mainly because both shape and texture
are combined with PCA into an AAM model; however, the
proposed model still achieves the best performance.

To further demonstrate the tracking effectiveness of the
proposed model, we downsampled the frequency rate of some
sequences from the CK+- database so that the expression and
facial feature points positions can change excessively in two
consecutive frames. In this way, it is more challenging for the
traditional tracking model to track the facial feature points.
The average tracking error of 26 facial feature points for a
sequence is shown in Fig. 11. From Fig. 11 we can see that, the
performances of the baseline method and the proposed model
are similar for most frames, except the frames after frame 11.
We show the 10th and the 11th frames in the figure, and we
can see that the baseline tracking method fails because it is
based on local search, and it cannot track the sudden lips part
movement in the 11th frame because of downsampling. At the
same time, detected AU measurements with high confidence,
e.g., AU12+AU25, provide a prior distribution for the mouth
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Fig. 11. Tracking error for 26 facial feature points on some sequences of
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Fig. 12. Comparison of AU recognition results on the novel subjects on

CK+ database by using AdaBoost classifier and using the proposed model,
respectively.

shape, e.g., the parameter of the model P(Xpyoun|AU12 =1,
AU?25 = 1) follows a multi-Gaussian distribution. Hence, the
proposed model outperforms the baseline method for facial
feature tracking when there is a sudden expression change.
To clearly illustrate the top-down information flow from AUs
to facial feature points, we initialize all AU measurement
nodes with ground truth, and then infer the feature points.
Through this way, we further reduce the average tracking error
to 2.46 percent. Therefore, we can conclude that the top-down
information flow from AUs to facial feature points can indeed
help refine the tracking measurements.

2) Facial Action Unit Recognition: Fig. 12 shows the AU
recognition performance for generalization to novel subjects
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TABLE IV
MODEL PARAMETERS OF AU 15 NODE AND AU23 NODE (IGNORING THE DYNAMIC DEPENDENCY)

Parameters of AU15

Parameters of AU23

P(AU1S = 1|AUT = 1, AU1T = 1) = 0.0989
P(AU1S = 1|AUT = 1, AU17 = 0) = 0.0002
P(AU1S = 1|AUT = 0, AU1T = 1) = 0.7096
P(AU1S5 = 1|AUT = 0, AU17 = 0) = 0.0025

P(AU23 = 1|AU1S = 1, AU24 = 1) = 0.0883
P(AU23 = 1|AU15 = 1, AU24 = 0) = 0.0416
P(AU23 = 1|AU15 = 0, AU24 = 1) = 0.9309
P(AU23 = 1|AU15 = 0, AU24 = 0) = 0.0052

TABLE V
COMPARISON OF OUR WORK WITH SOME PREVIOUS WORKS ON CK/CK+ DATABASE

Author Features Classification | AUs | CR | Fl1 |
Bartlett et al. 2005 [14] Gabor filters AdaBoost+SVM 17 94.8

Chang 2006 [36] manifold embed Bayesian 23 89.4

Whitehill and Omlin 2006 [37] | Haar wavelets AdaBoost 11 92.4

Lucey et al. 2007 [38] AAM SVM 15 95.5

Pantic et al. 2006 [21] tracked feature points temporal rule-based | 21 93.3

Valstar et al. 2006 [19] tracked feature points AdaBoost+SVM 15 90.2 72.9
Tong et al. 2007 [25] Gabor filters AdaBoost+DBN 14 93.3

Koelstra et al. 2010 [45] FFD GentleBoost+HMM 18 89.8 72.1
Valstar & Pantic 2012 [47] tracked feature points GentleSVM+HMM 22 91.7 59.6
This paper Gabor filter, feature points | AdaBoost+DBN 15 94.05 | 76.36

AUs = No. of AUs recognized, CR = Classification Rate, F1 = F1 measure

on the CK+ database by using AdaBoost classifier alone
and using the proposed model, respectively. From Fig. 12 we
can see that, the proposed system outperforms the AdaBoost
classifier consistently. The average F1 measure (a weighted
mean of the precision and recall) for all target AUs increases
from 69.94 percent for AdaBoost to 76.36 percent for the
proposed model. We made one tailed t-test (right-tail test)
on the average F1 measure from the proposed model and the
AdaBoost, and the p-value is 3.003 x 10—, which means the
predicted results are statistically better than the measurements.
The improvement mainly comes from the AUs that are hard
to detect but have strong relationships with other AUs. To
clearly demonstrate this point, we list the parameters of AU15
node and AU23 node (ignoring the dynamic dependency)
respectively in Table IV. From Table IV, we can see that, the
co-occurrence of AU15 and AU17 is high when AU7 is absent,
ie., P(AU15 = 1|AU7 =0, AU17 = 1) = 0.7096, and the
co-occurrence of AU23 and AU24 is high when AU15 does not
occur, i.e., P(AU23 = 1|AU15 =0, AU24 = 1) = 0.93009.
By encoding such relationships into the DBN, the F1 measure
of AUI1S5 is increased from 61.54 percent to 72.07 percent; the
F1 measure of AU17 is increased from 72.12 percent to 81.08
percent; the F1 measure of AU23 increases from 40.93 percent
to 54.98 percent, and that of AU24 increases from 47.96
percent to 61.03 percent. Besides the semantic relationships
among AUs, the interactions between AUs and facial feature
points also contribute to the AU recognition. For instance, we
initialize all facial feature measurements with ground truth,
and then infer the AU nodes. In this way, the average F1
measure of AUs is further improved to 77.03 percent.

Since the AU labels for the overlap between CK and CK+
are exactly the same, as well as most previous works about
AU recognition are evaluated on CK database, we make a

comparison with some earlier works as listed in Table V.
Our results in terms of classification rate are better than most
previous works. Bartlett et al. [14] and Lucey et al. [38] both
achieve high AU recognition rates, but these two approaches
are all image-based, which usually evaluate only on the initial
and peak frames while our method is sequence based and we
consider the whole sequence, in the middle of which AUs with
low intensity are much more difficult to recognize. In addition,
the classification rate is often less informative, especially when
the data is unbalanced. So we also report our results in terms
of F1 measure, which is a more comprehensive metric. From
Table V we can see that, the proposed method outperforms
all the three earlier works who also reported their results in
F1 measure. Since the works in [47] and [45] recognize more
AUs, we also make a deep comparison on each individual
AU as shown in Table VI. On average, our method achieves
better or similar results, but it is interesting that for AU15
and AU24, our results are much better than the work in [47]
and [19]. This is because the activations of AU15 and AU24
involve changes in facial texture without large displacements
of feature points, and Valstar & Pantic employed geometric
features in [47] and [19]. Hence, they failed at AU15 and
AU24. The proposed approach also outperforms [19], [47] at
AU9, the occurrence of which also produces less displacement
change. P. Lucey et al. [46] provided the AU recognition
results on the peak frames on the CK+ database, and for the
same 15 AUs as recognized in this paper, [46] achieves an
average area underneath the ROC curve of 89.41% for the
similarity normalized shape features (SPTS), 91.27% for the
canonical normalized appearance (CAPP) features and 93.92%
for SPTS+CAPP features. The proposed model achieves an
average area underneath the ROC curve of 93.33% for the
peak frames, which is better or similar as that in [46].
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TABLE VI
COMPARISON WITH SOME PREVIOUS WORKS ON INDIVIDUAL
AUS ON CK/CK+ DATABASE
AUs | Fl F1 [47] | F1[45] | F1 [19]
1 7793 | 82.6 86.89 87.6
2 80.11 | 83.3 90.00 94.0
4 7748 | 63.0 73.13 87.4
5 63.55 | 59.6 80.00 78.3
6 77.11 | 80.0 80.00 88.0
7 62.41 | 29.0 46.75 76.9
9 78.84 | 57.3 77.27 76.4
12 89.99 | 83.6 83.72 92.1
15 70.27 | 36.1 70.27 30.0
17 81.08 76.29
24 60.13 | 44.0 63.16 14.3
25 88.19 | 74.8 95.60 95.3
27 95.52 | 854 87.50 89.3
Avg | 77.26 | 61.59 77.74 75.80
F1 = F1 measure of our model
F1 [47] = F1 Valstar & Pantic 2012 [47]
F1 [45] = F1 Koelstra et al. 2010 [45]
F1 [19] = F1 Valstar & Pantic 2006 [19]
TABLE VII
EXPRESSION RECOGNITION CONFUSION MATRIX OF THE
PROPOSED MODEL ON CK+ DATABASE
Surp Hap Dis Fear Sad Ang
Surp | 96.88% | 0% 0% 3.12% 0% 0%
Hap | 0% 97.08% | 0% 0% 2.92% 0%
Dis | 0% 0% 91.02% | 0% 8.98% 0%
Fear | 20.00% | 0% 0% 80.00% | 0% 0%
Sad | 0% 0% 0% 0% 80.00% | 20.00%
Ang | 0% 0% 8.33% 0% 25.00% | 66.67 %
Average Recognition Rate: 87.43%

Surp = Surprise, Hap = Happiness, Dis = Disgust
Sad = Sadness, Ang = Anger

3) Expression Recognition: Besides more accurate facial
feature tracking and AU recognition, our model recognizes
six global expressions with an average recognition rate of
87.43%. The result is not as good as that of the-state-of-the-art
expression recognition methods, e.g., [31], [39]. This is mainly
because we have not employed any image-based methods
specifically to obtain expression estimates, and instead the
expression states are directly inferred from facial feature point
and AU estimates, and from their relationships. Table VII
shows the confusion matrix for six expressions recognition on
the CK+ data set. From Table VII we can see that, the recogni-
tion rate for surprise and happiness are high while that of anger
is low. This is mainly because we infer expressions from the
corresponding AUs, and AU1, AU2, AU27 for surprise and
AU6, AU12, AU25 for happiness are well detected. Hence,
we can recognize these two expressions with high accuracy.
At the same time, AUs for anger, i.e., AUS, AU7, AU23 and
AU24, are all not detected with such high accuracy, so we only
achieve a recognition rate of 66.67% for anger. Hence, we
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Fig. 13. Expression recognition results on a sequence. (a) Sequence on CK+
database and the subject is performing surprise expression. (b) Corresponding
recognition results of surprise. (c) Corresponding recognition results for other
five expressions.

can conclude that the accuracy of the AU detection affects the
expression recognition significantly in this model. To further
demonstrate this point, we initialize all AU nodes with ground
truth, and then infer the expression. We achieve an average
expression recognition rate of 95.15% in this case, which is
similar as that of the-state-of-the-art methods in [31] (95.1%)
and [39] (94.48%).

Besides, our approach allows a probabilistic output for six
expressions, which represents the confidence of the classifica-
tion and can be further transferred into the relative intensity
level. Fig. 13 shows the expression recognition results of
a sequence from CK+ database, in which the subject is
performing surprise expression.

B. Generalization Validation Across Different Databases

In order to evaluate the generalization ability of the pro-
posed model, we train the model on the extended Cohn-
Kanade database and test on the MMI facial expression
database [53]. Since most of the image sequences on the
MMI database have only single AU active, we only choose
54 sequences containing two or more target AUs from 11
different subjects. The proposed model achieves an average
expression recognition rate of 82.4%, and reduces the average
tracking error from 3.96 percent for the baseline method [8] to
3.51 percent for the proposed model, an relative improvement
of 11.36%. Fig. 14 shows the AU recognition results of using
AdaBoost classifier alone and using the DBN facial action
model, respectively, on the MMI database. From Fig. 14
we can see that, AU9 and AU15 on the MMI database are
not well recognized. This is mainly because on the MMI
database, these two actions occur rarely (less than 5%), and the
appearance changes caused by these two actions are relatively
dissimilar as that on the CK+ database. In addition, the co-
occurrence of AU15 and AU17 on the MMI database is not
as strong as that on the CK+ database, which is crucial for
our model to improve the AU recognition performance on
AUI1S5. On average, with the use of the facial action model,
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Fig. 14. AU recognition results on MMI facial expression database by using
AdaBoost classifier and using the proposed model, respectively. The model
is trained on CK+ database and tested on MMI database.

we improve the F1 measure of AU recognition from 61.97
percent for the AdaBoost, to 66.52 percent for the proposed
model. The most current works by Valstar and Pantic. [47]
and Koelstra et al. [45], which represent the state of the art
methods for AU recognition, reported an average F1 measure
of 53.79 percent and 65.70 percent respectively on the MMI
database.! The proposed model achieves better AU recognition
performance than the state of the art methods [45], [47] on
novel subjects from a different database, which demonstrates
the generalization ability of our model.

The enhancement of our approach mainly comes from
combining the facial action model with image-based methods.
Specially, the erroneous image measurement could be compen-
sated by the semantic and dynamic relationships encoded in
the DBN. For instance, the recognition of AU7 is difficult since
the contraction of AU7 produces a similar facial appearance
changes as that caused by AU6. However, AU7 occurs often
with AU4, which could be recognized easily. By encoding
such co-occurrence relationship in the DBN model, the F1
measure of AU7 is increased greatly (from 61.22 percent
to 70.82 percent). Similarly, by modeling the co-occurrence
relationships of AU23 and AU24, the F1 measure of AU23
is increased from 58.72 percent to 76.34 percent, and that of
AU24 is increased from 75.25 percent to 83.02 percent.

VI. CONCLUSION

In this paper, we proposed a hierarchical framework based
on Dynamic Bayesian Network for simultaneous facial feature
tracking and facial expression recognition. By systematically
representing and modeling inter relationships among different
levels of facial activities, as well as the temporal evolution
information, the proposed model achieved significant improve-
ment for both facial feature tracking and AU recognition,
compared to state of the art methods. For six basic expressions
recognition, our result is not as good as that of state of the art

For work [47], we calculate the average F1 measure of the same 13 AUs
as recognized in this paper, while for work [45], we calculate the average F1
measure of the same 15 AUs as recognized in this paper.
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methods, since we did not use any measurement specifically
for expression, and the global expression is directly inferred
from AU and facial feature point measurements and from their
relationships. The improvements for facial feature points and
AUs come mainly from combining the facial action model
with the image measurements. Specifically, the erroneous
facial feature measurements and the AU measurements can
be compensated by the model’s build-in relationships among
different levels of facial activities, and the build-in temporal
relationships. Since our model systematically captures and
combines the prior knowledge with the image measurements,
with improved image-based computer vision technology, our
system may achieve better results with little changes to the
model.

In this paper, we evaluate our model on posed expression
databases from frontal view images. In the future work,
we plan to introduce the rigid head movements, i.e., head
pose, into the model to handle multi view faces. In addition,
modeling the temporal phases of each AU, which is impor-
tant for understanding the spontaneous expression, is another
interesting direction to pursue.
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