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Rethinking Chemical Kinetics

A Chemically Reacting System consists of ...

e Molecules of N chemical species S,,...,Sy .
- Inside a volume (2, at some temperature 7 .

e M “elemental” reaction channels R,,...,R,, .
- R, describes a single instantaneous physical event, which changes the
population of at least one species.
- “Elemental” means that R; is one of two types:
S; — something else (unimolecular),
or

S; + S, — something else (bimolecular).

- All other types (trimolecular, reversible, etc.) are made up of a series
of two or more elemental reactions.




How does a chemically reacting system evolve in time?

The traditional answer, for spatially homogeneous systems:
“According to the reaction rate equation (RRE).”
e A set of coupled, first-order ODEs.

e Derived using ad hoc, phenomenological reasoning.

o Is more than the “mass action equations” of thermodynamics,
which apply only to systems in equilibrium.

e Implies the system evolves continuously and deterministically, even
though molecules come in integer numbers and react stochastically.

e Is empirically accurate for large (test tube size) systems.

¢ But is often not adequate for very small (cell-size) systems.

* %k ok

Let’s take a fresh look at this question.

Doing it “right”: Molecular Dynamics

e The most exact way of describing the system’s evolution.

e The “motion picture” approach: Tracks the position and velocity of
every molecule in the system.

e Simulates every collision, non-reactive as well as reactive.
e Shows changes in species populations and their spatial distributions.

® But . . . it’s unfeasibly slow for nearly all realistic systems.




A great simplification occurs if successive reactive collisions tend
to be separated in time by very many non-reactive collisions.

e The overall effect of the non-reactive collisions is to randomize
- the velocities of the molecules (Maxwell-Boltzmann distribution).
- the positions of the molecules (spatially uniform or well-stirred),

o Then, instead of having to describe the system’s state as the
position, velocity and species of each molecule, we need only give

X(0) 2 (X,@),..., Xy (D)),

X,(t) £ the number of S, molecules at time ¢.

But this well-stirred simplification, which . . .

e ignores the non-reactive collisions,

e truncates the definition of the system’s state,
... comes at a price:

X(t) must now be viewed as a stochastic process.

» But in fact, the system was never deterministic to begin with.
Even if molecules moved according to classical mechanics . . .
- Unimolecular reactions always involve randomness (QM).
- Bimolecular reactions usually do too.
- A system of many colliding molecules is so sensitive to initial
conditions that, for all practical purposes, it evolves “randomly”.
- The system is not isolated. It’s in a heat bath, which keeps it “at
temperature 77 — via essentially random interactions.




For well-stirred systems, cach R; is completely characterized by ...
e apropensity function a;(x): Given the system is in state X,
A o7 . .
a;(x)dt = probability that one R; event will occur in the next dt .

- The existence and form of a;(x) follow from molecular physics.

* astate change vector v ; = (vlj,...,ij):
Vi 2 the change in X, caused by one R; event.

- R, induces x > x+v;. {vl. j} = the “stoichiometric matrix.”

Examples:
a,(X) = cxx,, v, =(+1,-1,0,...,0)
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Two exact, rigorously derivable consequences . . .

> 1. The chemical master equation (CME):
OP(X,t]X,t,)

M
-~ =;[aj(x—vj)P(x—vj,t|x0,t0)—aj(x)P(x,t|x0,t0)].

o P(X,t|Xy,ty) = Prob{X(z) =X, given X(¢,) = XO} for t>1¢,.
e Follows from the probability statement

P(X,t+dt|X,1,) = P(X,2|Xy.1,) {1 i(aj(x)dt):l

j=1
M
+ZP(X—vj,t|x0,t0)><(aj(x—vj)dt).
j=1
e But the CME is usually too hard to solve.

e Averages: < f X(t) > Z S(X)P(X,t|X,8,) -

If we multiply the CME through by x and then sum over x, we find

aXw) _ i“/ <aj (X(f)» -

=

o [f there were no fluctuations,

{0, (X0)) =4, ({(X()) =4, (X)),

and the above would reduce to:

dX(t)
S 0.

- This is the reaction-rate equatlon (RRE).
- It’s usually written in terms of the concentration Z(t) = X(t)/£2 .

= But as yet, we have no justification for ignoring fluctuations.




» 2. The stochastic simulation algorithm (SSA):
A procedure for constructing sample paths or realizations of X(¢).
Idea: Generate properly distributed random numbers for
- the time 7 to the next reaction,
- the index j of that reaction.
e p(z, j|x,t)dr = probability, given X(¢) = x, that the next reaction
will occur in [t+7,t+7+d7), and will be R;.

=P (r)x a; x)dr, R(r) 2 Pr(no reactions in time 7).
Ry(t+d7) = R(r)x(1-ay(x)d7), where a,(x)= Ziwaj, (x).

-a, (x)7

Implies % =-a,(x)F (7). Solution: B(r)=e
T

~ay (%) (e, L)

a;(x)=ay(x)e ()

~op(z, jIxt)=e

Thus,
- 7 is an exponential random variable with mean 1/ay(x),

- J 1s an integer random variable with probabilities a;(x) / ay(X) .

The “Direct” Version of the SSA
M
1. In state x at time ¢, evaluate q,(X),...,a,,(X), and q,(x) = z a;(x).
=1

2. Draw two unit-interval uniform random numbers # and 7,, and

compute 7 and j according to
o = In| — |,
a,(x) \n

J
o j=the smallest integer satisfying 2 a,(x) >r,ay(x).
k=1

3. Replace 7«-7+7 and x<x+v .

4. Record (x,#). Return to Step 1, or else end the simulation.




A Simple Example: S,—1—0.

a,(x))=cx;, v, =-1. Take X,(0)=x,.

RRE: % =—c,X,(¢). Solutionis X,(t)=xe .
0
CME: W = o (5 +DP(xy +11[x,0)~ 5, P(x, 2137, 0) .
. 0 xo! ¢ ¢ xlo’xl 0
Solution: P(x;,|x;,0) = ———F——¢e " (1 —e ) (x,=0,1,...,x))
x1(x) —x))!

which implies (X,(1))=x e ", sdev{X,(t)} =,/x e (1 _ e—clt) '

1

SSA: Given X,(¢)=x,, generate 7 = Lln[
ax, \r

j , then update:

tt+r, x < x-1.
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The SSA ...
Is exact.

Does not entail approximating “dr” by “ At ™.

Is logically on par with the CME (but is not a method for numerically
solving the CME).

Is procedurally simple, even when the CME is intractable.

Comes in a variety of implementations ...
- Direct Method (Gillespie, 1976)
- First Reaction Method (Gillespie, 1976)
Next Reaction Method (Gibson & Bruck, 2000)
- First Family Method (Lok, 2003)
Modified Direct Method (Cao, Li & Petzold, 2004)
Sorting Direct Method (McCollum, et al. 2006)

Remains too slow for most practical problems: Simulating every

reaction event one at a time just takes too much time if any reactants
are present in very large numbers.




We would be willing to sacrifice a little exactness . . .
... if that would buy us a faster simulation.
Tau-Leaping

Approximately advances the process by a pre-selected time 7 ,
which may encompass more than one reaction event.

Key: The definition of “the Poisson random variable with mean az ™

P(ar) = the number of events that will occur in a time 7,
given that the probability of an event in any df is adt
where a can be any positive constant.

With X(¢) =x, let us choose 7 small enough to satisfy the

Leap Condition: Each a(x)~ constant in [z,7+7].

Then: The number of R; firings in [¢,1+7] =~ P(aj(x)r).

X(t+71)= x+i73j (aj(x)r) v,
=

- Practical Implementation of Tau-Leaping -

o We have two control parameters, & and n,:
- To satisfy the Leap Condition, restrict 7 so that |4a ; / a j| <eg, V.
- To avoid populations <0, allow only one firing of all critical reactions
(£ reactions that are within n, firings of exhausting any reactant).
e We take 7 =min(7’,7"), where:

- 7' maximally satisfies the Leap Condition for firings of the non-
critical reactions. (We have a fairly efficient way to estimate z'.)

- 7" is the time to the next critical reaction . ( Generate 7" by
applying the SSA to the critical reactions.)

e For each non-critical R;, generate k; as a sample of P(aj (x)r).
o If 7'<z": Setthe k;’s for all the critical R;’s to 0.

If 7" <7': Use the SSA to determine which critical reaction fires, set
its k jtol, and set all other critical & ;’sto0.

M
o Leap: t<«t+7 and x<—x+ijv/..
J=1

> Becomes the SSA if all reactions are critical (1, — o).
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a;(x)dt = Prob that R - will fire in next dt

:—{a/(x) ~ const over 7, Vj}
e

CME SSA : Tau-Leaping : Discrete & Stochastic

W .

Speeding up Tau-Leaping: The Langevin Equation

e Two math facts:
- If m>1, then P(m)~ N (m,m).
- N(m,c*)=m+oN(0,]).

e So, with X(¢) =x, suppose we can choose 7 small enough to satisfy
the Leap Condition, yet also large enough that a (x)7>> 1, .

Then . . . X(t+7)£x+i73j(aj(x)f)vj
=1
v
£X+ZNj(aj(x)r,aj(x)r)uj
=1
Zx+ i[aj (X)7 +,Ja, ()7 N i(O,l)Jv ;
Jj=1
M M
*» X(t+r)ix+2ujaj(X)T+Zuj,/aj(x)Nj(0,l)\/;.
j=1

J=1




X(t+z')éx+§:vjaj (X)r+§vj4/aj (X)Nj(O,l)\/;
=

J=1
o This is the Langevin leaping formula.
e [t’s faster than the ordinary tau-leaping formula, because
- a, (x)r >>1 means /ots of reaction events get leapt over in 7 ;

- normal random numbers can be generated faster than Poissons.

o [t directly implies, and is entirely equivalent to, a SDE called
the chemical Langevin equation (CLE):

dX

" M
dft) =2 v, a; (X)) + 2 v e, (XO) T -
= 7=

- Gaussian white noise: I'(t)= lim ME lim N(O,Lj.
dt—0* \/E dt—>0" dt

_ Satisfies (rj )T, (r')) =5,,8(t~1").

e Our discrete stochastic process X(t) has now been approximated as a
continuous stochastic process.

a;(x)dt 2 Prob that R ;- will fire in next df

:—{aj(x) ~ const over 7, Vj}
|

—_—_——— . —

CME SSA : Tau-Leaping : Discrete & Stochastic:}

{ Continuous & Stochastic }

% - J. Chem. Phys. 113:297 (2000)
- Am. J. Phys. 64:1246 (1996)
- J. Phys. Chem. A 106:5063 (2002)
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The Thermodynamic Limit

Def: All X; >0, and 2 — oo, with X,/ constants.

a;=c;x; ~x } { In the thermodynamic limit,

_ -1 ! : :
a; =cxx; ~ Q2 xx, ~ X all a;'s grow like (system size).

¢ So in the thermodynamic limit, we see that in the CLE
aX() . < N TN

- the deterministic term grows like (system size),
- the stochastic term grows like (system size)"’%.
e = Rule of Thumb: Relative fluctuations die off as (system size)_l/z.

o At the thermodynamic limit the stochastic term disappears, leaving
M
% =Y v, a,(X(?) ... the RRE ... derived!
t ,
Jj=1

X(¢) has now become a continuous deterministic process.

a;(x)dt 2 Prob that R ;- will fire in next df

:—{aj(x) ~ const over 7, Vj}
|

—_—_——— . —

CME SSA : Tau-Leaping : {:"Discrete&Stochastic:}

'{&em,gaw}
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Complications from “Stiffness”
Some R; may be very fast, others very slow.

Some X; may be very fast, others very slow.

1
“Fast” and “slow” are interconnected — not easy to separate.
Often manifests as dynamical stiffness, a known ODE problem.
SSA still works, and is exact. But it’s agonizingly slow.

Tau-leaping remains accurate, but the Leap Condition restricts 7 to
the shortest (fastest) time scale of the system. Still very slow.

One approach: Implicit Tau-Leaping
- A stochastic adaptation of the implicit Euler method for ODEs.

Another approach: The Slow-Scale Stochastic Simulation Algorithm
- Skips over the fast reactions and simulates only the slow reactions,
using specially modified propensity functions. An adaptation of the
partial equilibrium / quasi steady-state method for RREs.
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