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Abstract. 2D face alignment has been an active topic and is becoming
mature for real applications. However, when large head pose exists, 2D
annotated points lose geometric correspondence with respect to actual
3D location. In addition, local appearance varies more dramatically when
subjects are with large pose or under various illuminations. 3D face align-
ment from 2D images is a promising solution to tackle this problem.
3D face alignment aims to estimate the 3D face shape which is consis-
tent across all poses. In this paper, we propose a novel 3D face align-
ment method. This method consists of two steps. First, we perform 2D
landmark detection based on the shape augmented regression. Second,
we estimate the 3D shape using the detected 2D landmarks and 3D
deformable model. Experimental results on benchmark database demon-
strate its preferable performances.
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1 Introduction

Face alignment aims to estimate the locations of semantic facial landmarks such
as eye corners, mouth corners and nose tip in a given image. 2D facial landmark
detection has been an important research topic due to its wide applications such
as facial action unit recognition [1], face recognition [2], head pose estimation
[3] and 3D face reconstruction [4]. Recently, cascade regression framework has
shown good performances for 2D facial landmark detection [5-7]. It begins with
an initial guess about the facial landmark locations and it iteratively updates the
landmark locations based on the local appearance features. Different regression
models for each cascade level are applied to map the local appearance features
to shape updates. Cascade regression framework is promising because iteratively
updating through a supervised scheme is more efficient than solving an optimiza-
tion problem for each image.

One limitation of 2D face alignment is that it can not capture the actual 3D
shape correspondence especially if the face is with large poses. As shown in Fig. 1,
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(b)

Fig. 1. 3D face alginment are more consistent than 2D face alignment across different
poses. Landmarks on cheek occluded by head pose are marked green for better view.
(a) 3D face alignment. (b) 2D face alginment. (Color figure online)

different from 2D face alignment which estimates the 2D landmark locations in
the image plane, 3D face alignment aims to estimate the 3D landmark locations
corresponding to the real 3D information of face. Recently, 3D face alignment
from a 2D image is becoming an active research topic due to its robustness
to pose and strong representational power. There are two major paradigms for
3D face alignment: one is first 2D landmark detection followed by fitting a 3D
face model to estimate a 3D face shape, and another is directly estimating 3D
deformable parameters and 3D shape based on discriminate features. It is worth
nothing that, direct estimating the 3D shape in one step needs large number of
3D annotation data for training to cover the various 3D texture and shape while
the two-step based methods need a few 3D data to train the 3D deformable
shape model. Hence, in this paper, we follow the first paradigm. We detect 2D
landmark based on cascade regression framework first, followed by fitting a off-
line trained 3D deformable model to estimate 3D shape. Different from 2D face
alignment task, the shape information is more important for 3D face alignment
because it can capture the actual correspondence of 3D shape. For 2D landmark
detection, we incorporate the shape and appearance information in a cascade
regression framework. Then we combine the detected 2D landmarks and 3D
morphable model to estimate the 3D shape.

In the rest of this paper, we first review the related works of 2D and 3D face
alignment in Sect.2. Our proposed approach is described in Sect. 3. Section 4
reports the experimental results with discussions. Section 5 concludes the paper.

2 Related Work

Face alignment can be classified into 2D face alignment and 3D face alignment.
The goal of 2D face alignment is predicting locations of semantic facial landmarks
in a given image with limited head pose. 3D face alignment is an extension of 2D
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face alignment and estimate 3D facial landmarks w.r.t a pre-defined coordinate
system (eg. camera coordinate system).

In particular, 2D face alignment methods can be classified into holistic meth-
ods [8-10], Constrained Local Model (CLM) [11-13] and regression based [5,6].
Holistic method learns models that can capture the global appearance and face
shape information. It focuses on designing algorithms that minimize the differ-
ence between the current estimate of appearance and ground truth. CLM learns
a set of local appearance models and a global shape models. For inference,
it estimates each landmark locations based on local searching region features
and global shape constraints. Regression based methods estimate the landmark
locations or displacements through local appearance features using the off-line
trained regression models. Cascade regression framework has been successfully
applied to facial landmark detection and achieves state-of-the-art performance
recently [5]. In this paper, we also utilize the cascade regression framework.
Different from conventional cascade regression framework that the regression
parameters are constant for each iteration, we propose shape augmented regres-
sion to adjust the parameters iteratively based on the current estimated shape
and corresponding local appearance features.

Many works are done on 3D face shape estimation from a single image [7, 14—
20]. The related works can be classified into two types: (I)two-step based meth-
ods that perform 2D landmark detection first followed by fitting 3D model to
estimate the 3D shape, (IT)one-step based methods that directly estimate the
3D shape based on discriminative shape invariant features. For the two-step
based methods, Gu and Kanade [15] align 3D morphable model to a single
image based on local patches related to a set of sparse 3D points. Cao et al.
[17] propose to recover face pose and facial expression by fitting a user-specific
blendshape model for landmark detection in 2D video frames. In [16] and [21],
the authors propose to estimate the locations of landmarks and related visibility.
They then recover the 3D shape by fitting a part-based 3D model. For the one-
step based methods, Tulyakov and Sebe [7] estimate the 3D shape from a single
image based on cascade regression framework using the shape invariant features.
Jourabloo and Liu [18] present a cascaded coupled-regressor to jointly update
the projection matrix and 3D deformable parameters for 3D landmark loca-
tions based on local appearance features. In [19], they further extend it to com-
bine the 3DMM and cascaded CNN regressor for 3D face shape estimation. Zhu
et al. [20] consider a dense 3DMM and the projection matrix as a representation
of 2D face image. They propose to use CNN as the regressor in the cascaded
framework to learn the mapping between the 2D face image and 3DMM with
projection matrix.

3 Approach

Our overall framework is illustrated in Fig.2. We perform two steps for 3D
face alignment. The 2D landmarks are detected first, followed by 3D morphable
fitting with off-line trained deformable model. Then we can estimate the 3D
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2D landmark
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Input face 3DMM fitting
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Fig. 2. Overall framework of our proposed method. It performs 2D landmark detection
based on shape augmented regression method. It then fits the 3D demorphable model
to estimate the 3D shape.

Algorithm 1. General cascaded regression framework.

Input: Facial landmark locations x° are initialized by mean face.
Do cascade regression:
for t=1,2,...,T do
Update the key point locations x* given the current key point locations x'~
image I.
fi Lx7! — Ax?
xt = xt—1 + Axt
end for
Output:
Landmark locations x7.

! and

facial shape. In the following, we firstly describe the general cascaded regression
framework for 2D landmark detection. Then we discuss the shape augmented
method for 2D landmark detection. Finally we introduce the method that fits
the 3D deformable model based on 2D landmark for 3D shape estimation.

3.1 General Cascaded Framework

General cascaded framework approximately solves the optimization problem by
learning several sequential regressors based on the local appearance. The Super-
vised Decent Method (SDM) [5] is one popular cascade framework as shown in
Algorithm 1. The facial landmark locations are denoted as x* = {z}, %, ..., 2%, },
where D denotes the number of landmarks and ¢ denotes the iteration in cas-
caded regression framework. At iteration t, given the image I, it uses the linear
regression function f; to map the high dimension features (eg. SIFT [22]) around
the landmarks to the updates Ax? of landmark locations. x° is usually initialized
as the mean face.
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3.2 Shape Augmented Cascaded Regression

For 3D face alignment, it is critical to capture the shape correspondence when
3D face is projected onto image plane. To incorporate the shape information,
we utilize the shape augmented regression method [6] to adjust the regression
parameters iteratively according to the current estimated shape and related local
appearance. The overall framework is shown in Algorithm 2. In this paper, given
the image I, 2D face alignment objective function can be formulated as Eq. 1:

70 = 11206 1) — 20 D + 5 |19(x) — 7 (x| (1)

where x are the landmark locations, x* are the ground truth locations, ®(x,I)
are the local SIFT features around the current landmark locations, and ¥ (x) are
the shape features which are the difference among pairs of landmarks. Hence,
landmark locations can be estimated by solving the optimization problem x =
arg m)in f(x). We further apply a second order Taylor expansion on Eq. 1:

f(x) = f(x°+ Ax) =~ f(x°) + J;(x") T Ax + %AXTHf(XO)AX, (2)

where J;(x°) and Hy(x") are the Jacobian and Hessian matrices of function f(-)
evaluated at the current location x°, respectively. After taking the derivation of
f(x) in Eq.2 and set it to zero, we can get the update for landmark locations
as shown in Eq. 3.

Ax = — Hp(x%) "1 p(x")
= — Hy(x")"'[Ja(x )(45(><0 I) = &(x", 1)) + Jo (x°) (¥ (x°) — ¥(x"))]
= — Hy(x*) N a(x")2(x", 1) — Hy(x°) " (x")¥ (x")
+ Hyp(x°) 7 (Ja(x")® (X )+ Jo (x°)¥(x"))
It is computationally expensive to estimate Hessian and its inverse. In addi-

tion, the ground truth landmark locations x* are unknown but fixed as constant
during inference. Similar to SDM, we introduce the related parameters as below:

3)

P =—H(x") " Ja(x")
Q=—H;(x")""Ju(x") (4)
b= Hy(x*) " (Jo(x")D(x", 1) + Jo (x°)¥(x"))

At iteration t for cascade regression, we can rewrite Eq. 3 as Eq. 5 to estimate
the updates of landmark locations:

Ax! =P'o(x1 1) + QU (x 1) + b’ (5)

Hence, we need to learn the parameters in Eq. 4 for cascade regression. Given
the i-th face image I; with estimated landmark locations xﬁfl, the local appear-
ance features ®(x'~1,I) and shape features ¥(x'~1!) of i-th image can be calcu-
lated. For iteration ¢, the updates Ax! of landmark locations can be acquired by
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Algorithm 2. Shape augmented regression framework.

Input: Facial landmark locations x° are initialized by mean face.
Do cascade regression:
for t=1,2,...,T do
Given the current key point locations x'~! and image I, estimate the update of
landmarks through Eq. 5.
Ax' =P'o(x"1T) + Q¥ (x') + b’
Update the key point locations x*
xt — Xt—l + Axt
end for
Output:
Landmark locations x”.

subtracting the current locations x’;*l from the ground truth locations x;. The
initialization of landmark locations are mean face denoted by x?. The learning
of P*, Q" and bias b’ can be formulated as a standard least-squares formulation
with closed form solution:

Qb =aryg i ZH Ax| = P'O(I;, xI7") - QU(I, x{ ') — b |?

t bt
(6)
where K is the number of training samples.
For testing, given the face image I and current key point locations x at
iteration t, we can estimate the update locations Ax? by learned parameters

P!, Q' and bias b’. Then the landmark locations can be acquired through x* =
xt1 + Axt.

t—1

3.3 3D Morphable Model Fitting

Given the detected 2D landmark locations on the testing image and a 3D mor-
phable model [14], we can recover 3D face by estimating the 3D pose and non-
rigid deformation via the fitting process. 3DMM is defined as a shape model
with dense mesh. In particular, it can be simplified by the 3D vertex loca-
tions(landmark points) of the related dense mesh. Hence, it can describe 3D
face nonrigid shape variations with mean 3D shape and PCA space linearly as
below:

s=5+Bq (7)

Here, s is the 3D shape of IV landmarks in head coordinate system denoted by
s ={x1,y1,21,-» TN, YN, ZN |, S is the mean 3D shape, B represents the learned
orthonormal bases, and q denotes the nonrigid shape variation parameters. We
learn the mean 3D shape § and PCA bases B of 3D model in Eq.7 from the
annotations provided in [7].
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Assuming 3D face is projected onto the image plane with weak perspective
projection, the k-th landmark location in image plane can be calculated by:

1
u —fsary | | Tk
L}’@]Msﬂ T k| +t, (8)
k Tfsyr2 2k
Ze

where Z. is the mean depth in camera coordinate, f is the focal length, s, and s,
are the sampling frequency in rows and columns (also known as scaling factors),
r; = (11, ri2, 753) is the i-th row of 3 by 3 rotation matrix R which is encoded by
three head poses(pitch a, yaw 3, roll 7), and t = (¢1,t2)T is the 2D translation

vector. Since f, s, and s, are intrinsic parameters and Z. is constant, we set

1

—f$z = A1 and — fsy = Ao as two unknown parameters for simplicity. As a
C

result, we can rewrlte Eq. 8 as below:

[iﬂ = X24(p) = ﬁ)l Y ]szg(SkJerq)th (9)

. L ry| .
where x4 is landmark location in image plane, Rox3 = [rl } is the first two rows
2

of rotation matrix R and p = {A\1, A2, @, 5,7, t1, t2,q} denotes the parameters
of the model.

Given the pre-trained 3D model and 2D landmark locations x, we can esti-
mate the model parameters by minimizing the misalignment error of projected
locations x4 and detected 2D landmark locations x for all landmark points:

K

p= argmlnz | xx — X241 ||?
k=1 (10)

= argmmz | xx — [ } Roxs(Sk + Brq) +t) |2

where p = {h,q} = {A1,A2,a,0,7,t1,t2,q} denotes the model parameters.
To solve this optimization problem, we alternatively update the transformation
parameters h = {A1, Ao, ,a, 8,7,t1,t2} and deformable parameters q until it
converges. We first initialize the deformable parameters q as zeros and we can
get the 3D locations in head coordinate systems. Then we solve the linear opti-
mization problem of Eq.10 to get the parameters of h. After estimating h, we
feed it into Eq. 10 and estimate the deformable parameters q. We repeat until
the max update of pose parameters («, 3,7) is less than 0.1in degree.

After estimating parameters p, we can calculate the 3D shape as follows
(according to the definition of the 3DFAW challenge and [16,21]):

X34 =ARs+T = R(5+Bq)+ T (11)

where x34 denotes the 3D landmark locations, A is the scale factor, R is a 3 by
3 rotation matrix, T = (t1,t2,t3)7 is the 3D translation vector. In this paper,



Shape Augmented Regression for 3D Face Alignment 611

AL+ A
we approximate the scale factor by A = 1+ A2

, t1,t2 are the same as Eq. 8, t3

is set to zero and r3 is the cross product of ry and ro. After calculating the 3D
shape, we normalize the depth to zero mean.

4 Experiments

In this section, we first describe the implementation details. Then, we conduct
experiments and comparisons.

4.1 Database

The experimental dataset is from ECCV2016 workshop on 3D face alignment
in the wild (3DFAW) challenge. It consists of MultiPIE [23], BU-4DFE [24],
BP4D-Spontaneous [25] and some image frames of videos collected from web.
The landmark annotations consist 23606 images of 66 3D points and the depth
information is recovered using a model-based structure from motion technique
[16,21]. It is divided into four sub-datasets: 13671 images for training, 4725
images for validation, 4912 for testing and 298 images for extra training.

The facial images are normalized to 200 pixels in width. Mean face shape
are calculated on all normalized facial images. Similar to [6] during training, we
generate multiple initial face shapes by rotating, scaling and shifting the mean
face shape to improve the robustness. For cascade regression, the number of
iteration is 4. We use the detected 2D landmarks as the estimated locations of
3D shape.

4.2 Evaluation Criteria

For fair comparisons, we use the widely accepted evaluation matrices named
Ground Truth Error (GTE) and Cross View Ground Truth Consistency Error
(CVGTCE). GTE is the average point-to-point Euclidean error normalized by
the outer corners of the eyes (inter-ocular) formulated as below:

1 us ||X}g€t - xzreHQ
GTE(Xgt,Xpre) = e Z — a
k=1 ‘

(12)

where K is the number of points, x4 is the ground truth 3D shape, x,,¢ is
the prediction and d; is the inter-ocular distance for the i-th image. CVGTCE
is used to evaluate cross-view consistency of the predicted landmarks from 3D
model. It is computed as below:

K k k
1 — (fPs" +1t
CVGTCE(Xg,5,p) = = 3 [1g¢ (fdls )2

% (13)

k=1

where X, = fPs+t is the predicted 3D shape for another view of the subject,
p = {f, P, t} is the model parameters, f is the scale factor and P is the rotation
matrix.
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4.3 Experimental Results

We first train shape augmented cascade regression models for 2D landmark
detection on training dataset. We conduct comparisons with SDM [5] which fol-
lows the same procedure and retrain on the same database. After detecting the
2D landmark, we use the same 3D deformable model fitting process to estimate
the 3D shape. The 3D face shape detection experimental results on validation
dataset are shown in Table 1. Some qualitative results are shown in Fig.3 and
inaccurate results are shown in Fig.4. From Table 1, incorporating the shape
information help improve the results especially for the 3D face alignment. As
we discussed before, 3D face alignment is more consistent with respect to large
pose. Shape information between pair of points is very important when 3D shape
are projected onto image plane. As shown in Fig. 4 for the inaccurate detection
results, it fails when the subjects are with extreme head pose and the appear-
ance is very ambiguous. For our proposed method, it is important to predict 2D
landmarks which are used to estimate the 3D model parameters.

Table 1. 3D landmark detection comparison on validation dataset

Mehtod GTE(%)
SDM [5]+3DMM | 6.34
Ours 5.90

500
oo 400

Fig. 3. Qualitative 3D face alginment results on validation dataset. Landmarks on
cheek occluded by head pose are marked green for better view. (Color figure online)

We further train our model on training, extra training and validation dataset
and test on testing dataset. Experimental results are shown in Table 2 and Fig. 5.
The performance of our method are preferable on challenging testing dataset.
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(a) (b)

Fig. 4. Inaccurate detection results on validation dataset. The calcuated GTE for (a),
(b), (c) are 16.18, 23.05, 13.87, respectively.

Table 2. 3D landmark detection results on testing dataset

CVGTCE(%) | GTE(%)
6.21 4.95

Fig. 5. Qualitative 3D face alginment resutls on testing data. Landmarks on cheek
occluded by head pose are marked green for better view. (Color figure online)

As shown in Table 2, we can achieve 4.95 of GTE on all the testing dataset. In
addition, we also get 6.21 of CVGTCE which demonstrates that our method
is cross-view consistent for 3D face alignment. As shown in Fig. 5, our method
is robust to illuminations and can achieve reasonable detection results when
subjects are with extreme head pose.

5 Conclusions

In this paper, we propose to firstly estimate the location of a set of landmarks
based on shape augmented regression framework, then recover the 3D face shape
by fitting a 3D morphable model. By incorporating the shape and local appear-
ance information in the cascade regression framework, our proposed method can
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capture the geometric correspondence between pair of points for 3D face align-
ment. An alternative optimizing method for estimating 3D morphable model
parameters is adopted to estimate the 3D shape including the depth information.
Experimental results on large scale of testing dataset validate the robustness and
effectiveness of proposed method.

The appearance of occluded landmarks is not reliable for the prediction of
location. Future work will focus on inferring the visibility of landmarks which can
be used to weight the related appearance. In addition, we will iteratively update
the 2D landmark location and corresponding 3D morphable model parameters
during a unified cascade regression framework based on the local appearance.
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