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Decoupling in the Design and Synthesis of
Multivariable Control Systems

PETER L. FALB, MEMBER, IEEE, AND WILLIAM A. WOLOVICH, MEMBER, TEEE

Abstract—Necessary and sufficient conditions for the “decou-
pling” of an m-input, m-output time-invariant linear system using
state variable feedback are determined. Given a system which satis-
fies these conditions, i.e., which can be decoupled by state variable
feedback, the class @ of all feedback matrices which decouple the
system is characterized. The characterization of ¢ is used to deter-
mine the number of closed-loop poles which can be specified for the
decoupled system and to develop a synthesis technique for the real-
ization of desired closed-loop pole configurations. Transfer matrix
consequences of decoupling are examined and practical implications
discussed through numerical examples.

I. INTRODUCTION

HE DEVELOPMENT of techniques for the
Tdesign of multivariable control systems is of con-

siderable practical importance. A particular de-
sign approach involves the use of feedback to achieve
closed-loop control system stability. In conjunction
with this approach, it is often of interest to know
whether or not it is possible to have inputs control out-
puts independently, i.e., a single input influences a
single output. This is, in heuristic terms, the problem of
decoupling.

The problem of decoupling a time-invariant linear
system using state variable feedback and the relation of
this problem to control system design have been dis-
cussed by several authors.[!—181 Morgan!!! considered
the question of decoupling for systems whose state
equations had a somewhat special form. His main re-
sult, which is a special case of the main theorem of this
paper, was the following: the time-invariant linear
system

% = Ax + Bu
y =Cx

can be decoupled if the matrix CB is nonsingular,
Rekasius!?! extended Morgan’s result and outlined an
essentially trial-and-error procedure for specifying a
certain number of the system’s poles while decoupling
the system. Neither Morgan nor Rekasius gave a clear

First part of manuscript received November 28, 1966; second part
of manuscript received March 29, 1967. First part revised April 19,
1967; first and second parts combined and revised July 14, 1967.
This research was supported in part by the Air Force Office of Sci~
entific Research under AFOSR Grant 693-67 and in part by NASA.

P. L. Falb is with the Div. of Applied Mathematics, Brown
University, Providence, R. I., and NASA Electronics Research
Center, Cambridge, Mass.

W. A. Wolovich is with NASA Electronics Research Center,
Cambridge, Mass.

proof of sufficiency, and they did not consider the ques-
tion of necessity.

In this paper, a necessary and sufficient condition for
decoupling will be given; a characterization of the class
of feedback matrices which decouple a system will be
determined; the number of closed-loop poles which can
be specified while decoupling will also be determined;
and a synthesis procedure for obtaining desired closed-
loop pole configurations will be developed. In line with
these objectives, the remainder of this paper is divided
into the following sections:

I1. Definitions

I11. Main Theorem

IV. Class of Decoupling Matrices

V. A Synthesis Procedure

VI. Decoupling by Output Feedback
VII. A Practical Example.

In Section II precise definitions of state variable feed-
back and decoupling are given. Then the basic necessary
and sufficient condition for decoupling is proved in
Section II1. Using the main theorem, a description of all
the decoupling matrices is presented in Section IV.
Next, in Section V the questions of synthesis and closed-
loop pole placement are examined. In Section VI state
variable feedback is replaced by output feedback and
the relevant theory developed. The practical potential
of the methods is indicated in the discussion of a
V/STOL stability augmentation system in Section VIIL.

II. DEFINITIONS
Consider the time-invariant linear system

% = Ax + Bu

y=0Cx (1)
where x is an # vector called the state, u an m vector
called the control (or input), y an m vector called the
output, and A, B, and C are nXn, #Xm, and mXn
matrices, respectively. It is assumed that m<#n. If F is

an m X #n matrix and G a nonsingular m X m matrix, then
the substitution of

u = Fx + Go (2)

where o represents the new m vector control (Fig. 1),
into (1) shall be called linear state variable feedback.
Letdy, ds, - - -, dn be given by

d; = min {j: C;AB 0, j=0,1,---,n— 1}
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Fig. 1. Multivariable feedback system.
or
di=un—1 {CAB=0 for all § (3)

where C; denotes the 7th row of C. Then, a simple calcu-

lation shows that
C,(A'f“BF k=C,‘Ak, k:o, 1’ e =d‘_
Ci(A+BF)*=C;A%(A+BF)~4%, k=di+1,.--,n (4

fori=1, - - -, m. Application of the state variable feed-
back (2) and repeated differentiation together with (4)
vield the relations

Vi = C;X = C,(A + BF)OX
Vi = C;Ax = C;,(A 4 BF)x

:;ri(di) = CiAdix =} C{(A. + BF)diX
@) = C(A + BF)#*ix + Ci(A + BF)*BGo

C.-'(A + BF)"x + C;(A + BF)*™'BGo
+ - -+ 4+ Ci{A + BF)4BGud—D (s)

yi(ﬂ)

where y;, t=1, - - -, m, is the ¢th component of y. In
view of the Cayley—Hamilton theorem,

(A+ BF)* = 3 p(F)(A + BFY )

where the p,(F) are scalars depending on F. Thus, x can
be eliminated from the final relation of (5) to give
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where 0 is a zero matrix consistent with the order of
L"{F, G}. If E;; denotes the m Xm matrix with 1 as
ijth entry and zeros elsewhere, then E;Q is an mXn
matrix with the sth row identical to the 7th row of @ and
all other rows zero. The matrix E;;Q will be denoted by
Q. The following definition can now be made.

The matrices F and G, with G nonsingular, decouple
the system (1) if

n—1
}’i(") — Z Pz;(F)yi(k) tr (L"{F, G}Q)
k=0

tr (L*{ F, G}Q9),
i=1,---,m (10)
and if

te (L{F,G}Q) %0, i=1,---, m (11)

Note that this is a precise definition that does not
involve vague statements about inputs controlling
outputs independently.

ITI. MaN THEOREM

With the definitions of Section I, it is now possible
to state and prove a theorem which gives a necessary
and sufficient condition for decoupling.

Theorem 1
Let B* be the m Xm matrix given by
C.A%B
C,A*B
B* = . (12)
C.A™B

Then there is a pair of matrices F and G which decouple

the system (1) if and only if
det B* # 0 (13)

i.e., if and only if B* is nonsingular.
Proof: Suppose first that B* is nonsingular. Then it

n—1 . . .
3 — 3 p(F)ye® = tr (LA F, Gle) G is claimed that the pair
k=0 F* = — B*14%
where tr (-) denotes the trace of a matrix, Q is the m X#n G* = B*1 (14)
matrix given by where
Q= [ ® : PNe l[ C ll @D :‘ (8) C,AnH
| | | A¥ = (15)
and Li{ F, G} is the n Xm matrix given by At
C{(A + BF)™' — p1(F)(A + BF)"™ — - - - — poa(F)(A + BF)df]BG]
C:|(A+ BF)™2 — p, (F)(A + BF)"3% — - - . — ps.(F){(A + BF)*|BG
L{F. G) - l [ )" — pus(F)(A + BF) pua(F)(A + BF)A] o
l_ c(4 + BR&|BG
0
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decouples (1). In view of (4),

C;(A 4+ BF*)%t+l = C;A%+! 4 C;A%BF*.

But C;A%B is simply the ith row of B* and so it follows
that

C.ALBF* = — BFB*IA* = — A} =

(16)

— CiAdH—l (1 7)

where B;* and A4;* are the 7th rows of B* and A*, respec-
tively. Thus

(18)

for any positive integer 2. In a similar way, it follows
that

Ci(A + BF*)ditk = g

C:(A 4+ BF*)%BB*"! = B*B*1 (19)
and hence that
[ — pai(FH) BB
_ . F* Bi*B*_l
. . ' pdz‘l’?( ) (20)
Li{F* G*} =
Bi*B*;l
0 i

However, B;*B* 1=¢;, a row vector with 1 in the 4th
place and zeros elsewhere and so

tr (Li{F¥, G*|Q) = — pu1(Flooi—pa, 1o F)ei D — - - -
e
=tr (L{{ F*, G*}Q%) =0.

In other words, F* and G* decouple (1).
Now suppose that there is a pair of matrices F, G
which decouple (1). Then it follows from (4) that

Ci(A + BF)¥BG = B{G, (23)

Since C;A'B = 0 for all j would imply that
tr (L* { F, G } Q) =0, which would contradict the fact that
F and G decouple (1), it is clear that B;*£0 for
1=1, - -, m. As G is nonsingular, B;*G0 for all 4.
Since (10) is satisfied, it follows that B;*G is an m row
vector of the form a.e; with a0 [otherwise there
would be w,;®, j=i, terms in tr (L*{F, G}Q)]. Thus,

(21}
(22)

t=1,--,m

(231

0
as
B*G=| 0 | (24)
227
where
H [+ £71 el O
=1

Hence, B* is nonsingular since G is.

The theorem just proved shows that B* is of para-
mount importance in the decoupling of (1) by state
variable feedback. The basis for the choice of F* and G*
in the proof of the theorem is the following observation.
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Since (5) implies that

;4D = C;(A + BF)%t'x 4+ C;A%BGuw (25)
which may also be written in the form
y* = (A* 4+ B*F)x + B*Go (26)

where y* is the m vector with components y; @+ it is
clear that the choice F=F* and G = G* leads to

(27)
or, equivalently, to
(28)

Caution: Equation (28) does not represent the de-
coupled system since, in general, it involves the cancel-
lation of zeros. The equations of the decoupled system
are given by (10) or in state form as

% = (A + BF)x + BGea
y =0Cx

y @D =

where F, G are a decoupling pair.

It has now been established that the nonsingularity
of B* is a necessary and sufficient condition for the
existence of a pair of matrices F, G which decouple (1),
In the next section, the set of all pairs F, G which de-
couple (1) will be characterized under the assumption
that B* is nonsingular. This characterization leads to
“answers” to the following two questions:

1) the synthesis question, namely: how many closed-
loop poles can be specified for the decoupled sys-
tem, how arbitrarily can they be specified, and
how easily can an algorithm for specifying these
poles be developed?

2) the output feedback question, namely: when can
feedback of the form u=Hy -+ Go decouple (1)?

I1V. Crass oF DEcoOUPLING MATRICES

Let F be an m X# matrix and let G be a nonsingular
m X m matrix. Under the assumption that (1) can be de-
coupled, necessary and sufficient conditions for F, G to
be a decoupling pair are determined in this section.
These conditions turn out to be independent of G so
that it will make sense to speak of the class ® of matrices
F which “decouple” (1).

Definition
Let @*(F) be the »nXm matrix given by
Ci{(A + BF)"'B
Ci(A + BF)™B
oF =|
L Ci(A + BF)%B
0

, i=1,-+,m (29

where 0 is a zero matrix consistent with the order of
Q@i(F). Let Pi(F) be the nXn matrix given by
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-1 —pui(F) -+ - —pai(F) : 7
0 L. —pd,-+_z(F) l 0
. |
Pi F —_ . ,
(F) 0 0 1 :
e :' o
L 0 | I

i—1, -+, m (30)

where the p,(F) are the coefficients of the characteristic
polvnomial of A+ BF, i.e.,

n—1

(A+ BF)" = > p(F)(A + BF)* (31)
[
and I is an identity matrix consistent with the order
of Pi(F).
Since Pi(F) is nonsingular, it follows that the rank
of P{F)Q@i(F) is the same as the rank of Qi F). Note
also that

Li{F, G} = Pi(F)@(F)G (32)
where L"{ F, G} is defined by (9). Thus
rank [L{F, G}] = rank [@(F)], i=1,---,m (33)

since G is nonsingular. In view of the definition of de-
coupling, the following theorem can be established.

Theorem 2

If the pair F, G decouples (1), then the rank of Qi(F)
is one for all 7; conversely, if the rank of @*(F) is one for
all 7 and if B* is nonsingular, then the pair F, B*-!
decouples the system (1).

Proof: Suppose first that F, G decouple (1). Then

tr (LI{F, G}Q) = tr (Li{F, G}Q%) 0 (34)
for all 7 where Q is the m X# matrix given by
| | |
Q=|:m[m|---|m("‘1)]. (35)
| | |

Since @ is arbitrary, the 4th column of L"{F, G} is a
nonzero vector, while every other column of L‘{F, G}
is the zero vector. It follows that L? { F, G} has rank one
and hence, by (33), that rank [@Qi(F)]=1.

Now suppose that rank [@i(F)]=1 for all 7 and that

B* is nonsingular. Since
Ci(A + BF)%B = C:A%B = B* » 0 (36)

by the definition of d;, where B;* is the ith row of B¥,
it follows that

ar'B*

@7
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and hence that

| | ot | |

| | o |

NEin
Qi(F)B*—I = 0 ll .. .ll } . -} 0 (38)

: i

1 1 !

| | | | J
| I 0| |
has only a nonzero ith column. Thus,

tr (L{{ F, B*1]Q) = tr (P{(F)Q(F)B*'Q)

= tr (PF)QI(F)B*1Q") # 0 (39)

and so the pair F, B¥~! decouples (1).

Corollary 1

If the pair F, G decouples (1), then there is a diagonal
matrix A such that G=AB*1,

Proof: 1f F, G decoupless (1), then Qi(F) is given by
(37) and

| | AMa® | [
| | |
e
. : | .

Qi(F)G = 0||: . : -:0 AP0, (40)
| AT |
| { t |
| i 0 | |

It follows that B¥*G =diag [\, - - -, A*], and the corol-

lary is established.

Corollary 2

If the pair F, G decouples (1), then there is a diagonal
matrix n such that

FB = B*'{nA* — A*|B (41)
where A** and A* are given by
C,A%
AM = | A% = A¥A. (42)
C,.Adm

Proof: The corollary is an immediate consequence of
the relations

Ci(A + BF)%+! = C;A%B + C;A%*'BFB
Ci(A + BF)%+! = y,Ci(A + BF)%B.

(43)
(44)

In summary, thus far it has been shown that the non-
singularity of B* is a necessary and sufficient condition
for the existence of a decoupling pair F, G. Furthermore,
the set of all pairs F, G which decouple (1) consists of
matrices F such that rank [@{(F)]=1 for all 7, and G
such that G=AB*"!, where A is diagonal and non-
singular. In order to clarify these points, an example
will now be presented.
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Example 1
Let
1 1 0 11
A=10 2 0|, B={ -1 1/,
01 3 0 0
o[ ° 7] o
0 01
Then
C.B 11
B*=[ ]:[ ] (46)
C.AB -1 1

Thus, B* is nonsingular and the system can be de-
coupled. The set ® of all F which decouple the system
(45) can now be obtained by determining all 2X3
matrices F such that rank [@i(F)]=1. In this example,
this implies that the elements of ® must be of the form

F— [fu bir f13j|. (47)
fu —fiz—1 —fls'
V. A SYNTHESIS PROCEDURE

Theorem 2 does provide a procedure for determining
®, the class of all feedback matrices F which decouple
(1). However, the direct application of the condition,
rank [Qi(F)]=1 for all 4, results only in constraints
being placed on certain of the mn parameters of F. What
is still required is a procedure for specifying closed-loop
system poles while simultaneously decoupling (1) using
an appropriate FE®. In this light, a synthesis pro-
cedure will now be presented for directly obtaining a
feedback matrix F&E® whose parameters are so deter-
mined as to yield a desired closed-loop pole structure.

In particular, suppose that M;, £=0,1, .-, 8 are
given m Xm matrices. Then the choice

&
F= B*-l[ > MCA* — A*:|

k=0
G = B*1 (48)
will, by (26), lead to
y* = 2, MiCA*x + o. (49)

k=0

If =max d; and the M, are suitably chosen, i.e.,

M, =diag [m!, m:?, - - -, my], i=1, 2, - « -, m, then
(30) may be written in the form
8
y¥ = Z My ® 4+ o (30)

k=0
or
P = oty + matyi® A - a0+ oy,

(1)

t=1,2,--+-,m
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which indicates that F and G decouple (1) and that
m- .7, d; of the closed-loop poles can be varied by
varying the M;. In this light, consider the following
example.

Example 2
Let
ro 1t 0 0 0 7] [0 17
1 0 0 10
— 0 0 0
A= ’ B= s
0 1 0
0 0 0
L0 0 0 oA L1 0
C = (52)
0
Lo o
Now

0 1 010000
po[0 1] w] ] e
1 0 000000

Since B* is nonsingular, the system can be decoupled.
Setting, for example,

My=M, =M, = [0 O] (54)
01
one obtains, using (29), the decoupled system
3208 = 9, @ 4 29, ® 4 2y O g (D 2y, @
— 20, @® 4 @
Y28 = 5@ - 29, 4 29,®) 4 5, | 0, @, (55)

Note that in this case
det (I —A—BF) =s¥(s+ 1)(s*—s*—s—1)

where the poles representing s(s3—s?—s—1) have been
specified by the choice of the M. Other choices of the
M, would lead to other closed-loop pole configurations.
Therefore, if B* is nonsingular, m+- Y ™, d; of the sys-
tem’s closed-loop poles can be arbitrarily specified
(d;+1 at a time) while simultaneously decoupling the
system using the synthesis procedure. The synthesis
question is, therefore, partially resolved, although some
points still require clarification. In particular, it will be
shown that m-4 2", d; can never exceed #, the number
of system poles, and that it is sometimes possible to
specify more than m+2_m; d; poles while simultaneously
decoupling the system.
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Lemma
Let K be the (m+ >_™, d;) X7 matrix given by
-C
CiAH
C,
K=\ - . (56)
CrA%
| G|

Then rank [K] =m-+ Z;’;l d; and hence m -+ me=1 d:<n.
Proof: Let k; denote the 7th row of K, and let r; be
arbitrary scalars such that

v

Zf,'k,' = 0

1

(57)

where

"

v=m+zd,-.

1

(58)

In order to establish the lemma, one need only show that
(57) implies that each 7;=0. However, this follows
directly from (57) by successive postmultiplication by

B, AB, - - -, A*B, and the fact that B* is nonsingular.
(s — fae)
(S '—f24)(53 "‘f1352 —flzs “fn)
0

Now let » denote the number of closed-loop poles
which can be specified while decoupling, and let f denote
the number of free parameters (entries) in a decoupling
matrix F [for example, f=3 in (47)]. Then the lemma
and (51) combine to give

m+ 2 di<p<n
1

m+ >, d:i < f. (59
1

Moreover, if m+4 Z;" d;=mn, then all # of the closed-
loop poles can be arbitrarily positioned while simultane-
ously decoupling the system. Also, if f=m- 2.7 d,
then (51) gives direct physical significance to the free
parameters in F. If f>m+ » 7 d; (or n), then it may
be possible to specify more than m- 2.7 d; of the
closed-loop poles. In this situation, it is often advanta-
geous to calculate C(sI— A— BF)~!BB*~! with f entries
in F remaining arbitrary. The following examples
illustrate these ideas and some of the difficulties in-
volved in their application.
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Example 3
Let
01 00 0 0
0010 0 0
A= y B = s
0O 0 0 0 1 0
0 0 0 1 0 1
10
c’ 00 60
o ol (60)
01
Then
C;A’B
C.B

and m~+ > 7 d;=4=n. Thus, all the closed-loop poles
can be specified by using the synthesis procedure.

F=[f11 fiz fis 0].
0 0 0 fau

Moreover, application of Theorem 2 shows that (62)
represents the most general form for a decoupling F so

that f =4 =n. The general form of the decoupled transfer
matrix is

(62)

|
(53 "‘f13S2 —f125 —fll) .
il

(63)

(S"'f24)(53—f1332 — f1o8 —
Example 4
Let

g 1 0 0 ¢

A=|2 3 0y, B=|1 0],
1 11 0 1
_ 1 1 0

C—[o 0 1]’ (6
Then

Bt — [ClB] _, -

C.B

Thus, B* is nonsingular and the system (64) can be de-
coupled. It can be shown that the elements of ® must be

such that
F= |: fi1 fi2 0 jl
-1 -1 Jes

so that f=n=3>2=m+ ) 7 d, Moreover, the closed-
loop transfer matrix is given by

(66)
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C(sI—A—BF)"'BB*"!

I:(S‘I’l)(S—‘fzs—l) 0 :|
_ 0 52—(f12+3)5—'(f11+2) (67)
(s—faa—1) [52_(f12+3)5—(f11+2)]

so that all of the closed-loop poles can be specified by
application of Theorem 2. However, note that appli-
cation of the synthesis procedure in this case would
allow one to specify only two of the three closed-loop
poles.

VI. DEcotPLING BY OUTPUT FEEDBACK

Since output feedback is only a special case of state
variable feedback, i.e.,

u = Hy + Go = HCx + Go (68)

with HC replacing F, it follows immediately that (1)
can be decoupled using output feedback if and only if
1) B* is nonsingular and 2) there is an m Xm matrix H
such that rank [@(HC)]=1 for i=1, - - -, m. These
conditions provide a suitable test for whether or not a
svstem can be decoupled using output feedback.

Example 5
Let
110 11
A={0 2 0|, B=|—-11
01 3 0 0
1 00
C=|:0 0 1i| ©
Then
B*=[ 1 1] (70)
-1 1

is nonsingular so that the system defined by (69) can be
decoupled. However, it is not possible to decouple this
system using output feedback. To see this, observe that
Theorem 2 and (39) imply that an F which decouples
must be of the form

P l:fn Jie fla] a1
Ju —fo—1 —fu
and that HC must be of the form
/ 0
HC = [l” ’”]. (712)
]721 0 g

Equations (71) and (72) lead to the contradictory re-
quirement that fi,=0 and fip= —1. This example illus-
trates the point that decoupling by state variable feed-
back need not imply decoupling by output feedback.

It should be noted that, although a system may be
decoupled using output feedback, some of the flexibility
of specifying closed-loop poles, as with state variable
feedback, wil]:in general be lost. For example, consider

657

the system described by (60), with the most general

H given by
H= [h'“ 0 :l
0 }122

Since det(sI—A—BHC)=(s—1—hy)(s*—hn), output
feedback will not be adequate to stabilize the system
although state variable feedback provides a higher de-
gree of flexibility (63).

(73)

Example 6

Consider the system described by (64). It has been
shown in (67) that state variable feedback can be used
to decouple the system while simultaneously specifying
all three closed-loop poles. Application of Theorem 2
and (39) imply that any 2 X2 matrix H of the form

H = [ 1111 0 }
=1

will define an output feedback which decouples this
system. From (74) it follows that

det(SI"‘A'—'BHC) = (S'— 1 —hgz) (32— (}Zu+3)3_ (h11+2))

(74)

and hence that the system can be stabilized using out-
put feedback (e.g., A= —1, hu= —35), although the
poles are not completely arbitrary.

Example 7
Let
110 0 1
A=101 0, B=!1 0|,
0 01 10
1 0
C = 11 (73)
-1 0
Then
B*=CB=[O 1} (76)
1 0

mE D, di=2<3=nmn.
1

It can be shown, using Theorem 2, that any decoupling
F is of the form

F=[0 fre f:a]
foau fao —1 — fan
so that f=4. However, the closed-loop transfer matrix
is given by

[(5_1)(5—f12—f13—1) 0 :|
0 (_S - 1)(5 —fm _ 1)
(s = D(s — fa— 1)(s — f12 — fua — 1)

(77)

(78)
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so that p=2, i.e., only two of the closed-loop poles can
be specified. It can also be shown for this example that
output feedback leads to the transfer matrix

I:(S — D —hp—1) 0 :|
0 (S —_ 1)(5 -_ 1121 - 1)
(s —1)(s —he— 1)(s — by — 1)

(79)

so that output and state variable feedback are equiva-
lent. This, as previous examples illustrate, is not true
in general.

VII. A Pracrical ExXaMPLE

An area in which decoupling techniques may be of
interest is the design of flight control and stability
augmentation systems. Consider, for example, the fol-
lowing linearized longitudinal equations of motion for
a lift-fan V/STOL wvehicle! in a hovering condition.

"4 [X. X 0 0 0 07
8 o 0 1 0 0 o
§ M, 0 My M, 0 0
| o o 2z z. 0o o
A% 1 0 0 0 o
Lasl Lo o o 1 o ol
"X, 0 0 5
0 0 0 Ons
M. Mu; 0 |Ls,
+ 0 Zs Les (80)
0 0 0
o o o

where

u=Iincremental longitudinal (x) velocity change,
8 =incremental pitch angle,
f=pitch rate,
w=incremental vertical (z) velocity change,
Ax =incremental position error,
Agz=incremental altitude error,
8, =incremental collective fan input,
6,s =incremental nose fan input,
8, =incremental fan stagger input.

The relevant outputs in this example are 6, Ax, and
Az, and the subscripted capitals (e.g., X,) are the rele-
vant stability derivatives.

The output matrix C is thus defined as

0. (81)
1

1 Similar to the XV-5A.
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In this example

C.AB My My O
CAB |=| X,, O 0
C:AB 0 Zs  Zes

and is nonsingular since it is assumed that Z, Me,; X ., 0.
Therefore

B* = (82)

3
m+ > di=6
1

and hence all six of the closed-loop poles can be arbi-
trarily specified while simultaneously decoupling this
system. It can be shown, using Theorem 2, that a de-
coupling F has 6 (i.e., f=6) free parameters. Thus, the
synthesis procedure (Section V) can be directly applied
to give physical significance to these free parameters.
For example, suppose that independent pitch, trans-
lation, and altitude control is desired, i.e.,
é = m1°0 + 7%119 + (6] ]
AZ = mPAx + my'A% 4 s
AZ = m3PAz 4+ m3lAs + ws. (83)

According to the synthesis procedure, F can be set equal
to

1
B**l[ > M.CA* — A*].
0

It can be shown that for this decoupling F,

[ mst O 0 0 me® 0 "‘
0 0 1 0 0 0
A4 BF = 0 m® mt 0 0 0 (84)
0 0 0 mst O 130
1 0 0 0 0 0
L0 0 0 1 0 0

If G is now set equal to B*!, the closed-loop transfer
matrix is
C(sI—A—BF)~'BB*!
(s2—mals —m®) (s2—msls —my0), 0, 0
0 (s2—myls —m ) (P —msls—my0), O
0 0 (s2—mls — 119 (s2—mals — mo0)

- ) ’ ] (85)

(s2—my's — m219) (52— w1t — 1,9} (52— mals — m30)

2

If the m ;i are suitably chosen, then, in effect, the pilot
will be faced with the task of controlling three highly
stable second-order systems. This example serves only
to indicate a potential practical area of application for
the ideas presented in this paper.

The above examples illustrate the techniques de-
veloped for synthesizing decoupling controllers for
multivariable systems.
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VIII. CoNncLUSIONS

The problem of decoupling a time-invariant linear
system using state variable feedback has been con-
sidered. Necessary and sufficient conditions for de-
coupling have been determined in terms of the non-
singularity of a matrix B*. The class ® of all feedback
matrices which decouple a system has been character-
ized, and a synthesis technique for the realization of de-
sired closed-loop pole configurations has been de-
veloped. In essence, the major theoretical questions re-
lating to decoupling via state variable feedback have
been resolved for time-invariant linear systems.

A number of interesting potential areas of future re-
search arise from the results obtained here. In particu-
lar, the question of extending the theory to the time-
varying situation is of considerable interest. Some pre-
liminary results relating to stabilization have already
been obtained.! The design of aircraft and V/STOL
stability augmentation systems via decoupling tech-
niques is a potential practical area of application as was
mentioned in Section VII. Practical implementation of
the techniques presented in this paper has begun but
much remains to be done before the theory is trans-
formed into a practical design technique.
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