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Abstract—In a Bayesian network (BN), a target node is inde-
pendent of all other nodes given its Markov blanket (MB), and
finding the MB has many applications, including feature selec-
tion and BN structure learning. We propose a new MB discovery
algorithm, simultaneous MB (STMB), to improve the efficiency
of the existing topology-based MB discovery algorithms. The pro-
posed method removes the necessity of enforcing the symmetry
constraint that is prevalent in existing algorithms, by exploiting
the coexisting property between spouses and descendants of the
target node. Since STMB mainly reduces the number of inde-
pendence tests needed to complete the MB set after finding the
parents-and-children set, it is applicable to all previous topology-
based methods. STMB is both sound and complete. Experiments
show that STMB has a comparable accuracy but much better
efficiency than state-of-the-art methods. An application on bench-
mark feature selection datasets further demonstrates the excellent
performance of STMB.

Index Terms—Bayesian network (BN), feature selection, local
structure learning, Markov blanket (MB).

I. INTRODUCTION

THE MARKOV blanket (MB) was first termed by
Pearl [1], and represents a crucial concept in a Bayesian

network (BN). From the graph-theoretic point of view, the MB
of any node in a BN consists of the node’s parents, children,
and spouses (i.e., the other parents of their common chil-
dren). Collectively, the MB in a BN has a unique and valuable
property: given the MB of a target node, all other nodes are
independent of the target node. This means that the conditional
probabilistic distribution of the target node given all other vari-
ables is equal to the conditional probabilistic distribution of
the target node given only its MB nodes. The smallest MB that
consists of the above property is called the minimal MB. MB
discovery is the process used to find the minimal MB. We will
use MB to represent the minimal MB, since only the minimal
MB interests us.

Many principled solutions have been proposed to discover
the MB. They can be roughly divided into two main types
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of approaches: 1) nontopology-based1 and 2) topology-based.
Overall, both approaches are heuristic-based and approximate
the globally optimal MB set using a satisfactory set, due to
the lack of a both time-efficient and data-efficient algorithm.
In this paper, we propose a new topology-based MB discov-
ery algorithm, simultaneous MB (STMB), built on the same
assumptions and framework as previous topology-based meth-
ods. Compared to existing topology methods, STMB avoids
the costly step of the symmetry enforcement that requires find-
ing the PC sets of all target node’s parents and children nodes,
and thus achieves far better efficiency. We also study the per-
formance of the STMB under assumption violations compared
to other MB methods. We empirically demonstrate STMB’s
effectiveness on synthetic datasets, standard MB discovery
datasets, and feature selection datasets.

II. RELATED WORK

Nontopology-based MB discovery methods finds the MB
by greedily testing independence relationships between each
variable and the target variable. The very first work [2] that
aimed to directly discover the MB proposed a nontopology-
based method, later coined as Koller–Sahami algorithm (KS).
KS minimizes the cross-entropy loss using a backward variable
elimination process and requires two predefined parameters
that sacrifice accuracy for a lower complexity: the pre-
dicted MB size and the maximum allowable size of the
conditioned set. Since then, many other nontopology-based
methods have been proposed to improve on the KS algo-
rithm. Margaritis and Thrun [3] introduced the growth and
shrink algorithm (GS) to use independence tests (ITs) and
mutual information as criteria to select variables. GS algo-
rithm first orders all the random variables univariately in an
ascending order of the mutual information with the target vari-
able, and then follows this order to sequentially test and add
variables to the MB set during the growth stage. The shrink-
ing stage then removes false positive nodes from the obtained
MB. Incremental association MB (IAMB) [4] improves GS
by reordering the variables each time the MB set changes.
This reduces the number of false positives and improves the
accuracy considerably. Since then, many variations of IAMB
have been proposed such as inter-IAMB, IAMBnPC, Fast-
IAMB [5], and KIAMB [6]. However, IAMB and its variants
are not data-efficient [6]. If the sample size is small compared
to the variable size, the performance of IAMB may suffer.

1Also called greedy methods in the literature.
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Discovery methods with a restriction on MB parameterization
were also proposed [7].

Due to the large amount of data required in nontopology-
based methods and the limited data availability for many real
world applications such as biological data, topology-based
methods aim to tackle the data efficiency while maintaining
a reasonable time complexity. Min–max MB (MMMB) [8]
improves the data efficiency by making the sample require-
ment dependent on the structure topology instead of the
size of the conditioned set. MMMB proposes to find the
parents-and-children (PC) set first and then complete the MB
by finding the spouses. Although MMMB was later found
unsound [6], it still introduced a solid direction to pursue,
which followed later methods. Recent topology-based meth-
ods typically include a symmetry check step [9] to correct
the faulty PC set. HITON-MB2 directly uses the MMMB
framework and tries to remove false positives in the PC
set as early as possible by interweaving the addition and
removal process, and hence, reduces the number of ITs needed.
Parents children-based MB algorithm (PCMB) [6] is the first
proven sound topology algorithm and checks for collider nodes
only in the PC set of the target during the MB completion
step. Experiments on small datasets have shown the supe-
riority of PCMB over nontopology-based methods. Iterative
parent–child-based search of MB (IPCMB) [12] is based on
PCMB and it uses a more efficient method to search for the
PC set but still utilizes the symmetry check. A unified frame-
work of topology-based methods is summarized [10], [13]
and through extensive experimental studies it confirms the
superior performance of topology-based methods in various
applications.

By finding the MB, we can solve many problems directly or
indirectly, for example, feature selection [14] and BN structure
learning. Feature selection is a dimension-reduction technique
widely used in all kinds of machine learning problems. To
reduce the intractability and prune out some irrelevant or
redundant features, feature selection is often used to select
a few most “useful” ones while minimizing some “informa-
tion loss.” Many existing algorithms seek to use different
criteria to represent such loss, such as the statistics of fea-
tures (filtered methods, see [15], [16]), accuracy rates of
some classifiers (wrapper methods), and some classifier spe-
cific objective functions (embedded methods, see [17]–[19]).
However, most of these work lack a theoretical justifica-
tion on the optimality of their feature selection criteria,
while feature selection using MB has been shown to be
theoretically optimal [2], [10]. Experiment studies [10], [13]
showed the superior performance of MB methods over other
methods for feature selection. Moreover, MB algorithms can
be used for causal feature selection and casual discovery.
Different from traditional feature selection, causal feature
selection can explain the underlying causal mechanisms of the
selected features, distinguish between actual relevant features
and experimental artifacts, and lead to prediction of actions
by external agents [20]. Studies [21] also show the supe-
rior performance of the MB feature set over other feature

2HITON comes from a Greek word meaning “cloak” [10].

sets in the application of casual versus noncausal feature
selection.

BN structure learning can also benefit from the MB discov-
ery. Because BN structure learning is generally NP-hard [22],
many methods seek to reduce the complexity by restricting
its parameterization [23], structure [24], or both [25]. Other
methods use prior knowledge and approximate learning meth-
ods to reduce the complexity [26]. As MB represents local
structures in a BN, MB discovery can be seen as a sub-
problem of BN structure learning as we are interested in
the local structure of the network with respect to one node
instead of the entire network. It is practical because often only
the local structure is desired in tasks like feature selection
and causal discovery. If one is interested in the global struc-
ture, several works [3], [9], [27] have proposed algorithms
to first identify each node’s MBs, and then connect them in
a maximally consistent way to infer the global BN struc-
ture. By doing such a local-to-global approach, the general
BN structure can be learned exactly without any above-
mentioned restriction [23]–[25] on its parameterization or
structure. In addition, this exact local-to-global approach can
learn a much larger network than some of the existing exact
global BN structure learning algorithms [28], [29]. In sum-
mary, finding the MB could solve many realistic and important
applications.

The rest of this paper is organized as follows. Section III
reviews some concepts related to the MB discovery. Section IV
presents and analyzes our new algorithm. We show the exper-
imental performance of the proposed method in Section V.
Section VI concludes this paper with a discussion of potential
future research directions.

III. BACKGROUND

Let V denote a set of random variables. A BN for V is
represented by a pair (G, θ). The network structure G is a
directed acyclic graph (DAG) with nodes corresponding to the
random variables in V and edges capturing the dependencies
between the connected nodes. If a directed edge exists from
node X to node Y , X is a parent of Y and Y is a child of X.
If X is either a parent or a child of Y , X and Y are neighbors
and adjacent to each other [1]. The parameters θ indicate the
conditional probability distribution of each node X ∈ V given
its parents. Moreover, let a path between two nodes X and Y
in G be any sequence of nodes between them such that any
successive nodes are connected by a directed edge, and no
node appears in the sequence twice. A directed path of a DAG
is a path with nodes (V1, . . . , Vn) such that, for 1 ≤ i < n, Vi

is a parent of Vi+1. If there is a directed path from X to Y ,
then X is an ancestor of Y and Y is a descendant of X. If
X and Y have a common child and they are not adjacent, X
and Y are spouses of each other. For the rest of this paper,
we use capital letters (such as X, Y) to represent variables,
small letters (such as x, y) to represent values of variables, bold
letters (such as V, MB) to represent variable sets, and use |V|
to represent the size of a set V. We also use X ⊥⊥ Y and X ⊥\⊥ Y
to represent independence and dependence between X and Y ,
respectively. X is independent of Y if PXY(x, y) = PX(x)PY(y),



GAO AND JI: EFFICIENT MB DISCOVERY AND ITS APPLICATION 1171

and X is conditionally independent of Y given some set Z if
PXY|Z(x, y|z) = PX|Z(x|z)PY|Z(y|z).

Definition 1 (Markov Condition [1]): A node in a BN is
independent of its nondescendant nodes, given its parents.

Markov condition enables the efficient representation and
parameterization of random variables in a BN.

Definition 2 (Faithfulness Condition [30]): A BN G and a
joint distribution P are faithful to each other if and only if all
and only the conditional independencies true in P are entailed
by G.

Definition 3 (V-Structure [1]): Three nodes X, Y , and Z
form a V-structure if node Y has two incoming edges from X
and Z, forming X→ Y ← Z, and X is not adjacent to Z.

Y is a collider if Y has two incoming edges from X and
Z in a path, whether X and Z are adjacent or not. Y with
nonadjacent parents X and Z is an unshielded collider for the
path X to Z.

Definition 4 (Blocked Path [1]): A path J from node X and
Y is blocked by a set of nodes Z, if any of the following holds
true: 1) there is a noncollider node in J belonging to Z and
2) there is a collider node C on J such that neither C nor any
of its descendants belong to Z. Otherwise, J from X and Y is
unblocked or active.

Definition 5 (d-Separation [1]): Two nodes X and Y are
d-separated by a set of nodes Z if and only if every path from
X to Y is blocked by Z.

Such a set Z would be called a sepset of X from Y ,
denoted as SepY{X}. Therefore, by performing ITs and identi-
fying d-separation relationships among random variables, the
entire graph structure can be inferred. Theorem 1 justifies the
soundness of common independence-test-based MB discovery
methods.

Theorem 1 [30]: If a BN G is faithful to a joint probability
distribution P, then: 1) node X and Y are adjacent in G if and
only if X and Y are dependent given every set of nodes that
does not include X and Y and 2) for nodes X, Y , and Z in G, if
X and Y are adjacent, Y is adjacent to Z, and Z is not adjacent
to X, they form a V-structure with Y as a collider node if and
only if X ⊥\⊥ Z|S, ∀S such that X, Z /∈ S and Y ∈ S.

Next, we introduce specific concepts related to the MB
discovery.

Definition 6 (Markov Blanket [1]): An MB of a target vari-
able T , MBT , is a set of nodes conditioned on which all other
nodes are independent of T , denoted as X ⊥⊥ T|MBT ,∀X ⊆
V\{T}\MBT . MBT is minimal if none of its proper subsets
satisfies the above property.

We will refer to the MB as the minimal MB3 here since
only the minimal MB is of interest.

Given an unknown distribution P that satisfies the Markov
condition with respect to an unknown DAG G, MB discov-
ery is the process used to estimate the MB of a target node
from independently and identically distributed data samples
D of P. Assuming the faithfulness condition holds and ITs
correctly reflect independence, the MB of a target node is
uniquely identifiable.

3The minimal MB is also called Markov boundary in some literature.

Fig. 1. Sample BN. Black node T is the target node and the shaded nodes
are the MB of T .

Theorem 2 (MB Uniqueness [1]): If a BN G and a dis-
tribution P are faithful to each other, then MBT , T ∈ V, is
unique and is the set of parents, children, and spouses of T .
In addition, the parents and children set of T , PCT , is also
unique.

For example, in Fig. 1, nodes P and C form PCT , adjacent
to T . MBT consists of its parent node P, its child node C,
and its spouse S. All other nodes A, B, R, D, E, and F are
independent of T , given MBT , due to blocked paths. C, D,
and E are collider nodes for path T − C− S, C−D− R, and
D− E − R, respectively.

Violating the faithfulness assumption would potentially
invalidate Theorem 2 and introduce multiple sets of MBT,
which is not in the scope of current topology-based meth-
ods. Nevertheless, through empirical study, we offer some
informal discussion on the effects of assumption violations
in Section IV-E.

Last, one of the main concepts in the topology-based MB
algorithms is the symmetry constraint.

Proposition 1 (Symmetry Constraint): For a node X to be
a parent or child of T , both of the following statements must
hold true: X must be in the PC set of T and T must be in the
PC set of X, i.e., X ∈ PCT and T ∈ PCX .

All of the existing topology-based algorithms employ the
symmetry constraint to remove those false positive PC nodes
in the returned PC set. In Fig. 1, for example, using topology-
based methods, node D would be in the returned PC set of T
due to D ⊥\⊥ T|Z,∀Z ⊆ {P, C}. D would be removed from the
returned PC set using the symmetry constraint. In some MB
related works [31], [32], a variant of the symmetry constraint
uses the OR-rule instead of the AND-rule: if X ∈ PCT or
T ∈ PCX, then X is a PC node of T .

IV. MB DISCOVERY ALGORITHM

Before introducing the proposed method, we would like to
briefly review the existing MB discovery algorithms.

A. Existing Algorithms

In topology-based MB algorithms, methods such as PCMB
and IPCMB would first find the PC set of a target node, and
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Algorithm 1 General Framework of IPCMB and PCMB
1: Input: Data, D; target node, T

{step 1: find the PC set }
2: PCT ← V \ {T};
3: for i = 0 to |PCT | do
4: for all Z ⊆ PCT with |Z| = i do
5: if X ⊥⊥ T|Z, ∀X ∈ PCT , then
6: PCT ← PCT \ {X};
7: SepT{X} ← Z;
8: end if
9: end for

10: end for
{step 2: enforce the symmetry constraint}

11: Find the PC sets of X, PCX , ∀X ∈ PCT ;
12: for each X ∈ PCT do
13: if T 
∈ PCX then
14: PCT ← PCT \ {X}
15: end if
16: end for

{step 3: find the spouses}
17: find H′: the PC nodes of every node in PCT

18: ST ← ∅;
19: for each X ∈ H′ do
20: if ∃Y ∈ PCT s.t. X ⊥\⊥ T|SepT{X} ∪ {Y} then
21: ST ← ST ∪ {X};
22: end if
23: end for
24: Return: MB← PCT ∪ ST

then enforce the symmetry constraint to remove false positives
in the PC set. Given the PC, existing algorithms then look for
spouses to complete MB. A generalized framework of PCMB
and IPCMB is shown in Algorithm 1, with three steps: 1) find
the PC set using exhaustive search; 2) enforce the symmetry
constraint to remove false positive nodes in the PC set; and
3) then find the spouses to complete the MB. In the first step,
starting with the entire variable set as the potential PC set
for T , if there exists a set Z such that X ⊥⊥ T|Z, X would
be removed from the PC set of T . The search of the set Z
will increase from |Z| = 0 to the largest possible size. In the
second step, enforcing the symmetry constraint is necessary
to remove false positives in the found PC set [6].

B. Proposed Improvement

Finding the PC set in the MB discovery algorithms is the
most computationally expensive step due to the exhaustive
search, and the procedure to enforce the symmetry constraint
would be |PC| times more costly. Unfortunately, currently
there is no alternative to the symmetry constraint. Motivated to
reduce such a performance bottleneck, we propose a method
to avoid the expensive symmetry check step and yet can
still remove false positive PCs by combining the last two
steps of Algorithm 1. The insight comes from the com-
position of the returned PC set in step 1 of the existing
algorithms.

Proposition 2 (False Positives in the PC Set Search): In
the existing topology-based methods,4 under the faithfulness
assumption, the found parents and children set, PCf , is a union
between the true parents and children set, PCt, and some false
positives F, i.e., PCf = PCt∪F, where F might be nonempty.

Proof: First, we show that PCf contains all the true positives
and no false negatives, i.e., PCt ⊆ PCf . Let X be some true
positives in the entire search set V, then there exists no set
Z ⊆ V that d-separates X from T , since X is a true PC of T
and they are adjacent in the graph. Thus, according to the first
part of Theorem 1, X ⊥\⊥ T|Z will always hold true, given the
faithfulness assumption. As a result, X will never be removed.
Therefore, PCt ⊆ PCf . Second, we prove by contradiction
that there may be some false positives entering PCf . Let us
assume that false positives were never in PCf . Consider the
case in Fig. 1, given or not given node C, node D is dependent
on T . Because S and R both have a sepset A of size 1, and
the smallest sepset of D is either {C} ∪ {S} or {C} ∪ {R} of
size 2, node S and R will be removed from PCT earlier than
D as shown in Section IV-A, and as a result D will stay in
PCf as no sepsets of D exist anymore in PCf . However, D is
neither a parent or child of T , contradicting the assumption.
Thus, there will be some false positives in PCf .

Proposition 2 formalizes a previous speculation [6] that
descendants may exist as false positives and precisely defines
the domain of the PC set. Building on Propositions 2 and 3
aims to identify the false positives.

Proposition 3 (PC False Positive Identity): False positives
F ∈ PCf consist of only descendants of the target T , denoted
as DesT .

Proof: Using Proposition 2, PCf consists of the entire PCt

and some false positives F. We show F ⊆ DesT . Since PCf

is a super set of all true positive PCs, PCf must contain the
entire parent set of T , PaT , due to exhaustive search for the
PC set. By the Markov condition, all the nondescendant nodes
are independent of T given PaT . If F ∈ F is any nonde-
scendant node, then F ⊥⊥ T|PaT . Thus, simply by Markov
condition, F would be removed from PCf . By contradiction,
F ⊆ DesT .

Given the identity of such false positives, if they exist, we
have the following insight on how to remove false positives
and find the spouse set at the same time.

Theorem 3 (Coexistence Between Spouses and
Descendants): In the existing topology-based MB dis-
covery algorithms, the only false positives in PCf belong
to the descendants of T , DesT , due to an unblocked path
between T and its descendants with a V-structure T → child
← spouse.

Proof: Propositions 2 and 3 show that only false positives
in PCf , if they exist, are the descendants of T . Now we need
to show the second part of the theorem is true. In the PC
set search step, starting with PCf = V\{T}, if ∃Z ⊆ PCf

such that X ⊥⊥ T|Z, X ∈ {PCf \Z}, then X will be removed
from PCf . Assuming false positives exist, let F ∈ DesT, F
passes ITs and stays in PCf because F ⊥\⊥ T|Z,∀Z ⊆ PCf .

4We define the existing topology-based methods to be MMMB, HITON,
IPCMB, and PCMB exclusively.



GAO AND JI: EFFICIENT MB DISCOVERY AND ITS APPLICATION 1173

Consider Q = PCf \{F}, for F to exist in PCf , F ⊥\⊥ T|Q must
be true. Since random variables in PCt ⊆ Q must be present
in all paths from T to F by the definition of PC nodes, the
dependence between T and F occurs only if Q unblocks some
path from T to F. This can only happen when there is a collider
node in Q. Hence, the only way F can exist in PCf is through
an unblocked path that contains a V-structure T → child ←
spouse.

Theorem 3 shows that if there is a false positive node
in PCf , then it must be due to a child collider node of T .
The resulting V-structure implies T must have at least one
spouse, which shows that there is a coexistent relationship
between false positive nodes in PCf and the spouses of T .
In topology-based MB algorithms, given the PC set, the task
left is to remove the false positives and then adding spouses
back to MB. Existing methods separate them into two steps.
Theorem 3 shows the possibility that we can accomplish both
steps simultaneously, which would reduce the complexity.

C. Simultaneous Markov Blanket Discovery

We propose STMB to find the MB of a target node. Our
algorithm, shown in Algorithm 2, has two steps: 1) the first
step of STMB identifies the PC sets using the same step 1
as PCMB or IPCMB. We use RecogPC to represent step 1
of IPCMB (lines 2–10 of Algorithm 1) and 2) in step 2,
STMB finds the spouse and removes the non-MB descendants
from the PC set at the same time. Specifically, in step 2 of
Algorithm 2, STMB looks for a node Y ∈ PCf that unblocks
a path from T to some node X ∈ V\PCf (i.e., a candidate
spouse set). If found such Y , X could be a spouse (line 13)
and Y could a child or non-child descendant node. Notation-
wise, spouseT{Y} represents a subset of spouse nodes of T ,
spouseT , with corresponding child node Y . After checking at
line 9, line 10 removes the found non-MB descendants that
have one V-structure path to the target. Then starting at line 19,
STMB tests for false positive spouses X (such as spouses’ par-
ents) by conditioning on other nodes that unblocked by each
Y . If X and T are independent, X is removed from spouse
candidate set (line 23). STMB then tests for other non-MB
descendants X in the PC set that may have multiple paths to
the target. If X and T are independent, X is removed from the
PC set (line 30).

The soundness and completeness of STMB can be derived
from the algorithm procedure.

Theorem 4 (Soundness and Completeness of STMB): Under
the faithfulness assumption, Algorithm 2 finds all and only the
MB nodes of the target node.

Proof: First, we show STMB is complete, i.e., it finds all the
true positive MB nodes. Starting with the entire variable set, by
using the same procedure as IPCMB, step 1 of Algorithm 2
returns PCT containing all the true positive PCs and some
descendants of the target node [12]. Since the true positive
PCs are always dependent of T , PCT always contains all the
true positive PCs. After the detection of PCT , STMB looks
for spouse candidate X with a collider node Y (lines 6–8).
Because a node may be one of multiple identities, upon find-
ing X, STMB uses Theorem 3 to check if Y is a corresponding

Algorithm 2 STMB Algorithm
1: Input: Data, D; target node, T
2: PCT ← V \ {T};

{step 1: find the PC set }
3: [PCT , SepT ]← RecogPC(T , PCT , D);

{step 2: find spouses and remove non-child descendants}
4: spouseT ← ∅;
5: remove← ∅;
6: for each Y ∈ PCT do
7: for each X ∈ {V \ {T} \ PCT} do
8: if X ⊥\⊥ T|SepT{X} ∪ {Y} then
9: if Y ⊥⊥ T|Z, ∃Z ⊆ PCT ∪ {X} \ {Y} then

10: remove← remove ∪ {Y};
11: break;
12: else
13: spouseT{Y} ← spouseT{Y} ∪ {X};
14: end if
15: end if
16: end for
17: end for
18: PCT ← PCT \ remove;
19: for each Y in spouseT do
20: for each X in nonempty spouseT{Y} do
21: testSet← PCT ∪ spouseT{Y} \ {X};
22: if X ⊥⊥ T|testSet then
23: remove X from spouseT{Y};
24: end if
25: end for
26: end for
27: M← PCT ;
28: for each X ∈M do
29: if X ⊥⊥ T|PCT ∪ spouseT \ {X} then
30: PCT ← PCT \ {X};
31: end if
32: end for
33: MB← spouseT ∪ PCT ;

child or non-child descendant node. If Y becomes condition-
ally independent of T (line 9), STMB removes Y from PCT

(line 10); if no non-child descendants are found, then X is
a candidate spouse via a child node Y (line 12), since any
newly-found conditional dependence would indicate the exis-
tence of a V-structure. Due to exhaustive search, we would not
miss any true positive spouse X ∈ V\{T}\PCT . On the other
hand, PCT may contain true positives spouses, if a non-child
descendant node in PCT is also a spouse candidate, such as
in Fig. 1, to discover the MB of node C in Fig. 1, node E has
multiple paths to node C unblocked by the PC set T , B, and D.
Since line 8 checks only one conditioned variable X at a time,
false positive nodes like E that has multiple unblocked paths
would not be removed. Therefore, at line 18 PCT and spouseT
sets together contain all the true positive spouses and PCs,
thus all the true positive MB nodes. True positives PCs are
always in PCT by Theorem 1 and true positive spouses will
not be removed at later steps (lines 23 and 30) because they are
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always dependent of T given the true positive PCs. Therefore,
STMB is complete.

Second, we show STMB’s soundness, i.e., STMB will
remove false positive MB nodes only. False positives exist in
two forms: 1) some of the unblocked nodes in spouseT may
be false positives, such as spouses’ parents and 2) there are
also non-MB descendants in PCT . Line 23 of STMB removes
false positive spouses ∈ spouseT , since independence relation-
ships with T given some PCs and spouses (i.e., a candidate
set of MB) would indicate false MB nodes, directly using
Definition 6. After line 26, we have only the true spouses in
spouseT as the exhaustive test ensures no false positive spouse
left. We can use spouseT to remove the non-MB descendants
in PCT using Theorem 3. By conditioning on all of the true
positive spouses in addition to the true positive PCs in the
joint set PCT and spouseT , non-MB descendants in PCT will
be removed (line 30). Therefore, in the end PCT and spouseT
sets contain all and only the true positive PCs and spouses.
Their union forms the true MB. Hence, STMB is sound.

D. STMB Computational Complexity

The STMB complexity is determined by the first step of
finding the PC set, and the second step of removing false
positives in the PC set and finding the true spouses. The com-
putational cost of finding the PC set varies among different
algorithms but they are all very expensive. In the worst case,
PCMB finds the PC set in O(P2N+1) ITs and IPCMB takes
O(P2N) IT, where P is the largest size of conditioned sets dur-
ing the PC set search and N is the total number of variables. In
the second step of STMB, the complexity of finding candidate
spouses (lines 6–17) is O(C(N − C) IT and the rest of steps
(lines 18–33) take O(SK + C) IT, where C is the largest size
of the PC sets of all the nodes, S is the number of spouses,
and K is the largest size of all spouseT{y}. Overall, in our
implementation using the PC set search of IPCMB, STMB
takes O(P2N + C(N − C) + SK + C) = O(P2N) IT in the
worst case, predominated by the cost of the first step. The
existing algorithm IPCMB shares the same first step cost, i.e.,
O(P2N) IT, but in their second step, enforcing the symmetry
constraint repeats the first step C times and takes O(CP2N) IT.
IPCMB then finds spouses in O(CP2N−2) IT. Overall, IPCMB
takes O((C + 1)P · 2N + CP2N−2) = O(CP2N) IT. Therefore,
IPCMB would cost C times more than STMB. In practice, the
computational time depends on the structure of each dataset
and both methods should be much faster than the worst case
complexity. For larger and more densely connected networks,
STMB can achieve more speedups.

E. Assumption Violation

Faithfulness is a standard assumption in BN learning algo-
rithms. It is well known that the Lebesgue measure of the
unfaithfulness distributions is zero [44], which indicates the
probability of unfaithful parameterization is very low. Even
when unfaithfulness distributions occur, the unfaithfulness
relationships only consist of a small percent of the total inde-
pendence and dependence relationships in the graph. As a
result, the impact of unfaithful relationships on the overall

performance should be minimal. Nevertheless, the faithfulness
assumption may still be violated in practice, and we evalu-
ate the effects of the potential faithfulness violation on both
the proposed STMB and the traditional symmetry enforce-
ment methods such as IPCMB. Some existing works focus on
finding multiple Markov boundaries under the violations [33],
but this is the first attempt to discuss the effects of faithful-
ness violation on MB discovery algorithms. Note that there are
many existing works that provide formal and theoretical anal-
ysis of faithfulness violation in a BN [34]. Some BN structure
learning algorithms are specifically designed to operate under
faithfulness violation [35]–[38]. While we realize the impor-
tance of formally studying the performance of STMB under
faithfulness violation using these unfaithful BN structure learn-
ing framework [34]–[38], such a study is, however, beyond the
scope of the present work. We will investigate this issue in the
future, and here we offer some informal discussion of STMB’s
performance under faithfulness violation.

We consider the cases only when data can be repre-
sented by a BN; otherwise the independence relationships
cannot be captured by a BN fully, such as in the cases of
multiple XOR gates [39]. Under the faithfulness violation
where G does not have the same independence relationships
with P, we can classify the differences into several categories,
considering the discrepancies between the independence rela-
tionships of a distribution P embedded in the data D and
the independence relationships of a structure G learned from
the data D.

1) Case 1 (Fewer Independence in G Than P): We can
further divide this case based on whether the adjacent nodes
(which mainly affect the PC set in MB) or nonadjacent nodes
(which mainly affect the spouse set in MB) in G contain fewer
independence relationships.

1) Fewer Independence Among Adjacent Nodes in G: G
contains fewer independence, or more edges, among
the adjacent nodes than those indicated in P. This case
cannot happen in STMB and IPCMB because every
adjacent independence in G is learned directly from P.
The exhaustive search on the PC set ensures that no
marginal independence in P is missed between adjacent
nodes in G.

2) Fewer Independence Among Nonadjacent Nodes in G:
G indicates dependence between 2 nonadjacent variables
but P indicates their independence. For example, G is
the structure in Fig. 1 as P ⊥\⊥ A, S ⊥\⊥ A, but P indicates
P ⊥⊥ S or P ⊥⊥ S|R in addition to other independence.

Effects: This case is possible, as the parameters in
G can capture the additional independence in P. Non-
adjacent variables affect the PC set search of STMB and
IPCMB only when extra marginal dependence introduce
non-child descendants in the PC set; both IPCMB and
STMB could remove them during either the symme-
try enforcement step or the 2nd step in Algorithm 2,
respectively. Therefore, this case affects the discov-
ery of spouses more. Since both methods test for the
true spouses, fewer independence would result in more
spouses than desired. These extra spouses would happen
in both algorithms, but STMB could remove these false
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spouses with line 22 with a large conditioned set, while
IPCMB cannot recover.

2) Case 2 (More Independence in G Than P): We again
divide this case based on whether the adjacent nodes or non-
adjacent nodes in G contain more independence relationships.

1) More Independence Among Adjacent Nodes in G: G
contains no direct edges between two adjacent variables
even though they are marginally dependent in P. For
example, in Fig. 1, if P ⊥\⊥ A, P ⊥⊥ A|S, and P ⊥⊥ S|A in
P, then the edge between P and A is removed following
the MB algorithm procedures, thus P ⊥⊥ A in G.

Effects: G could contain more independence due
to the greedy nature of the PC set search in both
STMB and IPCMB algorithms. If they find one indepen-
dence/conditional independence relationship between
two variables, edges between them would be removed
from G. This case of violation affects both algorithms
as they share the same step 1 PC set search, but IPCMB
could be more affected because, if the adjacent nodes
of the target are found to be conditionally indepen-
dent of the target in the symmetry enforcement step
(which could happen due to the greedy nature), a correct
edge would be removed despite the PC set search step
contains it.

2) More Independence Among Nonadjacent Nodes in G: G
captures more independence among nonadjacent nodes
than P. For example, in Fig. 1, P ⊥⊥ S in G but not in P.

Effects: This case is possible to happen if case 2(1)
also happens. Extra independence among nonadjacent
variables do not affect the PC set search result in any
way. It may affect the non-child descendants in the PC
set but it is actually beneficial to do so. In the spouse
search step, this case may remove true spouses, which
is likely to happen in both methods but STMB could be
more affected due to extra function calls to remove false
positive spouses.

3) Case 3 (Latent Nodes): When some variables are totally
hidden, G can only be learned on a subset of variables with
partial independence relationships from P. With missing vari-
ables, bidirected edges could emerge in order to capture the
full independence relationship [22], [40].

Effects: With these bidirected edges, STMB and IPCMB
could both find extra spouses in the DAG setting. Since these
spouses are needed to reflect the correct independence relation-
ships, the error will be preserved and thus STMB and IPCMB
are both affected equally.

The above analysis seems to suggest that the violation
of the faithfulness condition makes IPCMB more suscepti-
ble to mistakes than STMB. Also, since the size of a PC
set is always bigger or equal to the size of a spouse set,
the chance of errors occurring is actually higher for IPCMB
using the symmetry constraint (which tends to make more
mistakes in the PC set search), and hence STMB could pos-
sibly outperform IPCMB in term of the overall accuracy. We
also empirically evaluate the performance of STMB against
faithfulness violation in Section V-B. Further theoretical anal-
ysis in this direction would be an interesting future research
direction.

In addition, violating the correct ITs, such as setting a wrong
p-value threshold in ITs, could violate any of the above cases,
changing the learned MB in both methods. Since the thresh-
olds may vary from datasets to datasets, it is unavoidable to
happen in practice. Better statistical ITs can always improve
the results on both STMB and IPCMB.

V. EXPERIMENTS

First, we evaluate the effectiveness and efficiency of the
proposed STMB with other MB discovery algorithms on syn-
thetic datasets and standard MB discovery datasets. We then
evaluate STMB on real feature selection datasets. We use
existing implementations as much as possible, namely Causal
Explorer in MATLAB [41] and FEAST [42] while implement-
ing the rest of algorithms ourselves. Since the IPCMB PC
set searching is more efficient, we use the IPCMB version
in our implementation of STMB. All codes are implemented
in MATLAB with some C++ libraries to speed up the pro-
cess. The experiments are conducted on a computer with
2.66 GHz CPU.

We also follow the standard experiment protocols on param-
eters and thresholds. Due to the page limit, we only use mutual
information based ITs with the significance level of 0.02. All
of the algorithms can freely use other ITs. For the MB discov-
ery evaluation, we use the same MB discovery error metric as
previous papers, namely the distance between the true MB and
found MB: d = √

(1− Precision)2 + (1− Recall)2. Precision
is the number of true positives in the detected MB divided by
the total size of the detected MB set. Recall is the number
of true positives in the detected MB divided by the size of
the ground truth MB. Thus, the lower d is better. We run the
MB discovery for each node in each BN with ten different
samples and report the average distance, along with standard
deviation, for all the nodes. We report both time and the num-
ber of ITs conducted as the efficiency measure of different
algorithms.

A. Synthetic Datasets

For synthetic datasets, we compare STMB with three
topology-based algorithms: 1) HITON; 2) PCMB; and
3) IPCMB.

We use subnetworks of Fig. 1 to build two synthetic BNs
with five nodes and seven nodes, respectively, shown in Fig. 2.
These two networks include complex spouse-child relation-
ships to verify that the detected MB results are sound. The
parameters are randomly generated with some minor tuning
to ensure that the faithfulness assumption holds.

Table I summarizes the experimental results under different
sample sizes. It confirms all MB discovery algorithms, except
for HITON, are sound and can find the true MB, when the
faithfulness condition upholds. Since the existing implemen-
tation of HITON does not report the number of ITs used, we
report time to compare different algorithms. Comparing the
efficiency, we can see that STMB is two to three times faster
than the current state of art IPCMB, which is exactly the aver-
age MB size in the testing networks, and much faster than all
other topology-based algorithms.
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TABLE I
DISTANCE, d VALUE, AND THE AVERAGE CPU TIME, IN SECONDS, ON SYNTHETIC DATASETS OF DIFFERENT DATA SIZE

(a) (b)

Fig. 2. Synthetic experiments: two sub-BNs from Fig. 1. (a) 5 variable BN,
or 5BN. (b) 7 variable BN, or 7BN.

B. Empirical Study of Faithfulness Violation on
Synthetic Datasets

We also evaluate the robustness of different MB discovery
algorithms against faithfulness violation on synthetic datasets.
Specifically, we use the popular Erdös−Rënyi model to ran-
domly generate a DAG G with a fixed variable size N and
a predefined probability q for edge generation, following the
existing work [43]. We use N = 10 and q = 0.5. To produce
an unfaithful distribution, we randomly generate the param-
eters from an uniform distribution for each node in the BN
with structure G. It is well known that the Lebesgue mea-
sure of the set of unfaithful parameterizations for a graph is
zero [44], as the number of unfaithful parameterizations is
finite compared to the infinite continuous parameter space. As
a result, the probability of unfaithful parameterizations is very
low. Since the entire parameter space is equal to the parame-
ter space of each parameter times the number of independence
parameters, we have taken two measures in our experiments to
increase the chance of producing unfaithful parameterizations:
first, we discretize the continuous parameter space between 0
and 1 into 105 uniformly distributed discrete values, effectively
making the parameter space finite. Second, for each node, we
randomly make a subset of its parameters equal, therefore,
reducing the number of independent parameters for each node.
With these two measures, the parameter space is significantly
reduced and therefore increases the probability of generating
unfaithful parameterizations.

Given the randomly generated parameters for G, we directly
use the definition of the faithfulness condition to find the
unfaithful parameters. Specifically, we first use the gener-
ated conditional probabilistic tables of each node and the
exact variable elimination inference method [1] to compute
the conditional probabilistic distributions P(X, Y|S), P(X|S),
and P(Y|S), for every two variables {X, Y} in the entire
variable space V, {X, Y} ∈ V, and all possible conditioned
set S ⊆ V\{X, Y}. We then check if P(X, Y|S) is equal to
P(X|S) · P(Y|S) for all instantiations of the variables to deter-
mine the independence relationships of X and Y given S
implied by the joint distribution P of the BN. Then by com-
paring the independence relationships between every pair of
X and Y , conditioned on all possible subsets S, implied by
P with those by G, we can find the number of the inconsis-
tency between independence relationships implied by structure
G and those by P of the BN. The experiment can be conducted
with a larger variable size N, but the exhaustive search for the
faithfulness assumption has an exponential time complexity
and it could easily become intractable. We generate a large
amount of data (with the sample size of 106) and apply MB
discovery algorithms to each node in the network, with the
significance level of 0.02 for ITs. We repeat this procedure to
generate 1000 BNs with the same G but different Ps, and plot
the average distance of different MB discovery algorithms on
these generated BNs versus the number of faithfulness vio-
lation, in order to compare the robustness of different MB
discovery algorithms to faithfulness violation.

Fig. 3 shows that under varying numbers of faithfulness
violation in the randomly generated BNs, STMB has slightly
better accuracy than IPCMB. The results also show both meth-
ods have perform relatively stable performance under varying
amounts of faithfulness violation in these synthetic networks,
because the percentage of unfaithful relationships is relatively
small, less than 0.1% of the total numbers of independence
relationships.

C. Standard MB Discovery Data

We also evaluate STMB on standard MB datasets, avail-
able from online BN repository.5 We compare STMB with
only the state of the art algorithm IPCMB. Four networks are
tested: 1) ALARM network has total 37 nodes, 46 edges, and

5http://www.bnlearn.com/bnrepository/
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TABLE II
DISTANCE, d VALUE, AND THE NUMBER OF ITS CONDUCTED ON

STANDARD DATASETS OF DIFFERENT DATA SIZES

Fig. 3. Synthetic experiments on the robustness of IPCMB and STMB
algorithms against faithfulness violation. The figure is best viewed in color.

509 parameters. The average PC set size is 2.48 ± 1.34 and
the average MB size is 3.51 ± 2.07; 2) HAILFINDER has
56 nodes, 66 edges, and 2656 parameters. Its average PC set
size is 2.36 ± 2.40 and the average MB size is 3.54 ± 2.70;
3) CHILD network has 20 nodes, with the average PC set
size of 2.50 ± 1.70 and average MB size of 3.00 ± 2.15;
and 4) CHILD10 is the CHILD network tiled ten times and
has 200 nodes. Its average PC set size is 2.57 ± 1.63 and
the MB size is 3.08 ± 2.06. Note that all these standard BN
structure learning datasets have varying degree of unfaith-
fulness. It can be easily demonstrated by conducting simple
tests to check the consistency between independence relation-
ships implied by the graph structure and those by the BN
distribution. For example, nodes 22 and 36 in ALARM are
marginally dependent implied by the DAG with an unblocked
path 22− 9− 16− 17− 26− 27− 36, but they are indepen-
dent by the BN distribution, such as P(V36 = 1, V22 = 1)

= P(V36 = 1) · P(V22 = 1) = 0.1548 and for other
variable values as well. The same case happens between
Nodes 3 and 42 in HAILFINDER, and Nodes 1 and 16 in
CHILD. Note that we did not include all the faithfulness vio-
lations here, due to the exhaustive nature of enumeration. The
performance of STMB versus IPCMB on these datasets reflect

the property of these algorithms when applied to unfaithful
datasets.

We directly use the available data online for these datasets,6

which contains ten different partitions for each data size.
Table II shows the distance results. On the ALARM dataset,
STMB shows the comparable accuracy with IPCMB. Speed-
wise, STMB is 4.3 times faster than IPCMB on average, and
about seven times faster with 500 data. On the HAILFINDER
dataset, the accuracy again is comparable between IPCMB and
STMB, and STMB is again faster than IPCMB, with 5.8 times
faster on average and about an order of magnitude faster with
500 data. Similar patterns are also observed in CHILD and
the large CHILD10 datasets, with STMB showing relatively
more speedup on lower sample sizes. On the largest dataset
CHILD10, STMB also seems to outperform IPCMB in term
of accuracy.

As discussed by Section IV-D, the expected speedup of
STMB is the PC set size of a target variable. According to
networks structures, the expected speedup of STMB should be
2.46 on ALARM, 2.36 times on HAILFINDER, 2.50 times on
CHILD, and 2.57 times on CHILD10. The empirical speedup
with the largest sample size of 5000 is 2.80 times on ALARM,
1.93 times on HAILFINDER, 3.39 times on CHILD, and 1.78
times on CHILD10. There results are mostly consistent with
the complexity analysis. Significant speedup is also observed
with smaller sizes as discussed above. The efficiency differ-
ences among different data sizes can be contributed to the fact
that small data sizes could introduce more erroneous depen-
dencies (introducing erroneous independence is much harder
as the measure of correlation is harder to change to zero than
to any other number). More dependence mean more variables
left to search, and the search procedure could take exponen-
tially longer time, due to the greedy nature with the gradually
increasing conditioned set sizes. IPCMB is more prone to this
error due to the usage of the symmetry constraint, which con-
ducts PC set search for each PC node of the target. More

6http://www.cs.mtu.edu/lebrown/supplements/mmhc_paper/mmhc_
index.html
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TABLE III
ERROR RATE ON REAL FEATURE SELECTION DATASETS USING KNN

erroneous tests result longer time for IPCMB with smaller
sample sizes. With large sample sizes, the empirical efficiency
improvements of STMB over existing methods are consistent
with the average PC set sizes of these networks.

D. Real Feature Selection Data

We use ten datasets from [42] to show the effectiveness
of STMB on feature selection applications. Since MB is a
filter method [2], we make a direct comparison with the
state-of-the-art filtered method joint mutual information (JMI),
which is shown to have the best performance [42]. We fol-
low their experiment setups and use a simple K-Nearest
Neighbors (KNN) classifier to test the accuracy. We choose
the top N JMI features, where N = max(|IPCMB|, |STMB|)
for each dataset. Table III shows the error rates of different fea-
ture selection algorithms with bold numbers representing the
best results. IPCMB can fail the feature selection by selecting
none of the features, due to no PC set overlaps during the sym-
metry check. STMB is very competitive in term of accuracy.
Specifically, STMB reduces the error rate of JMI by 43% on
KRVSKP and 32% on CONGRESS, and has the best overall
performance on these ten datasets. Speed-wise, we use time
to compare the efficiency for different methods (as JMI does
not compute ITs). STMB is slower than JMI7 but is about 15
times faster than IPCMB on average.

E. Performance Discussion

STMB can, through theoretical and empirical analy-
sis, improve the efficiency of the state-of-the-art algorithm
IPCMB, typically by the target’s PC set size and sometimes by
one order of magnitude when data size is small, with compa-
rable accuracy. STMB is also empirically shown to be stable
under different amounts of faithfulness violation and to be
slightly more robust to faithfulness violation than IPCMB.

Despite its promising performance, the theoretical analy-
sis of STMB holds only under the faithfulness assumption.
Although it improves the efficiency, STMB still has an expo-
nential complexity in the worst case. Empirically, its accuracy
depends on the accuracy of conditional ITs whose accuracy
depends on the sample size. The accuracy of the PC set search
in step 1 of STMB also significantly affects the later steps.

7JMI time is an estimated MATLAB time.

VI. CONCLUSION

We present a novel topology-based algorithm of finding
the MB, improving the efficiency of current state-of-the-art
topology-based methods. The main contributions of this paper
are the discovery of the coexistence property of spouses and
false PC nodes, the introduction and the theoretical analysis
of the STMB algorithm to simultaneously find them. STMB
can apply to any other topology-based MB discovery methods.
Experiments have shown STMB has a comparable accuracy
to other topology-based methods but takes much less time
for both MB discovery and feature selection. Future studies
could focus on improving the accuracy of the PC set search
such that it would improve the robustness of STMB against
faulty PC sets. Another future research direction would be
to systematically analyze the impact of faithfulness violation
in MB discovery algorithms, following the existing framework
in [34]–[38]. It would be also interesting to study how to min-
imize the effect of assumption violations on the performance
of STMB and other MB algorithms in general.
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