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Abstract The existing approaches usually perform facial landmark detection and head pose
estimation independently and sequentially, ignoring their coupled relations. We introduce a uni-
fied framework, named coupled cascade regression (CCR), for simultaneous facial landmark
detection and head pose estimation. Based on the cascade regression framework, we propose
to learn two separate regressors to update the landmark locations and three-dimensional (3D)
face model parameters at each cascade level. To capture the coupled relations of the landmark
locations and head pose, we further apply the 3D face projection model to refine the prediction
results in each cascade iteration and make them consistent. CCR can leverage both the learning
methods and the projection model to simultaneously perform facial landmark detection and pose
estimation to enhance the performances of both tasks. We also propose to learn the cascade
regressors from the combination of real and synthesized face images to solve the problem of
limited variations in head pose for training. Experimental results on Helen, labeled face parts in
the wild, 300-W, and Boston University datasets show that our proposed CCR method outper-
forms other conventional methods both for landmark detection and head pose estimation. © 2020
SPIE and IS&T [DOI: 10.1117/1.JEI.29.2.023028]
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1 Introduction

Facial landmarks, also known as face fiducial points such as eye corners, mouth corners, and
nose tip, play an important role in face recognition,1–4 facial action unit recognition,5,6 and three-
dimensional (3D) face reconstruction.7,8 Head pose estimation aims to predict the orientation of
the head with respect to the camera coordinate frame. It has been widely used in many scenarios,
such as capturing the visual attention of subjects in human–machine intersection, estimating the
gaze direction of a driver, and analyzing social event interaction.9–12

For facial landmark detection, cascade regression framework has become one of the most
effective and efficient frameworks. Typically, as a learning-based approach, it learns regression
models at each cascade level to map the local appearance features to target variables (i.e., shape
updates). For head pose estimation, the related approaches can be categorized into learning-
based methods and model-based methods. The learning-based methods use machine learning
techniques to learn the mapping between image observation and head pose, while the model-
based methods link them through a computer vision projection model.13,14 Most of the existing
methods either follow the learning-based approach or model-based approach to achieve land-
mark detection or head pose estimation.11,14–18 However, since the landmark positions and head
pose are related, they should be tracked jointly. In addition, most methods’ performance rely on a
large scale of labeled data, especially for recent deep learning-based methods for landmark
detection and head pose estimation. However, manually labeled training images cannot cover
variations in real scenarios. Recently, learning from synthetic data with automatic accurate
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annotations is an effective way to tackle the problem of lack of manual annotations.13,19–21

Therefore, it only makes sense to combine the cascade learning-based and the model-based
method from both real and synthetic data to boost the performance of landmark localization
and pose estimation, while simultaneously addressing the inadequate annotation problem.

In this paper, to jointly exploit relationships among facial landmarks and head pose from both
real and synthetic images, we propose a unified framework named coupled cascade regression
(CCR). It first leverages the benefits from the cascade regression framework to separately esti-
mate the landmark positions and head pose (see Fig. 1). In particular, by leveraging the cascade
regression framework, we iteratively learn two regressors to update landmark locations and 3D
face model parameters separately. Since two-dimensional (2D) facial landmark and 3D pose
parameters are related, which can be derived from the projection model,13–15 we also link them
through the 3D face projection model to further refine the estimations. As a result, CCR can
exploit the interactions between landmark points and head pose to perform simultaneous land-
mark detection and head pose estimation. To overcome the limited head pose variations in train-
ing data, we extend the training samples by synthesizing the facial images.

In summary, our main contributions are threefold. (1) The proposed CCR can simultaneously
detect the landmark locations and estimate the head pose. Furthermore, CCR can improve
the performances of both tasks. (2) CCR combines both learning-based and model-based
approaches. (3) CCR learns from both real and synthetic images.

2 Related Work

A large number of methods have been proposed to tackle the problem of facial landmark detec-
tion. These methods can be classified into three categories: constrained local model (CLM),
holistic methods, and cascade regression-based methods. CLM approaches22,23 estimate land-
mark locations based on fitting local appearance models and a global shape model. Holistic
methods24 learn models that can capture the global appearance and face shape information.
Recently, a cascade regression framework, especially along with deep models,13,25–30 has
achieved impressive performances, where it learns regression models at each cascade level
to iteratively map the discriminative local features around landmarks to the ground truth

Fig. 1 The overall architecture of our proposed CCR method for simultaneously estimating the
landmark locations and head pose. RT andQT denote two separate learned regressors for updat-
ing the landmark locations and 3DMM parameters at iteration T , respectively. The head pose can
be easily derived from 3DMM. After estimating two different landmark locations xt and xt ;p based
on regressor RT and QT with projection model gð·Þ, respectively, CCR further updates based on
gradient decent to make them consistent with each other (best view in color).
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landmark positions. Dapogny et al.29 propose to incorporate the landmark-wise attention maps
and intermediate supervisions into the deep cascade convolution network for landmark detec-
tion. Wan et al.30 propose to integrate a deep regression module and a deocclusion module into
the cascade regression framework to tackle the problem of landmark detection under occlusion.

Head pose estimation approaches in computer vision can be generally categorized into learn-
ing-based and model-based methods. The learning-based methods try to map the extracted
appearance features [e.g., histogram of oriented gradients and scale-invariant feature transform
(SIFT)] to 3D head poses (e.g., pitch, yaw, and roll).11,20,31,32 Drouard et al.33 propose to learn a
mixture of linear Gaussian regression models, which can simultaneously map high-dimensional
features to low-dimensional head pose parameters and face bounding box shifts. Xu et al.11

propose a deep multitask learning framework for head pose estimation. Head and face regions
are jointly fed into the deep model for the tasks of head pose estimation and face verification,
respectively. The model-based methods estimate the head pose by linking the 2D observation
and 3D face model through the computer vision projection model. These methods typically first
perform 2D landmark detection, followed by fitting the 3D face model to estimate the head pose.
Sung et al.34 estimate head pose by fitting related cylindrical models. Some other effective
methods18 decode head pose from 3D face model parameters, which are estimated by minimiz-
ing the misalignment error between the ground truth locations and projected locations of the 3D
face model on the image plane.

There are a few approaches that simultaneously detect landmarks and predict the head pose.
By treating the 3D morphable model (3DMM) and corresponding 3D face model parameters as a
representation of the 2D facial shape, some research works13,14,35,36 proposed to iteratively
update the 3D face model parameters for facial landmark detection and pose parameters’ esti-
mation. Typically, 3D face model parameters consist of projection matrix parameters and 3D
deformable parameters. The head pose can be extracted from the projection matrix parameters.
Tulyakov and Sebe37 propose to estimate the 3D facial shape from a single image based on
cascade regression framework using the shape invariant features. They extract head pose from
the defined face basis vector, which denotes the rotation angle of the face. Zhu et al.13 propose to
use convolutional neural networks (CNN) as the regressor in the cascaded framework to learn the
mapping between the local appearance and 3D face model parameters. They introduce a face
profiling method to synthesize the facial images with large poses to tackle the problem of limited
training images. Xu and Kakadiaris38 propose a method called JFA to coarsely estimate the head
pose by the global facial CNN features, and further iteratively update the facial landmarks by
local CNN feature on the basis of a cascade regression framework. They do not leverage the
power of 3D face projection model, which can link the head pose and facial landmark locations.
Tran and Liu14 propose a framework to learn a nonlinear 3DMM from a large set of in-the-wild
face images. They introduce a network encoder to estimate the projection, shape, lighting, and
albedo parameters. However, their methods need many face images.

Other recent deep-learning-based methods employ multitask learning for landmark
detection.17,27,39–43 Wang et al.42 propose a recurrent convolutional shape regression method to
jointly learn all the shape updates at all cascade levels by using a recurrent network with a gated
recurrent unit. Honari et al.27 propose to learn from the limited number of face images with
accurate landmark annotations and other face images with class labels in a semisupervised
scheme. Yin et al. propose a unified framework termed JASRNet for simultaneously performing
image super-resolution and landmark localization in tiny faces.17 They introduce a deep shared
encoder in the network to capture complementary information for both tasks to boost their
performance.17

A large amount of training data is crucial for successful supervised learning. With the
increasing progress in computer graphics and virtual reality, it is becoming possible to learn
from the virtual images that cover the distribution of targets in appearances in the real
world.21,44–46 Learning-by-synthesis is becoming an increasingly active topic for landmark
detection and head pose estimation.13,19,20,47–49 Feng et al.19 generate synthesized faces by a 3D
morphable face model for training a more robust facial landmark detector. Larumbe et al.48 pro-
pose to learn from a synthetic head pose dataset and experimental results validate that learning-
by-synthesis can enhance the performance for head pose estimation. Zhu et al.13 augment the
training data with a face profiling method based on 3D image meshing and rotation. Wang et al.20
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propose to learn a coarse-to-fine deep model from synthetic data for head pose estimation. It
coarsely classifies the input image into four categories followed by fine regression of head pose
parameters. Yin et al.49 propose a generative adversarial networks (GAN) based face frontaliza-
tion method for face data augmentation. The attention mechanism is introduced in the generator
and discriminator to learn a richer feature representation for frontal face generation. Another
work presented in Ref. 50 also proposes a GAN-based learning scheme to leverage unlabeled
data. In addition, they introduce a LaplaceKL loss to optimize the deep model.50

Different from most of the aforementioned methods, which address the problem of landmark
detection and head pose estimation by learning or modeling from images separately and independ-
ently, our proposed CCR combines the learning with a projection model at each cascade level. Joint
learning for landmark detection and 3D face model parameters’ estimation based on their con-
sistency allows for simultaneous landmark prediction and head pose estimation. In addition, the
combination of learning with a projection model can enhance the performance on landmark detec-
tion and head pose estimation, which makes CCR achieve preferable results. Motivated by profil-
ing faces for image synthesis13 and our previous work of learning-by-synthesis,21,44 we also
propose to learn from synthesized facial images for landmark detection and head pose estimation.

3 Preliminary

3.1 General Cascade Regression

Landmark detection aims to estimate the 2D face shape x ∈ R2·N of N landmarks in an image I.
Before we introduce our proposed CCR for simultaneous landmark detection and head pose esti-
mation, we introduce the general cascade regression framework for 2D landmark detection.16,51

Given an image I, the objective function for face alignment can be formulated as follows:

EQ-TARGET;temp:intralink-;e001;116;428fðxÞ ¼ 1

2
kΦðx; IÞ −Φðx�; IÞk2; (1)

where x are the landmark locations, x� are the ground truth locations, and Φðx; IÞ are the local
appearance features around the current landmark locations. To solve the optimization problem
x̃ ¼ arg minxfðxÞ, we further take derivation on the Taylor expansion of Eq. (1) and set it to zero,
thus we can estimate the landmark updates Δx approximately by a regression model, denoted by
R. In particular, at iteration t for the cascade regression framework, the landmark updates can be
estimated iteratively by

EQ-TARGET;temp:intralink-;e002;116;315Δxt ¼ Rt½Φðxt−1; IÞ�: (2)

The general cascade regression framework is summarized in Algorithm 1. In general, the idea
of cascade regression for face alignment is to learn cascade regressor Rt at iteration t, where the
regressor can iteratively predict the landmark location updates Δxt based on local appearance
features Φðxt−1; IÞ extracted around current locations xt−1. Then, the new landmark locations xt

for the next iteration can be estimated by adding the predicted updates Δxt to the current land-
mark locations xt−1. This repeats until it converges or to the maximal iteration T.

3.2 Facial Image Synthesis

Inspired by the key idea of capturing information from images without any manual labor anno-
tation,21,50 where they learn models from synthetic data or unlabeled real data through an adver-
sarial learning framework, we propose to learn models from both real and synthesized facial
images. In this subsection, we give the details for synthetic image generations. Built upon the
method presented in Ref. 13, facial images with various head poses are generated.

The key idea is to simulate face images with the help of 3D information. First, different from
the conventional facial images synthesis methods52 that ignores the external face region, the
context information beyond the face region is exploited by following the 3D image meshing
method.13,53 Specifically, the depth of the face region and external region is conducted followed
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by fitting a 3DMM through the multifeatures framework.54 It is worth noticing that the 2D
ground truth landmarks with respect to the face image offer a solid constraint to ensure the
accuracy of fitting. In addition, some anchors beyond face region are marked so that the 2D
image can be projected back to a 3D space by the triangulation method (see the step of 3D
meshing in Fig. 2). After constructing the depth image, we can rotate it out of plane to synthesize
facial images with different head poses (see Fig. 2). Since the rotation may lead to distortion of
external face regions, the background anchors need to be adjusted by iteratively optimizing an
equation list about the relative positions.13 Because the 3D meshing method can keep the original
facial landmark annotations, we can acquire the ground truth after facial image synthesis. As
shown in Fig. 2, we can generate facial images with facial landmark locations, which explicitly
enlarge the training data with head pose variations.

Yaw + 30˚

Pitch + 20˚

Yaw+15˚
Roll+15˚

3D meshing

Rotation

Rotation

Input facial image

Fig. 2 Framework of 3D imagemeshing and rotation for facial image synthesis with accurate facial
landmark annotation.

Algorithm 1 General cascade regression framework for face alignment.

Input:

Give the image I. Facial landmark locations x0 are initialized by mean face.

Do cascade regression:

for t=1,2,. . . ,T or convergence do

Estimate the landmark location updates xt given the current landmark locations xt−1,

EQ-TARGET;temp:intralink-;t001;116;625Δxt ¼ Rt ðΦðxt−1; IÞÞ;

Update the landmark locations,

EQ-TARGET;temp:intralink-;t001;116;588xt ¼ xt−1 þ Δxt :

end for

Output:

Landmark locations xT .

Gou and Ji: Coupled cascade regression from real and synthesized faces. . .

Journal of Electronic Imaging 023028-5 Mar∕Apr 2020 • Vol. 29(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4 Coupled Cascade Regression

In this paper, we propose a united framework named CCR for simultaneous landmark detection
and head pose estimation. For clarity, all related key variables and model functions are defined,
as shown in Table 1.

The overall framework of the proposed CCRmethod that estimates the target facial shape and
head pose is shown in Fig. 1 and Algorithm 2. In particular, we apply a cascaded regression
framework to jointly achieve two tasks; one is for facial landmark detection and the other is
for 3D face pose parameters’ estimation. For facial landmark detection, we use a general cascade
regression framework to directly predict the updates of landmark location x at each iteration. For
pose estimation, we propose to estimate the updates of 3D face model parameters p, which
encode head pose and deformable information. To capture the coupled relationship between
x and p, we further link the 3D face model parameters p and 2D landmark locations x through
the projection model gð·Þ to ensure their consistency.

As shown in Fig. 1 and Algorithm 2, by leveraging the cascade regression framework, we
jointly perform two tasks of landmark detection and 3D face model parameter estimation by
learning the cascade regression models separately. It begins with an initialization of mean
3D face model parameters p0, which can map face to mean landmark locations x0 with the
projection model. At each iteration, it updates the landmark locations and 3D face model param-
eters based on the learned cascade regressors Rt and Qt, respectively. It further applies the pro-
jection model through a gradient descent method to ensure consistency between the landmark
positions and face pose parameters. As a result, CCR can effectively learn the cascaded regres-
sors by incorporating local appearance and the projection model to improve the performance of
both landmark detection and head pose estimation. In the following, we describe our proposed
CCR method in detail.

4.1 Update the Landmark Locations

Various regression functions such as linear regression model, random forest, and neural network
can be applied in the general cascade regression framework. One of the most widely used models
is the linear regression model,16 which is effective and efficient. In this work, we also use the
linear model in a general cascade regression framework for landmark detection. Hence, the
regression model Rt for estimating the updates of landmark locations can be formulated as

Table 1 The definitions of models and variables in the proposed CCR.

Variables/models Definitions

x Landmark location

x� Ground truth of the landmark location

p 3D face model parameters

R Regression model for estimating landmark location updates

WR The parameters (weights) of model R

Q Regression model for estimating 3D model parameter updates

WQ The parameters (weights) of model Q

r, b The bias parameters

ð·Þt The state of variables/models with respect to the t ’th cascade iteration

gð·Þ 3D face projection model

Φ The local appearance features (i.e., SIFT in this work)
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EQ-TARGET;temp:intralink-;e003;116;349

Δxt ¼ Rt½Φðxt−1; IÞ�
¼ Wt

RΦðxt−1; IÞ þ rt; (3)

whereWt
R and rt are the weights and bias parameters, respectively, for regressor Rt at iteration t.

For the regression model training at cascade level t, given K training facial images with
ground truth landmark locations x�, the ground truth updates of landmark location Δxt;�i in the
i’th image can be calculated by subtracting the current landmark locations xt−1i from the ground
truth landmark locations x�i . In addition, given the training images with estimated key point
locations xt−1, the local appearance features Φðxt−1i ; IiÞ of i’th image can be extracted.
Then, we can learn the corresponding model parametersWt

R and rt by the least-square formation
with closed form solution:

EQ-TARGET;temp:intralink-;e004;116;209Wt�
R ; r

t� ¼ arg min
Wt

R;r
t

XK
i¼1

kΔxt;�i −Wt
RΦðxt−1i ; IiÞ − rtik2: (4)

For landmark location prediction at iteration t, given previous estimated landmark positions
xt−1 and the learned regressor with parameters Wt

R and rt, we can estimate the updates Δxt of
landmark locations by Eq. (3). Then, we can acquire the new locations by adding the updatesΔxt

to previously estimated landmark locations xt−1.

Algorithm 2 Proposed CCR for simultaneous landmark detection and head pose estimation.

Input:

Give the facial image I. Key point locations x0 are initialized by projection model with mean 3D face model
parameters p0.

Do cascade regression:

for t=1,. . . ,T do

step 1: Estimate the landmark location updates Δxt given the current landmark locations xt−1,

EQ-TARGET;temp:intralink-;t003;116;616Δxt ¼ RðΦðxt−1; IÞÞ;

Update the landmark locations,

EQ-TARGET;temp:intralink-;t003;116;577xt� ¼ xt−1 þ Δxt ;

step 2: Estimate the parameter updates Δpt given the current landmark locations xt−1,

EQ-TARGET;temp:intralink-;t003;116;544Δpt ¼ QðΦðxt−1; IÞÞ;

Update the parameters,

EQ-TARGET;temp:intralink-;t003;116;505pt� ¼ pt−1 þ Δpt ;

step 3: Make pt and xt consistent to be corresponding to each other based on projection model, with
initialization of pt� and xt�,

EQ-TARGET;temp:intralink-;t003;116;458xt ;pt ¼ arg min
x;p

εðx;pÞ:

end for

Output:

Acquire the landmark locations xT and head pose from pT .
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4.2 Update the Head Pose and 3D Morphable Model Parameters

After updating the landmark locations, we further apply another regressor to update the 3DMM
based on the local appearance features at the same cascade iteration.

4.2.1 3D morphable model

Based on our previous work,15,36 we use 3DMM to represent the 3D facial shape. 3DMM is
defined as the shape model with a dense mesh and we can further simplify it by the 3D landmark
points at the corresponding mesh points. 3DMM can be described with a mean 3D shape and
principal component analysis (PCA) space linearly with deformable parameters as

EQ-TARGET;temp:intralink-;e005;116;608s ¼ sþ Bq; (5)

where s is the 3D shape of N landmarks in the head coordinate system denoted by s ¼
fx1; y1; z1; : : : ; xN; yN; zNg, s is the mean 3D shape, B are the learned PCA bases, and q denotes
the nonrigid deformable parameters that capture the shape variations.

A 2D face shape is a projection of a 3D face shape s onto the image plane. Here, we use weak
perspective projection and the landmark locations in image plane can be calculated by projection
function as

EQ-TARGET;temp:intralink-;e006;116;505x ¼ gðpÞ ¼
�
λ1 0

0 λ2

�
M2×3ðsþ BqÞ þ t; (6)

where λ1 and λ2 are scaling factors in row and column directions, respectively, M2×3 is the first
two rows of rotation matrixM, which is encoded by head pose angle (pitch α, yaw β, and roll γ),
q denotes the deformable parameters, and t ¼ ðt1; t2ÞT is the 2D translation vector. We use p ¼
fλ1; λ2; α; β; γ; t1; t2;qg to represent all the parameters of the model. Hence, we can accurately
acquire the 2D landmark locations if we have the 3D face model parameters p with correspond-
ing 3DMM projection function gð·Þ. On the other hand, we can estimate the 3D face model
parameters from 2D landmark locations based on nonlinear optimization. In this paper, the
ground truth 3D face model parameters are not provided in the synthesized facial images.
Since the synthesized images retain the accurate 2D landmark locations, we generate the related
3D face model parameters p by our previous work.15

4.2.2 Update the 3D model parameters

Similar to updating the landmark locations at iteration t, we also use a linear regression model to
predict the updates of 3D face model parameters by

EQ-TARGET;temp:intralink-;e007;116;278Δpt ¼ Wt
QΦ½gðpt−1Þ; I� þ bt; (7)

where gðpt−1Þ denotes the projected 2D landmark locations xt−1;p based on current estimated
3D face model parameters pt−1 by Eq. (6), Φ½gðpt−1Þ; I� is the extracted image features at xt−1;p,
and Wt

Q and bt are the weights and bias parameters, respectively, of cascade regressor Qt at
iteration t.

Given K training images with ground truth 3D face model parameters p�, we can learn the
model parameters Wt

Q and bt by standard least-square formation with a closed-form solution as

EQ-TARGET;temp:intralink-;e008;116;169Wt�
Q; b

t� ¼ arg min
Wt

Q;b
t

XK
i¼1

kΔpt;�i −Wt
QΦðgðpt−1i Þ; IiÞ − btik2: (8)

Given the i’th training image with current estimated model parameters pt−1i , we can estimate

the current landmark locations xt−1;pi from Eq. (6). Hence, the related local appearance features
Φðgðpt−1i Þ; IiÞ can be calculated. We can acquire the ground truth updates of 3D face model
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parameters by Δpt;�i ¼ p� − pt−1i . It should be noted that we initialize the landmark location x0;p

based on the mean 3D face model parameters p from the training data by gðpÞ.
For the testing at iteration t, given the projection model gð·Þ with current 3DMM parameters

pt−1 and learned regressor with parameters Wt
Q and bt, we calculate the updates Δpt of 3D face

model parameters using the learned regressor by Eq. (7). The new 3D face model parameters can
be estimated by pt� ¼ pt−1 þ Δpt.

4.3 Coupling

We have already described the methods to separately estimate the landmark locations and 3D
face model parameters using the cascade regression framework. However, they are performed
independently, ignoring the joint relationship among 2D facial landmark detection and 3D head
pose estimation. To exploit their dependencies, we further propose to add a third step to make
them consistent with each other. We capture the relationship between the first and second steps
through the projection model. The whole framework is called CCR, which is summarized in
Algorithm 2. At each cascade level t, we learn one regressor Rt for updating the landmark loca-
tions and learn another regressor Qt for updating the 3DMM parameters. We further refine pt�

and xt� through the projection model in Eq. (6) to ensure their consistency. As a result, they are
updated to new values of pt and xt for the next iteration.

Specifically, for the third step, we define the objective function as Euclidean distance of
landmark locations from two tasks as

EQ-TARGET;temp:intralink-;e009;116;479

Jðx; pÞ ¼ arg min
x;p

εðx; pÞ

¼ arg min
x;p

1

2
½x − gðpÞ�2; (9)

where both x and p are unknowns and gðpÞ is the projection function, as shown in Eq. (6).
For iteration tþ 1, we solve this optimization problem by the gradient descent method with
initialization of pt� and xt�. It is worth noticing that pt� and xt� are calculated by the learned
regressors Qt and Rt, respectively. We alternatively update 3D face model parameters p and the
location x as

EQ-TARGET;temp:intralink-;e010;116;354

ptþ1 ¼ pt� − η
∂εðxt�; pÞ

∂p

����
pt�

xtþ1 ¼ xt� − ξ
∂εðx; pt�Þ

∂x

����
xt�
; (10)

where η and ξ are the learning rate parameters. As formulated in Eq. (6), we can easily decode
the head pose of “pitch,” “yaw,” and “roll” from the estimated 3D face model parameters p.

5 Experiments

In this section, we describe the implementation details first, followed by some discussions and
analyses about the experimental results.

5.1 Implementation Details

5.1.1 Datasets

We conduct experimental comparisons with the state-of-the-art methods on landmark detections
and pose estimations on four benchmark datasets, including LFPW,55 Helen,56 300-W,57 and
Boston University (BU).58 The LFPW dataset contains 811 training images and 224 testing
images. The Helen dataset consists of 2000 training images and 330 testing images. 300-W
combines images from AFW,59 LFPW, Helen, and XM2VTS. In particular, we follow the same
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protocol in Refs. 60 and 61 so that the whole set of AFW, training images of LFPW, and Helen
are used for training, which consists of 3148 faces in total. The IBUG (challenging), testing
images of LFPW and Helen (common), are used for testing, which consists of 689 faces in total
(full). We follow the same protocol in Ref. 18 on the BU dataset to evaluate the head pose
estimation.

5.1.2 Evaluation metrics

For landmark detection, we perform evaluations on the 68 facial points. We evaluate the per-
formance by standard mean error, which is the distance between the ground truth landmark
locations and estimated locations normalized by the interpupil distance. For head pose estima-
tion, we evaluate the performance by mean absolute error, which is the absolute difference
between the ground truth angles and estimated angles in degree.

5.1.3 Parameters setting

In Algorithm 2, the number of iterations T for the cascade regression model is set to 6. When
learning the PCA bases using the annotations provided by Ref. 37, we retain 95% of the energy
and result in 34 dimensions of deformable parameters of q. We generate the related 3D face
model parameters for learning by minimizing the misalignment errors for all facial landmarks.
All experiments are conducted with nonoptimized MATLAB® codes on a standard PC, which
has an Intel i5 3.47 GHz CPU. It takes around 110 ms per-frame on the LFPW dataset.

5.2 Experiments

5.2.1 Experimental comparisons

For fair comparisons of facial landmark detection, we conduct experiments with similar linear
cascade regression model-based methods. To demonstrate the effectiveness of our proposed
method, we also perform two baselines. We first discard the third step in Algorithm 2 without
capturing any joint relationship using the cascade regression framework, where we call this
method the CR landmark. In addition, we conduct another experiment where we do cascade
regression to update 3D face model parameters only (only the second step in Algorithm 2).
We call it CR-3DMP. We finally do the comparisons using the CCR. In addition, to demonstrate
the effectiveness of learning from virtual images synthesized from training samples, we call it
CCR synthesis. An example of detection results from these three methods is shown in Fig. 3.
From the sample image shown in Fig. 3, we can see that the proposed CCR framework performs
better over the two baselines that directly update the landmark (CR landmark) or deformable

Fig. 3 Example of detected landmarks by (a) CR landmark, (b) CR-3DMP, (c) CCR, and (d) CCR
synthesis. The red points denote the detected points, the white points denote the ground truth, and
the green bounding box is the outer boundary of annotated landmarks. The normalized errors are
9.18, 10.80, 6.95, and 5.44 for CR landmark, CR-3DMR, CCR, and CCR synthesis, respectively.

Gou and Ji: Coupled cascade regression from real and synthesized faces. . .

Journal of Electronic Imaging 023028-10 Mar∕Apr 2020 • Vol. 29(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 19 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



model parameters (CR-3DMP). In addition, the introduced learning from facial image synthesis
can improve the performance by effective augmentation of existing training samples. We further
report the normalized interpupil errors in Tables 2 and 3. Some image examples are shown in
Figs. 4 and 5.

For the experiments on LFPW and Helen, we train the CCR on the corresponding training
data provided in LFPW and Helen separately, where LFPW contains 811 training images and

(a) (b) (c) (d)

Fig. 4 Qualitative results of our proposed CCR method for 300-W dataset (best view in color).

Table 2 Landmark detection comparison of normalized
error (%) on Helen and LFPW datasets, with best result
highlighted.

Method
LFPW
dataset

Helen
dataset

RCPR62 6.56 5.93

Supervised descent method (SDM)16 5.67 5.50

GN-DPM63 5.92 5.69

Joint cascade25 5.62 5.52

CR landmark (baseline) 5.75 5.88

CR-3DMP (baseline) 6.15 6.41

CCR (proposed) 5.69 5.73

CCR synthesis (proposed) 5.49 5.52

Table 3 Landmark detection comparison of averaged error
(%) normalized by interpupil distance on 300-W dataset.

Method Common Challenging Full

RCPR62 6.18 17.26 8.35

ESR51 5.28 17.00 7.58

SDM16 5.57 15.40 7.50

Joint cascade25 5.54 13.75 7.15

CR landmark (baseline) 5.75 15.56 7.64

CR-3DMP (baseline) 6.47 18.08 8.78

CCR (proposed) 5.55 14.01 7.24

CCR synthesis (proposed) 5.47 12.63 6.90
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Helen provides 2000 training images, respectively. For the CCR synthesis, the training samples
are enlarged, as described in the subsection of implementation details. We compare the proposed
method with similar cascade regression framework-based methods. From Table 2, our proposed
method can achieve preferable results. SDM16 performs slightly better than CCR due to limited
head poses in the Helen dataset. Our proposed CCR outperforms the baselines and experiments
demonstrate the effectiveness of learning with the face projection model. In addition, learning
CCR from augmented facial images can further improve the detection performance, where we
synthesize the training samples by profiling the facial image.

Results for another large and challenging dataset named 300-W are shown in Table 3. From
Table 3, CCR can achieve the best results on the full subset of 300-W with a normalized error of
6.90. For the challenging subset, learning CCR from synthetic data significantly outperforms
a similar work25 by 8.1%. Effective augmentation of facial images with a larger variation of
appearance with respect to different head poses further enhances the performance of learn-
ing-based landmark detection methods. Upon further investigation, the challenging subset con-
tains many facial images with large head poses and we tackle this problem by introducing the
CCR of learning with 3D deformable model. By a combination of cascade regression framework
and 3D deformable model, we can leverage the power of learning and model to simultaneously
perform the two tasks of landmark detection and head pose estimation.

To demonstrate the effectiveness of CCR for head pose estimation, we conduct comparisons
with similar work on the BU dataset. Experimental results are listed in Table 4. We perform
detection and tracking on the BU dataset and test on each frame of the videos in BU. Some
detection image examples are shown in Fig. 5. It should be noted that the ground truth of
3D face model parameters (head pose and deformable parameters) is generated by the

Table 4 Head pose estimation comparison of mean absolute error on BU dataset.

Method Pitch Yaw Roll Average

AAM + Cylindrical34 5.6 5.4 3.1 4.7

SDM + Deformable18 4.3 6.2 3.2 4.6

3D CLM64 6.0 3.9 3.7 4.5

Joint cascade + deformable25 5.3 4.9 3.1 4.4

CCR (proposed) 4.8 5.1 3.3 4.4

CCR_synthesis (proposed) 4.3 5.1 3.2 4.2

Fig. 5 Qualitative results of our proposed CCR method for BU dataset (best view in color).
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model-based method. We compare our model for head pose with other model-based approaches.
As shown in Table 4, by learning CCR from the combination of real and synthetic images, CCR
can achieve the best results with an average mean absolute error of 4.2 in degrees. Different from
conventional methods that sequentially perform landmark detection and head pose estimation,
CCR achieves two tasks in one step based on shape indexed features. It is worth noticing that we
generate the 3D face model parameters by previous work15 as the ground truth, which can further
be improved for head pose estimation with accurate 3D face model parameters.

5.2.2 Further analysis

As mentioned before and shown in Fig. 3, CCR significantly improves the performance on the
landmark detection and head pose estimation by exploiting the inherent dependencies among the
landmarks and projection models. We further investigate how the CCR incorporates the local
appearance and projection model in a cascade regression framework to enhance the performance
on landmark detection. We take one iteration in cascaded regression for example, as shown in
Fig. 6. We can see that it converges to a more accurate position (especially for the red eyebrow
related landmarks estimated by “step 1,” the green cheek points estimated by “step 2”) after
making them consistent by leveraging the projection model.

Since we leverage the cascade regression framework, we further analyze the convergence
performance of CCR. As shown in Fig. 7, CCR improves the performances of facial landmark
detection and pose estimation quickly at the first three iterations. Slightly different from
a conventional cascade regression framework, where the max iteration is empirically set to 4,
it converges to the optimal at the sixth iteration in this work. Hence, the iteration is set to 6.
Our proposed framework can easily be generalized for other tasks like eye center and gaze

Fig. 6 An example of outputs from one iteration in a cascade regression framework. In
Algorithm 2: (a) red points are the outputs of “step 1” and green points are the outputs of “step
2” and (b) the output of “step 3.”

Fig. 7 Results of CCR at each cascaded iteration on 300-W database. Y coordinate denotes the
normalized interpupil error (%) for landmark detection, and mean absolute error in degree for head
pose estimation. The changes are small after the fourth iteration.
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estimation. It is worth noticing that we only compare with a similar cascade regression frame-
work with linear regression models for facial landmark detection. The linear regression model
in this framework can also be a nonlinear deep model, which will be part of our future work.

6 Conclusion

In this paper, we propose a unified framework of CCR for simultaneous head pose estimation
and landmark detection. Different from conventional cascade regression-based methods for land-
mark detection or learning-based pose estimation, the proposed CCR performs cascade regres-
sion to update face model parameters and landmark locations separately, followed by capturing
the coupled relation of 3D head pose and 2D landmark locations through the projection model at
each cascade level. As a result, CCR incorporates local appearance and 3D face model to achieve
simultaneous landmark localization and pose estimation. Thorough experimental results on
benchmark datasets also demonstrate that it can further improve both tasks. In addition, effective
data augmentation by facial image synthesis for CCR training can improve the performance of
detection and head pose estimation.
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