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Abstract—Signal timing information is important in signal oper-
ations and signal/arterial performance measurement. Such infor-
mation, however, may not be available for wide areas. This imposes
difficulty, particularly for real-time signal/arterial performance
measurement and traffic information provisions that have received
much attention recently. We study, in this paper, the possibility
of using intersection travel times, i.e., those collected between
upstream and downstream locations of an intersection, to esti-
mate signal timing parameters. The method contains three steps:
1) cycle breaking that determines whether a new cycle starts;
2) exact cycle boundary detection that determines when exactly a
cycle starts or ends; and 3) effective red (or green) time estimation
that estimates the actual duration of the red (or green) time.
The proposed method is a combination of traffic flow theory and
learning/estimation algorithms and can be used to estimate the
cycle-by-cycle signal timing parameters for a specific movement
of a signal. The method is tested using data from microscopic
simulation, field experiments, and next-generation simulation with
promising results.

Index Terms—Intersection travel times, mobile sensors, nonlin-
ear programming, signal performance measurement, signal timing
estimation, support vector machine (SVM).

I. INTRODUCTION AND MOTIVATION

S IGNAL timing parameters, such as cycle length, number
of phases, and effective red and green times of the phases,

are important input to signal operations (such as signal coordi-
nation) and signal performance measurement. For example, ex-
isting methods for calculating steady-state signal performance
measures, such as signal delays described in the Highway
Capacity Manual [1], rely on static signal timing parameters,
e.g., cycle length, and effective red and green times. Recently,
estimating real-time signal performance measures, such as real-
time delays or queue lengths, has received more attention
[2]–[4]. While most of these methods used data from fixed
location sensors (e.g., loop detectors) such as volume and
occupancy, recent technological advances enable and promote
the rapid deployment of sensing technologies to collect arterial
intersection travel times directly. These technologies include,
for example, electronic toll collection (ETC) readers, Bluetooth
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Mac address matching [5], wireless magnetic sensors [6], and
mobile sensors such as Global Positioning System (GPS) cel-
lular phones or other GPS devices [7], [8]. Ban et al. [4], [9]
showed that intersection travel times can be used to estimate
other real-time signal performance measures such as delay
patterns, queue lengths, and even arrival volumes. Methods
for real-time signal performance estimation, using either fixed
location sensor data or intersection travel times, require both
static and dynamic signal timing information, such as the cycle
by cycle effective red (or green) times [4], [9].

In the current practice, collecting signal timing parameters
directly from traffic signal controllers is probably trivial, par-
ticularly for small-scale data collection (such as for signals on
a corridor or a small network). However, collecting such infor-
mation for large areas (such as a region or nationwide) directly
from controllers can be very challenging for several reasons.
First, usually what is available is the signal timing plan sheet,
which contains static signal timing information (e.g., cycle
length, etc.) but cannot tell what will exactly happen in real time
cycle by cycle; transportation agencies may not collect/archive
at all those dynamic signal information. Second, signals are
usually maintained and operated by multiple agencies under
different data collection and monitoring systems—as a result,
collecting wide-area signal timing information, particularly
dynamic cycle-by-cycle information, is not a trivial task. Third,
even if the dynamic signal information is collected and archived
by each agency, it may not be easy for the agencies to release
the data of large areas to a third party due to security and other
related concerns.

On the other hand, leading traffic information providers have
already started to provide wide-area real-time traffic informa-
tion that aims to cover both freeways and arterials [10], [11].
The lack of wide-area dynamic signal timing information will
likely limit the information provision for large-scale arterial
networks. While it has been traditionally assumed that signal
timing information should be available as an input to traffic
models, given the current increasingly large amount of inter-
section travel time data, one intriguing question is can we
instead infer static and dynamic signal timing parameters from
intersection travel times, probably with the help of limited
(and easily obtained) knowledge about the traffic signal? The
answer to this question is not only scientifically interesting but
is practically useful as well, particularly for traffic information
providers who have already started to collect travel time infor-
mation from various sources, as aforementioned. Based on the
communications of the authors with researchers in the industry,
they are anxious to integrate signal timing information with
their arterial models. It seems that the most attractive way to do
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Fig. 1. Intersection delay pattern.

so is to infer signal timing information directly from the data
that they have already collected, such as travel times. In this
paper, we show that the answer to such a question is affirmative
at least for signals with constant cycle lengths.

In fact, the authors in [9] showed preliminarily that signal
timing parameters may be estimated using the intersection de-
lay pattern. The delay pattern describes the delay that an imag-
inary vehicle may experience when passing the intersection at
a certain time. It can be viewed as a continuous approximation
of the measured (discrete) delays calculated from intersection
travel times. Fig. 1 depicts the intersection delay pattern as a
piecewise linear curve at the bottom of the figure. The small
circles along the curve indicate the measured delays from
individual vehicles. Here, travel times are collected between an
upstream location (denoted as virtual trip line (VTL) 1) and a
downstream location (denoted as VTL2). The VTL concept was
initially developed for mobile sensors [7], which could also in-
dicate the locations where ETC readers or wireless sensors are
installed. The signal timing estimation method in [9] is based on
the observation that a significant increase in the delay pattern is
correlated with the start of the red time. By predefining a thresh-
old for such an increase, the time that a new cycle starts can be
detected. By further correlating the time when the delay pattern
becomes zero with the duration of the red, the effective red
time can also be estimated. The estimation method in [9], how-
ever, is not very satisfactory because of the following: 1) The
method cannot very well determine the exact start/end times
of a cycle; and 2) if the travel times are sparse, a significant
delay increase may not exist for one or multiple consecutive
cycles, and the method cannot detect those “missing” cycles.

In this paper, we develop a robust signal timing estimation
method. The method features a combination of traffic flow
theories and learning/optimization methods, which can estimate
the exact cycle start/end times and can properly detect the
missing cycles if any. The method contains three major steps:
1) cycle breaking estimation, which determine whether a new
cycle starts; 2) exact cycle boundary detection, which detects
the exact cycle start/end times; and 3) effective red (or green)
time estimation, which estimates the duration of effective red
(or green) times. Cycle breaking estimation applies the support
vector machine (SVM) technique to classify sample vehicle
delays into two groups, one of which indicates the start of red
times. The classification results are more accurate and robust
compared with the simple threshold method in [9]. Exact cycle
boundary detection can be formulated as a nonlinear program

by assuming that the cycle length is constant (the effective red
and green times may vary from cycle to cycle, e.g., for the
coordinated phases of actuated signals). A key feature of the
exact cycle boundary estimation method is that the number of
missing cycles can be estimated using sample delays and the
SVM results. Finally, the effective red (or green) times are
estimated using the method in [4] and [9] by investigating when
nonsmoothness in the delay pattern happens.

The proposed signal timing estimation methods are tested in
simulation and real-world data collected from next-generation
simulation (NGSIM). The results are promising for relatively
high penetration of travel time data (e.g., ≥10%–15%).

II. ROBUST CYCLE BREAKING METHOD

The first step for cycle parameter estimation is to detect when
a cycle starts and ends. This is called “cycle breaking” in this
paper. Here, we only illustrate how cycle breaking can be done
for a particular movement of a signal, and the same procedure
applies to other movements of the signal. In this paper, we
define the start of a cycle as the start of the red time.

Cycle breaking can be done by exploring the correlation
between the delay pattern of a signalized intersection and the
start of the red time. This is because traffic at a signalized
intersection has some periodic features due to signal timing.
These features can be reflected by the measured intersection
delays (or travel times) under relatively high penetration of
mobile data. They can be seen via the discontinuities in the
delay pattern in Fig. 1 when red times start. Usually, the vehicle
that arrives at the end of a cycle, e.g., vehicle b, is not influenced
by the signal and queues, whereas the vehicle that arrives at
the beginning of the next cycle (during the red time) has to
wait for the entire red time. On the other hand, if we know
the delay pattern, the start of the red time can be inferred from
the pattern by investigating when the discontinuity happens.
For this purpose, we define a cycle breaking vehicle (CBV) as
the first sample vehicle in a cycle. The other vehicles in this
cycle are non-CBV (NCBV). CBV and NCBV are illustrated
in Fig. 1. CEV in the figure stands for cycle ending vehicle,
which will be defined later in this section. The CBV of a cycle
is not necessarily the first vehicle actually arriving at the signal
in the cycle if the penetration is not 100% (in this case, the first
vehicle may not be sampled).

Generally, the delays of vehicles should be continuously
decreasing within a cycle and “jumping” to a higher value
when the next cycle starts. This implies that CBVs usually
have higher delays. Such a feature can be used to detect
whether a new cycle starts. In [9], e.g., a threshold is defined
for this purpose. If the delay increase between one vehicle
and the previous vehicle exceeds this threshold, a new cycle
starts. However, using a single feature classifier is not robust
if we consider oscillation and noise in measurements and, in
particular, low penetration rate. To improve the performance,
we use two features: the arrival time difference ti − ti−1 and
the delay difference di − di−1 between two consecutively sam-
pled vehicles. Here, ti is the ith sample vehicle’s arrival time
at VTL1, and di is the intersection delay of the ith sample
vehicle. Fig. 2 depicts these two features for a field experiment
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Fig. 2. Change in arrival time versus change in delay for different penetration
rates.

conducted in the Albany, NY, area [4] under 60% and 30%
penetration rates of travel time data. In the figure, dots are for
NCBVs and plus signs are for CBVs. We can see that there
is a clear margin of separation between CBVs and NCBVs
using these two features. Notice that the margins (dashed lines)
in Fig. 2 are drawn manually, purely based on the data and
intuition for illustration purposes. In the numerical section of
this paper, the margins are automatically generated.

The fact that CBVs and NCBVs can be separable using the
two features intuitively makes sense. Since the first measure is
the difference of the arrival times of two consecutively sampled
vehicles, the larger this difference, the more likely that they are
in two distinct cycles because the cycle length is finite. Since the
second measure is the delay increase from the second vehicle
to the first vehicle, a large value of this measure likely indicates
the start of red time. The second measure is exactly what was
used in [9] for cycle breaking. Using either feature or a simple
combination of the two features, however, is not effective, as
illustrated in Fig. 2. The vertical dashed bold line in the figure
indicates the threshold in delay increase. The horizontal dashed
bold line indicates the threshold in arrival times. The figure
shows that even if both measures are used (e.g., a CBV needs to
satisfy at least one of the two measures), there will still be large
errors, as indicated by the circles.

In order to produce robust results, these two features need
to be combined more intelligently for cycle breaking. Here,

we use SVM, a widely used learning method, to classify a
set of data points into two distinct groups [12]–[15]. Let the
historical travel time data be denoted by (xi, yi), i = 1, . . . ,M
(in total M samples). Here, xi = (ti − ti−1, di − di−1)T is a
data point, and yi = ±1 is the corresponding label (yi = 1 for
CBV and yi = −1 for NCBV). SVM can help divide the data
set into two groups: one for yi = 1 and the other for yi = −1
using two support planes (lines in the R2 space, see Fig. 2).
Let w = (w1, w2)T ∈ R2 and b be a scalar. If w and b are
properly selected, we will have wxi − b ≥ 1 for yi = 1 and
wxi − b ≤ −1 for yi = −1. Then, the two support lines are
wxi − b = 1 and wxi − b = −1. Notice that 1 and −1 can be
used here by choosing proper scales for w and b. The distance
between these two lines can be shown as 2/‖w‖ with ‖w‖,
denoting the norm of w. If we aim to maximize the distance
between these two support planes, (w, b) can be determined by
solving the following quadratic program [12]:

min
w,b

1/2‖w‖2 s.t. yi(wxi − b) ≥ 1, i = 1, . . . ,M. (1)

Notice that yi(wxi − b) ≥ 1 is a compact form for the
two cases of wxi − b ≥ 1 for yi = 1 and wxi − b ≤ −1 for
yi = −1. Model (1) is an SVM for separable cases, i.e., samples
with yi = 1 and yi = −1 can be completely separated. The
samples satisfying constraint (1) at equality are exactly on one
of the two support planes—they are called support vectors. For
many cases, there is no plane that can perfectly divide the two
groups. In this case, we need to introduce an error term for
each data point, denoted as εi. The problem is then to solve
the following revised quadratic program [16]:

min
w,b

1/2‖w‖2 + G

(
M∑
i=1

εi

)

s.t. yi(wxi − b ≥ 1 − εi, εi ≥ 0, i = 1, . . . ,M. (2)

The objective now is to minimize a weighted sum of the
distance and the error term. Here, G is a weighting factor that
can be defined by the user; a larger G assigns a larger penalty
to the error.

We can solve the quadratic programming problem directly;
the dual form of this problem is more preferable because its
constraints are much simpler, i.e.,

min
a

1
2

M∑
i=1

M∑
j=1

yiyjaiaj(xi · xj) −
M∑
i=1

ai

s.t.
M∑
i=1

yiai = 0 G ≥ ai ≥ 0. i = 1, . . . ,M. (3)

The dual model (3) is a quadratic program of a. Given
historical data {(xi, yi)}, we can find the Lagrange multiplier
{ai} by solving (3). The ith data point (xi, yi) is a support
vector if its multiplier ai > 0 and the normal to the plane can
be calculated as

∑M
i=1 yiaixi. Then, we have yi(wxi − b) = 1

and ai > 0 if and only if (xi, yi) is a support vector. This means
that b = wxi − (1/yi) if the corresponding ai is positive [15].
The middle plane w · xi = b is then used to classify CBVs and
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NCBVs. If w · xi > b (or w1(ti − ti−1) + w2(di − di−1)>b),
the ith sample vehicle is recognized as a CBV. If w · xi ≤ b
(or w1(ti − ti−1) + w2(di − di−1) ≤ b), the ith sample vehicle
is classified as an NCBV. The CEV is defined as the sample
vehicle that arrives just before a CBV. It is also the last sample
vehicle in the previous cycle. The CEV in the nth cycle and
the CBV in the n + 1th cycle are called the nth cycle breaking
pair. It is obvious that the cycle boundary between the nth cycle
and the n + 1th cycle should be somewhere between the times
when these two vehicles arrived at the intersection. However,
we do not know when exactly this happened. In [9], it was
simply assumed that the cycle boundary is exactly at the middle
point of the two arrival times. We show next how the exact
cycle boundaries can be detected based on some engineering
knowledge about the signal.

III. EXACT CYCLE BOUNDARY ESTIMATION

To detect the exact boundaries of cycles, further knowledge
about the signal is needed. This is where engineering knowl-
edge can play a critical role in developing specialized learning
and optimization methods. Next, we show how exact cycle
boundaries can be determined if the signal has a constant cycle
length. This applies to pretimed signals or the coordinated
phases of coordinated actuated signals. For pretimed signals,
the cycle length and red/green times are fixed. For coordinated
and actuated signals, we have a fixed cycle length but variable
red/green times for the coordinated phase. To detect exact cycle
boundaries, we need to first figure out the exact times when
CBV and CEV arrive at the intersection (i.e., the stop line).

Here, we discuss normal cycles, i.e., the queue can be fully
discharged during the green time of the cycle, and oversaturated
cycles, i.e., the queue cannot be fully discharged during the
green time of a cycle and some vehicles have to wait for an
extra red time. To simplify the discussion, we assume that
an oversaturated vehicle waits only one extra red time to get
through the intersection. See [4] for more details of those
definitions.

A. Arrival Time at the Stop Line

As defined in the previous section, CBV is the first sample
vehicle within one cycle. If the penetration rate is 100%, each
CBV should be the first vehicle that actually arrives at the stop
line after the start of red time; each CEV should be the last
vehicle that actually passes the stop line before the start of red
time. Because we can only detect the arrival times at VTL1
and VTL2, we have to process them into times at the stop line.
For different traffic conditions, we have different methods to
compute the arrival times at the stop line.

For normal conditions in Fig. 3(a), we show the trajectories
of CEV and CBV using solid lines and the other vehicles using
dashed lines. The time that CEV passes the stop line (denoted
as tnCEV) can be expressed as the difference between the arrival
time at VTL2 (denoted as tnCEV2) and the free flow travel time
from stop line to VTL2 (denoted as fftt2)

tnCEV = tnCEV2 − fftt2. (4)

Fig. 3. Arrival time at the stop line. (a) Normal condition. (b) Oversaturation
condition.

The time that CBV arrives at the stop line (denoted as tn+1
CBV)

can be expressed as the difference between the arrival time at
VTL1 (denoted as tn+1

CBV1) and the free flow travel time from
VTL1 to stop line (denoted as fftt1)

tn+1
CBV = tn+1

CBV1 + fftt1. (5)

If the first vehicle in a cycle is not sampled, i.e., if CBV is
not the first vehicle actually in the queue, tn+1

CBV derived from
(5) will be the time that a queued vehicle stops at the stop line,
which still provides an upper bound for the boundary.

For oversaturation conditions, the time that the CEV passes
the stop line can still be expressed by (4), as shown in Fig. 3(b).
This is because the CEV must not be oversaturated by defin-
ition. However, the CBV can be an oversaturated vehicle that
stops twice in front of the stop line so that (5) cannot be applied
to compute tn+1

CBV. We have to consider the first delay D0 defined
as the delay of the oversaturated vehicle if there were enough
green time in the nth cycle, as shown in Fig. 3(b). It is also
the delay an oversaturated vehicle experienced during the first
cycle. In [9], we proposed a piecewise linear delay model to
calculate the intersection delay over time. If the green time of
the nth cycle is long enough, all vehicles arriving during the nth
cycle follow the same delay reduction function, for example,
D = α0 − α1t. Here, t is the vehicle arrival time at VTL1, and
the positive coefficients α0 and α1 are parameterized by linear
fitting (for details, see [9]). Thus, we estimate the first delay of
the CBV by the following equation:

D0 = α0 − α1t
n+1
CBV1 (6)
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where D0 is the estimated value of the first delay for CBV. If
the D0 of the CBV is positive, we can conclude that this cycle
is under oversaturation and derive tn+1

CBV by

tn+1
CBV = tn+1

CBV1 + fftt1 + D0. (7)

If D0 of the CBV is negative or zero, we say either of the
following: 1) The cycle is under normal condition; or 2) the
cycle is under oversaturation, but no oversaturated vehicle is
sampled (e.g., due to low penetration). In either case, we can
calculate tn+1

CBV by (5) because that particular CBV is a normal
vehicle.

Notice here that the derivations of tn+1
CBV and tnCEV assume

a uniform arrival pattern of the intersection, which may not be
true in reality. However, since tn+1

CBV and tnCEV are only used in
this paper to provide upper and lower bounds of the exact cycle
start/end times, the numerical results in Section V show that
such an assumption works reasonably well. For more detailed
discussions of the limitations of the uniform arrival assumption,
one can refer to [4]. In [17], the authors also proposed a
method to partially relax the uniform arrival assumption when
estimating real-time intersection queue length.

B. Exact Cycle Boundary Estimation Without Missing Cycles

For signals with constant cycle lengths, it is possible to
estimate the exact boundaries of cycles by formulating a non-
linear programming model. The constant cycle length can be
considered as a constraint of the model. The key of the model
is to observe that the boundary of the nth and n + 1th cycles
should be located between the arrival times, at the stop line,
of the cycle breaking pair, i.e., the CEV in the nth cycle and
the CBV in the n + 1th cycle. This way, each cycle breaking
pair provides a constraint to the problem. To have an unbiased
estimate, we assume that the objective is to minimize the
deviation of the boundary from the middle point of the arrival
times of CEV and CBV. This leads to the following basic model
for cycle boundary detection.

Basic Model:

min
t0,C

1
N

N∑
n=1

(
t0 + nC − tnCEV + tn+1

CBV

2

)2

s.t. t0 + nC ≥ tnCEV, n = 1, 2, . . . , N

t0 + nC ≤ tn+1
CBV, n = 1, 2, . . . , N. (8)

Here, t0 is the start of the red time of the first cycle, C is
the fixed cycle length, and N is the number of cycle breaking
pairs, indicating that the number of cycles in the basic model is
N + 1. Then, t0 + nC is the end of the nth cycle (or the start
of the n + 1th cycle). By solving this nonlinear programming
problem, we can obtain the estimated cycle length and the start
of the red time of each cycle. Notice that the basic model
(8) and the other models developed in this section are all
convex quadratic programs that are fairly easy to solve. We
can also easily see that the cycle boundary t0 + nC = (tnCEV +
tn+1
CBV/2) will be a global solution if the problem (8) is feasible.

This indicates that the heuristics developed in [9] works well
only when (8) is feasible.

Due to data errors, it is possible that model (8) does not have
any feasible solution (which actually happens for most testing
cases in Section V). In this case, it is necessary to introduce
error terms on the boundary constraints. This results in an
extended model for cycle boundary detection.

Extended Model:

min
t0,C,ε

1
N

N∑
n=1

(
t0 + nC − tnCEV + tn+1

CBV

2

)2

+
K

N

N∑
i=n

ε2
n

s.t. t0 + nC ≥ tnCEV − εn, n = 1, 2, . . . , N

t0 + nC ≤ tn+1
CBV + εn, n = 1, 2, . . . , N. (9)

The error variable εi denotes the tolerance on how far the
cycle boundary can deviate from the interval defined by the
arrival times between the CEV (of the nth cycle) and the CBV
(of the n + 1th cycle). We also introduce a weighted penalty
term K > 0 for the error terms. In this paper, K is chosen the
same as N based on some numerical experiments on different
choices.

The cycle boundary models (8) and (9) rely on two as-
sumptions: 1) The SVM model developed previously produced
satisfactorily accurate results in terms of identifying CEVs and
CBVs, and 2) the CEV and CBV can be detected for each and
every cycle. Assumption 1 depends on the penetration rate of
sample travel times. We will show later that beyond certain
penetration, SVM can always produce highly accurate results.
Assumption 2, however, may not be valid, even under high
penetration due to the variation of traffic. It is thus crucial to
identify whether there are any missing cycles between a CEV
and a CBV and, if yes, how many of them are missing, to apply
the model (8) or (9) properly.

C. Missing Cycle Identification

Under a low penetration rate, it is possible that no vehicle
in a cycle can be detected. In this case, there will be no CEV
or CBV in the cycle. Sometimes, we have even more than one
cycle missing between a CEV and the next CBV. It is thus
important to detect missing cycles and identify the number of
missing cycles before (8) or (9) can be applied.

First, we focus on the case when the cycle length C is known.
Between the nth cycle breaking pairs, denote mn as the number
of missing cycles. Assume that Tn

r is the actual start of the red
time in the nth detected cycle (which is before tnCEV). Then,
the actual start time of the red time of the n + 1th detected
cycle is

Tn+1
r = Tn

r + C(mn + 1). (10-a)

Notice here that “n” and “n + 1” are detected cycles from
the cycle breaking pair, which are not exactly the cycle indices
that actually happened if there are missing cycles between
the cycle breaking pairs. Then, tnCEV, the arrival time of the
CEV in the nth detected cycle, is between the start and end
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Fig. 4. Missing cycle identification process. (a) Cycle breaking. (b) Missing cycle ≥ 1. (c) Missing cycle < 2.

times of the nth detected cycle, i.e., we have Tn
r ≤ tnCEV <

Tn
r + C. Similarly, the arrival time of the CBV in the n + 1th

detected cycle is between the start and end times of the n + 1th
detected cycle, which satisfies Tn+1

r ≤ tn+1
CBV < Tn+1

r + C.
This leads to

Tn
r + C(mn + 1) ≤ tn+1

CBV < Tn
r + C(mn + 2). (10-b)

If we move the CBV point (tn+1
CBV, dn+1

CBV) mn times cy-
cle lengths (i.e., Cmn) to the left, the new point (tn+1

CBV −
mnC, dn+1

CBV) satisfies Tn
r + C ≤ tn+1

CBV − mnC < Tn
r + 2C.

Because this new CBV is in the cycle right after the CEV’s
cycle, the support vectors obtained via solving the SVM model
in Section II should detect this CBV as indeed being a CBV
(they are at two different cycles). In other words, we have

w1

(
tn+1
CBV − mnC − tnCEV

)
+ w2

(
dn+1
CBV − dn

CEV

)
> b. (11)

Here, w1, w2, and b are obtained by solving the SVM model
(see Section II). If we move the CBV point (mn + 1) cycle
lengths to the left, the new point (tn+1

CBV − (mn + 1)C, dn+1
CBV))

satisfies Tn
r ≤ tn+1

CBV − (mn + 1)C ≤ Tn
r + C. Because this

new CBV is in the nth detected cycle, the same cycle as
the CEV, SVM should identify the new vehicle as an NCBV.
Thus

w1

[
tn+1
CBV−(mn+1)C−tnCEV

]
+w2

(
dn+1
CBV−dn

CEV

)
≤ b.

(12)

The number of missing cycles mn can then be derived by
(11) and (12) as

w1

(
tn+1
CBV − tnCEV

)
+ w2

(
dn+1
CBV − dn

CEV

)
− b

w1C
− 1 ≤ mn

<
w1

(
tn+1
CBV − tnCEV

)
+ w2

(
dn+1
CBV − dn

CEV

)
− b

w1C
. (13)

Since mn is an integer, we can use the following equation:

mn =

⌊
w1

(
tn+1
CBV−tnCEV

)
+w2

(
dn+1
CBV−dn

CEV

)
−b

w1C

⌋
. (14)

Here, the notation �x� represents the integer part of x, which
is widely known as the floor function. Obviously, mn is a
monotonic nonincreasing function in terms of C.

Fig. 4 illustrates the missing cycle identification process
when mn = 1. In the figure, the start times of red are plotted
using vertical solid lines, and the start times of green are plotted
using vertical dashed lines. In Fig. 4(a), we find a cycle breaking
pair via SVM. Obviously, there is one missing cycle between
them. Then, we move the CBV point (t2CBV, d2

CBV) to the left
for one cycle in Fig. 4(b) and two cycles in Fig. 4(c). Then, (11)
should apply for Fig. 4(b) and (12) should apply for Fig. 4(c).
That is

w1

(
t2CBV − C − t1CEV

)
+ w2

(
d2
CBV − d1

CEV

)
>b

w1

(
t2CBV − 2C − t1CEV

)
+ w2

(
d2
CBV − d1

CEV

)
<b.

Hence, we conclude that the missing cycle number mn = 1
from (14).

For many cases, the cycle length C is unknown. If we know
the upper bound Cu and the lower bound Cl of the cycle length,
mn should be restricted by the minimum missing cycle number
mn and the maximum missing cycle number mn, i.e., mn ≤
mn < mn, where

mn =

⌊
w1

(
tn+1
CBV−tnCEV

)
+w2

(
dn+1
CBV−dn

CEV

)
−b

w1Cu

⌋
(15)

mn =

⌊
w1

(
tn+1
CBV−tnCEV

)
+w2

(
dn+1
CBV−dn

CEV

)
−b

w1C1

⌋
. (16)

In practice, Cu and Cl can be estimated via engineering
knowledge. For example, the cycle lengths of most signals in
the US are between 30 and 180 s. On the other hand, Cu and
Cl can be better estimated using sample arrival times and the
estimated number of missing cycles. In other words, we can
compute the estimated cycle length and the number of missing
cycles iteratively to refine the estimation results. This procedure
can be described as follows.
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At the beginning of the iteration, we define the initial state

C0
l = 0, C0

u = ∞, mn = 0, mn = ∞, n = 1, 2, 3, . . . N.

In the jth iteration, we check the arrival time difference
between CEV in the nth detected cycle and CBV in the
(n + k − 1)th detected cycle. When k = 1, two vehicles are in
the same cycle, i.e.,

C ≥ tnCEV − tnCBV n = 1, 2, 3, . . . N. (17)

When k > 1, because tn+k−1
CEV ≤ Tn+k−1

r + C and
tnCBV ≥ Tn

r

tn+k−1
CEV − tnCBV ≤ Tn+k−1

r + C − Tn
r

= Tn
r + (k − 1)C + C

n+k−2∑
i=n

mi + C − Tn
r

= kC + C
n+k−2∑

i=n

mi, k = 2, 3, 4, . . .

⇒ C ≥ tn+k−1
CEV − tnCBV

k +
∑n+k−2

i=n mi

≥ tn+k−1
CEV − tnCBV

k +
∑n+k−2

i=n mj−1
i

n = 1, 2, . . . N − 1, k = 2, 3, . . . N − n + 1. (18)

The lower bound of cycle length in the jth iteration should
be the maximum value among tnCEV − tnCBV [from (17)] and
all the (tn+k−1

CEV − tnCBV/k +
∑n+k−2

i=n mj−1
i ) for different k’s.

Thus, mathematically, the lower bound of the cycle length at
the jth iteration Cj

i = max(Sj
i ), where

Sj
i = {tnCEV − tnCBV : n = 1, 2, . . . N}

∪
{

tn+k−1
CEV − tnCBV

k +
∑n+k−2

i=n mj−1

: n = 1, 2 . . . N − 1, k = 2, 3 . . . N − n + 1

}
.

Note that in the first iteration m0
n = ∞. (tn+k−1

CEV −
tnCBV/k +

∑n+k−2
i=n mj−1

i ) = 0 for each k. The lower bound of
cycle length C0

l is max{tnCEV − tnCBV : n = 1, 2 . . . N}.
The maximum number of missing cycles in the jth iteration

mj
i then should be

mj
n =

⌊
w1

(
tn+1
CBV−tnCEV

)
+w2

(
dn+1
CBV−dn

CEV

)
−b

w1C
j
l

⌋
. (19)

Similarly, we check the arrival time difference between
the CEV in the nth detected cycle and the CBV in the
(n + k − 1)th detected cycle. Because tnCEV ≤ Tn

r + C and
tn+k+1
CBV ≥ Tn+k+1

r

tn+k+1
CBV − tnCEV ≥Tn+k+1

r − Tn
r −

=Tn
r + (k + 1)C + C

n+k−2∑
i=n

mi − Tn
r

Fig. 5. Flowchart of missing cycle detection algorithm.

= kC + C
n+k∑
i=n

mi, k = 1, 2, 3, 4, . . .

C ≤ tn+k+1
CBV − tnCEV

k +
∑n+k

i=n mi

≤ tn+k+1
CBV − tnCEV

k +
∑n+k

i=n mj−1
i

N = 1, 2, . . . N − 2, k = 1, 2, . . . N − n. (20)

The upper bound of the cycle length in the jth itera-
tion should be the minimum value among all the (tn+k+1

CBV −
tnCEV/k +

∑n+k
i=n mj−1

i ) for different k, i.e., Cj
u = max(Sj

u),
where

Sj
u =

{
tn+k+1
CBV − tnCEV

k +
∑n+k

i=1 mj−1
i

:

n = 1, 2, . . . N − 2, k=1, 2, . . . N − n

}
.

The minimum number of missing cycles in the jth iteration
mj

i then should be

mj
n =

⌊
w1

(
tn+1
CBV−tnCEV

)
+w2

(
dn+1
CBV−dn

CEV

)
−b

w1C
j
u

⌋
. (21)

We repeat the process until one of the two conditions holds.

a) The minimum number of missing cycles is equal to the
maximum number of missing cycles between each cycle
breaking pair;

b) The minimum number of missing cycles is not equal to
the maximum number of missing cycles, but neither of
them changes when the iteration proceeds.

For the first case, the minimum and maximum numbers of
missing cycles converge to the true value. We can derive the
number of missing cycles successfully and then apply the cycle
boundary detection model in the next section. For the second
case, the exact number of missing cycles cannot be determined
when the algorithm is terminated. This case only occurs when
the penetration rate is very low. We will claim this case as
a failure in the numerical test in Section V. The process of
missing cycle detection can be illustrated using the flowchart
in Fig. 5.

D. Exact Cycle Boundary Estimation With Missing Cycles

After the number of missing cycles between each cycle
breaking pair is known, we can further improve model (9). First,
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define En and t
n+1
CBV as follows:

En =n +
n−1∑
i=1

mi (22-a)

t
n+1
CBV = tn+1

CBV − Cmn. (22-b)

Note that En and t
n+1
CBV can readily be calculated if the

number of missing cycles between each cycle breaking pair is
known. Then, t0 + EnC is the end of the nth detected cycle,
bounded by tnCBV and tn+1

CBV. If we remove all missing cycles
between the nth and n + 1th detected cycles, the arrival time of
the new CBV t

n+1
CBV should still be after the end of nth detected

cycle. This leads to the following generalized model.
General Model:

min
t0,C,ε

1
N

N∑
n=1

[
t0+EnC− tnCEV + t

n+1
CBV

2

]
+

K

N

N∑
n=1

ε2
n

s.t. t0 + EnC ≥ tnCEV − εn ∀n

t0 + EnC ≤ t
n+1
CBV + εn ∀n. (23)

The objective in (23) is to minimize the deviation from the
end of the nth detected cycle to the middle point of tnCEV and
t
n+1
CBV (i.e., tn+1

CBV − Cmn). The constraints are similar to those
in (9). Here, (23) is in exactly the same form compared to (9) by
replacing nC and tn+1

CBV in (9) with EnC and t
n+1
CBV, respectively,

in (23). Solving the foregoing nonlinear programming model,
we can find the estimated start of the first cycle t0 and cycle
length C. Notice here that the construction of the general
model (23) relies on the identification of missing cycles, which
is based on engineering knowledge (about signal and delay
characteristics) and the results of the SVM [e.g., (11) and
(12)]. One might also be able to integrate the missing cycle
identification step directly into the optimization/learning model
as a pure (but likely more complex and challenging to solve)
optimization/learning problem without using the foregoing
engineering-knowledge-based missing-cycle identification pro-
cedure. However, (23) is obviously much simpler and easier
to solve. This shows the benefits of combining engineering
knowledge and optimization/learning techniques in the model-
ing procedure to solve the proposed traffic problem.

IV. EFFECTIVE RED TIME ESTIMATION

The effective red times can be estimated using the signal
timing estimation method in [9]. For normal conditions, the
duration of the red time is equal to the estimated delay at the
start of the red time. For oversaturation conditions, the duration
of the red time is equal to the estimated delay at the start of
the red minus the estimated first delay defined in Section III.
The duration of the effective green can then be derived if the
effective red time and cycle length are known. For more detailed
descriptions, see [9]. We then summarize the signal timing
parameter estimation algorithm as follows.

Signal Timing Estimation Algorithm

Step 1: Cycle breaking estimation. Calculate changes in
arrival times and changes in delays of any two consec-
utive sampled vehicles. Find CEVs and CBVs by using
the SVM.

Step 2: Oversaturation identification. Calculate the first delay
using (6). Identify oversaturation if the estimated first
delay is positive. Otherwise, the cycle is under normal
condition.

Step 3: Arrival time calculation. Compute the arrival times of
CEVs and CBVs at the stop line for both normal and over-
saturation conditions using (4), (5), and (7).

Step 4: Missing cycle detection. Follow the procedure in Fig. 5
and repeat until the minimum and maximum numbers of
missing cycles converge or do not change. If the two
numbers converge, go to step 5; otherwise, go to step 7.

Step 5: Exact cycle boundary estimation. Estimate the initial
start of red, cycle length, and exact cycle boundaries using
the general model (23).

Step 6: Effective red and green times. The effective red and
green times can be estimated by the method in [9]. End.

Step 7: Failure. Claim that the algorithm failed to estimate
signal timing parameters.

V. NUMERICAL EXPERIMENTS

We test the signal timing estimation method in this paper
using multiple data sets, including microscopic simulation, field
experiment, and NGSIM. The simulation model was developed
using Paramics (a commercial traffic simulator) for the City of
Fresno, CA [18], [19]; the field test was conducted in Albany,
NY, for the left turn movement of an actuated (but uncoor-
dinated) intersection [4]; NGSIM data were collected at the
Peachtree St in Atlanta, GA, covering four pretimed intersec-
tions [20]. We use the two data sets collected for the intersection
of 14th St NE and Peachtree St: one from 12:45 to 1:00 P.M.
and the other from 4:00 to 4:15 P.M.. Since the field test
intersection does not have a constant cycle length, the proposed
exact cycle boundary method in this paper cannot apply. We
thus only apply this data set to test the cycle breaking method.
The NGSIM and simulation data are used for all three steps:
1) cycle breaking estimation; 2) exact cycle boundary detection;
and 3) effective red (green) time estimation.

A. Cycle Breaking Estimation

Fig. 6(a)–(k) shows the cycle breaking results for the field
test, NGSIM data, and data sets for nine intersections in sim-
ulation. For the field test data, we use the first 15-min data for
training and the remaining 45 min for testing. Since the two
NGSIM data sets are only 15 min each, we use the data set
from 12:45 to 1:00 P.M. as the training data set for SVM and
the data set from 4:00 to 4:15 P.M. as the testing data set. In
the simulation, we ran the simulation for 1 h and used the first
15 min as the training data and the remaining 45 min as the
testing data. The penetration rate for the results in Fig. 6 is
30%. We can see that the proposed SVM-based cycle breaking
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Fig. 6. Cycle breaking results. (a) Field test data, uncoordinated phase of actuated signal. (b) NGSIM data, pretimed signal. (c) Simulation 1, pretimed signal.
(d) Simulation 2, uncoordinated phase of actuated signal. (e) Simulation 3, uncoordinated phase of actuated signal. (f) Simulation 4, uncoordinated phase of
actuated signal. (g) Simulation 5, uncoordinated phase of actuated signal. (h) Simulation 6, uncoordinated phase of actuated signal. (i) Simulation 7, uncoordinated
phase of actuated signal. (j) Simulation 8, uncoordinated phase of actuated signal. (k) Simulation 9, uncoordinated phase of actuated signal.

method can almost perfectly identify CBVs and NCBVs under
this penetration rate; there is only one mismatched vehicle (out
of about 150 vehicles) for the field test data. We also tested

the method for other penetration rates (as low as 5%) and other
data sets in simulation. Similar results have been obtained, and
we found that the cycle breaking method can generate a very
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TABLE I
PERFORMANCE OF SIGNAL TIMING ESTIMATION

accurate classification result when the penetration is relatively
high (e.g., >=10%–15%). The results also indicate that the
cycle breaking method can apply to signals with either fixed
cycle length (e.g., pretimed signals or coordinated phases of an
actuated signal) or variable cycle length (e.g., for uncoordinated
phases of an actuated signal). The results clearly show that
CBVs and NCBVs are linearly separable by the two measures
used in the SVM: 1) arrival time difference and 2) delay dif-
ference of two consecutively sampled vehicles (see Section II).
This explains why the proposed linear SVM is effective.

B. Exact Cycle Boundary and Effective Red Time Estimation

The exact cycle boundary detection and effective red/green
time estimation are tested using two pretimed intersections: the
first intersection in simulation [see Fig. 6(c)] and the NGSIM
data, as shown in Table I. For the simulation data, there is only
1.47-s deviation in the estimated start of red time in the first
cycle. The estimated and observed cycle lengths are almost the
same. We can also compute the effective red time using line
fitting, i.e., step 6 of the algorithm in Section IV. The root mean
square error (RMSE) between the observed and estimated start
of red times for all the cycles is 1.632 s. We also calculated the
signal timing parameters using the method in [9], which has an
RMSE of 9.593 s. For the NGSIM data, the deviation in the
estimated start of red time of the first cycle is 1.9 s. The esti-
mated and observed cycle lengths are almost the same: 100.0
and 100.37, respectively. The RMSE between the observed and
estimated start of red times for all the nine cycles is about 3 s,
which is significantly smaller than that by the method in
[9], which is more than 8 s. Table I shows that the method
proposed in this paper greatly outperforms the method in [9].

Fig. 7(a) shows the estimation of the exact cycle boundaries
for the simulation data for 50% penetration. The estimated
start times of red are plotted using vertical solid lines, and the
estimated start times of green are plotted using vertical dashed
lines. The actual starts of red and green times are also shown
in the figure using dotted lines. We depict the travel times of

Fig. 7. Signal timing estimation. (a) Simulation data (50% penetration rate).
(b) NGSIM data (20% penetration rate).

CEVs by circles, CBVs by plus signs, and other vehicles by
dots. Note that if there is only one vehicle in the cycle, it is
considered as both CEV and CBV. We can see that the samples
of travel times are well split by the estimated cycle boundaries.
The estimated starts of red and green times match very well
with the actual starts of the red and green times (the RMSE is
about 1.5 s). There is one missing cycle in this case, as shown in
Fig. 7(a). The cycle has three vehicle arrivals, as depicted using
triangles. None of them, however, are sampled, i.e., the sig-
nal timing estimation algorithms cannot “see” their existence.
Using the missing cycle detection method, we can still properly
estimate the boundaries of this cycle. Fig. 7(b) shows results
for the NGSIM data under 20% penetration. There are in total
nine cycles. Five of them have only one sample, which is both
CBV and CEV. There is no sample for the second and third
cycles. The missing cycle identification algorithm shown in
Fig. 5 converges at mn = 2, which correctly detected these two
missing cycles. The estimated cycle boundaries also match well
with the actual cycle boundaries, as shown in the figure—the
RMSE is about 8 s. The RMSE for the NGSIM data is higher
since the penetration is lower (20% instead of 50% as for the
simulation data).

We next show the impacts of the penetration rates on the
estimation performance. Fig. 8(a) depicts the RMSEs of the
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Fig. 8. RMSE versus penetration rate in simulation and NGSIM. (a) Simula-
tion data. (b) NGSIM data.

start of red times for different penetration rates (from 10% to
100% using 5% as the increment and 50 runs for each case)
for the simulation. Asterisks for each penetration rate show the
RMSEs for all 50 random draws. The solid line depicts the
average RMSE for each rate, which shows a roughly decreasing
trend as the penetration rate increases. At 5%, the SVM and
the cycle boundary detection methods fail to work because the
samples are too sparse. When the penetration rate is larger than
10%, relatively accurate estimation results can be achieved, and
the RMSE is about 4 s. The error decreases to around 2 s when
the penetration rate is larger than 30%. Fig. 8(b) depicts the
RMSEs of the start of red times under different penetration
rates for the NGSIM data. Similar results can be observed: the
RMSEs drop from nearly 10 s to about 5 s when penetration
rates increase from 10% to 30% and then decreases to around
3 s when the penetration becomes even larger (e.g., larger
than 50%).

C. Performance of Missing Cycle Identification

We performed an experiment to determine how effective
the approach is when missing cycles occur. As mentioned

Fig. 9. Success rate versus penetration rate in simulation and NGSIM.
(a) Simulation data. (b) NGSIM data.

in Section III, we say the missing cycle detection algorithm
is successful if the minimum missing cycles and maximum
missing cycles converge. Otherwise, the algorithm fails. We
varied the penetration rate from 10% (5% for simulation data)
to 100% and randomly simulate sample vehicle travel times
for 50 runs under each rate. The successes rate is defined as
the ratio between the number of runs successfully applied by
missing cycle detection algorithm and the total number of runs
(i.e., 50) for each penetration rate.

Fig. 9(a) depicts the success rates of the missing cycle detec-
tion algorithm on simulation data. The figure shows a sudden
increase in RMSE at about 10% and below which the algorithm
cannot work well. A 100% success rate can be achieved when
the penetration rate is greater than 20%.

Fig. 9(b) depicts the success rates of the missing cycle
detection algorithm for the NGSIM data. It shows that the
success rate is high when the penetration rate is larger than
25%. When the penetration rate is greater than 35%, a 100%
success rate can be obtained. The success rate for the NGSIM
data looks lower than the simulation data because the NGSIM
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sample size and the number of cycles (9) are much smaller (the
NGSIM testing data were only available for 15 min).

VI. CONCLUDING REMARKS

We have presented in this paper a three-step method to
estimate the signal timing parameters of an arterial intersec-
tion based on sample intersection travel times, including cy-
cle breaking estimation, exact cycle boundary detection, and
effective red (green) time estimation. The method was based on
the correlation between critical intersection travel time patterns
(such as discontinuities) and the signal timing changes (such
as the start of the red time). Cycle breaking estimation was
cast as an SVM classification problem to identify the first
sample vehicle that indicates the start of a cycle (defined as
the start of the red time). The cycle breaking algorithm can be
applied to any type of signals with or without constant cycle
lengths. The exact cycle boundary detection algorithm was
formulated as a nonlinear program based on the observation
that the exact cycle boundaries must lie between the arrival
times of CEV and CBV. The algorithm can only be applied to
signals with constant cycle lengths such as pretimed signals or
the coordinated phases of actuated signals. The effective red
(green) time estimation method was based on the line fitting
method in [9] to explore the duration of the effective red time
and the time that the delay pattern displays nonsmoothness. The
three-step method was tested using data from simulation, a field
test, and NGSIM. The results show that accurate cycle breaking
and cycle boundary detection results can be achieved under rel-
atively high penetration of travel time data (e.g., >=10–15%).
Although it can hardly be achieved in the current state of the
practice, such high penetration of intersection travel times may
be possible in the near future with the deployment of new
arterial data collection techniques. The proposed method in this
paper can then be used to estimate signal timing parameters,
which can be useful to conduct large-scale signal and arterial
performance measurement, particularly for those areas where
real-time signal information or arterial data collection systems
have yet to be established or are not easy to access.

The proposed signal timing estimation approach in this pa-
per, particularly the cycle breaking (SVM-based) and exact
cycle boundary detection (optimization-based) methods, is a
combination of transportation principles (such as how delay
changes are correlated to signal timing) and knowledge (such as
signal characteristics: constant cycle or not) with optimization/
learning techniques. We believe that methods based on such a
combination of traffic principles/knowledge and optimization/
learning can play an important role in exploring how to best
use travel times and similar forms of data from mobile sensors
[4], [8], [9] that have been increasingly available in the field.

For future research, first, it will be of great value if we can
extend the current method to deal with all signal types, e.g.,
the uncoordinated phases of actuated signals or even adaptive
signals. For this, the proposed method provides a general frame-
work (such as the three-step process and the idea of combining
traffic theories/principles with advanced optimization/learning
techniques) that may be extended to capture such signals. For
example, the cycle length variable in (8), i.e., C, may be

modeled as cycle specific as Cn, which allows the cycle length
to vary from cycle to cycle. The authors are currently working
on this problem. Second, the method proposed in this paper can
directly be applied to estimate the signal timing parameters of
a particular movement of an intersection. To obtain a complete
picture of the intersection timing setting, one needs to apply
the method to all movements. A synthesis procedure is then
needed to combine the signal timing information from all sep-
arate movements into a coherent phase plan. Such a procedure
will be investigated in subsequent papers. Third, the proposed
method may be revised to estimate the optimal offset between
two adjacent signals. Such information is critical for signal
coordination. Forth, extending the proposed method to signal
timing design and optimization is an interesting future research
topic. Last but not least, the proposed method also needs to
be further tested and validated using more data sets collected,
particularly from real-world congested signalized intersections.
The authors will pursue this direction in future research.
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