& Penn

ESE601: Hybrid Systems

Introduction to verification

Spring 2006

Suggested reading material

Papers (R14) - (R16) on the website.
The book "Model checking” by Clarke, Grumberg and Peled.

& Penn

What is verification?

We need to make sure that the engineering systems we
build are safe, functioning correctly, etc.

Systems can mean software, hardware, protocols, etc.
Thus, not restricted to hybrid systems. In fact,
verification originates in computer science, i.e. for
discrete event systems.

How is verification done? The system is represented as
transition system, the properties to be verified are
represented as temporal logic formulas, whose truth
values are to be determined/verified.

& Penn

Transition Systems

A ftransition system
| T=(Q,Z,-,0,{))
consists of

A set of states Q

A set of events X o
0]
A set of observations O .

The transition relation ¢ —4q; (/
The observation map <q1> =0,
G
Initial may be incorporated o

The sets Q, ¥, and O may be infinite
Language of T is all sequences of observations . @
1 3

& Penn

0,

A painful example

The parking meter

2 — op
ti ck ti ck ti ck ti ck .g .E ‘rlckz
5p

States Q ={0,1,2,...,60}

Tlck

Events {tick,bp}
Observations {exp,act}

A possible string of observations (exp,act,act,act,act,act.exp,..)
& Penn

Temporal logic (informal)

Temporal logic involves logical propositions whose truth
values depend on time.

“Tomorrow is Thursday”

The time is related to the execution steps of the
Transition system.

The asserted property is related to the observation of
the transition system.

"At the next state, the meter expires”

& Penn

The basic verification problem

Given transition system T, and temporal logic formula ¢

Basic verification problem

Tl=y

The transition system satisfies the formula if:
-All executions satisfy the formula (linear time)
-The initial states satisfy the formula (branching time)

& Penn

Another verification problem

Given transition system T, and specification system S

Another verification problem

L(T) & L(S)

Language inclusion problems. Recall supervisory
control problem.

& Penn

Linear temporal logic

Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If ¥1 and ¥2 are formulas then

©1V P2 —p1
Temporal operators
If ©1 and @2 are formulas then
01 U o O 1

& Penn

Linear temporal logic

LTL formulas are evaluated over (infinite) sequences of
execution, which are called words.

Ex: w=(exp.act,act,act,act,act,exp,..)
(w, 0)|=exp, (w, 1)|=act, (w, 1)|=—exp, - - -

A word w satisfies a formula iff (w,0) satisfies it.
wi=¢ = (w,0)=¢
wi= O ¢ & (w,1)=¢
w=0 U ¢ & (w,i)=0, (w,N)=¢,0 <7 < N.

& Penn

Linear temporal logic

Express temporal specifications along sequences

Informally Syntax Semantics

Eventually p Op EEEEEEEY
Always p Op ppPPPPPPPPPPPP

If p then next q p = Ogq k ok ok x % % % pg

p until q pUq ppppppppppq * * *

& Penn

Linear temporal logic

Syntactic boolean abbreviations

Conjunction 1N o2 = (71 V)
Implication P17 P2 = TP1V P2
Equivalence p1 = 02 = (p1 = p2) A (p2 = 1)

Syntactic temporal abbreviations

Eventually Ce=TUp
Always p =707
In 3 steps O3 =000

& Penn

Linear temporal logic semantics

The LTL formulas are interpreted over infinite (omega) words

W = Po P1 P2 P3 P4.- - .

(w,i) Fp iff pi=p
(w, 1)

(w, 1)

(w, 1)

(w,7) Fe1 U po

=, or (w,1)

= iff (w,i) f=¢
= Qe iff (w,i+1)=¢p

:QPQ

37> i (w,)) = and Vi <k<j (w,k)=ps

. |

w =¢ iff (w,0)

Ty iff Yw € L(

Y
T) w

LTL examples

Two processors want to access a critical section. Each processor can has three
observable states

p1={inCS, outCS, reqCS}
p2={inCS, outCS, reqCS}

Mutual exclusion
Both processors are not in the critical section at the same time.

—(p; = inCS A py = inCS)

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

P11 = ’reqCS — <>p1 m— Z’nCS

& Penn

LTL Model Checking

Given transition system and LTL formula we have

LTL model checking

System verified
Determine if 1" |= /
\ Counterexample

The transition system satisfies the formula if all

executions satisfy it.
LTL model checking is decidable for finite T

Complexity : O(n +m)2°0%)

/)

states transitions formula

& Penn length

Computational tree logic (CTL)

CTL is based on branching time. I'ts formulas are evaluated over the

tree of trajectories generated from a given state of the transition
system.

|

O®

_ e

& Penn

Computation tree logic

CTL syntax

The CTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If Y1 and ¥2 are formulas then

©1 VP2 Q1

Temporal operators
If 1 and @2 are formulas then

1 U @9 30 ¢y A0,

& Penn

Computation tree logic (informally)

Express specifications in computation trees (branching time)

Informally Syntax Semantics
Inevitably next p VOp /g\
@ @
Possibly always p J09p
I
@ @

& Penn

CTL Model Checking

Given transition system and CTL formula we have

CTL model checking

System verified
Determine if 1" |= /
\ Counterexample

The transition system satisfies the formula if all initial
states satisfy it.
CTL model checking is decidable for finite T

Complexity : O((n +m)k)

/1N

states transitions formula

& Penn length

Comparing logics

Dealing with complexity

Bisimulation

Simulation

Language Inclusion

& Penn

Language Equivalence

Consider two transition systems T, and T, over same 2 and O

T T,
V K
0 0

Languanges are equivalent L(T,)=L(T))

& Penn

LTL equivalence

Consider fwo fransition systems T, and T, and an LTL formula

Language equivalence

If L(Tl) — L(TQ) then T} |:g0 =15 ‘:gp

Language inclusion

If L(Tl) C L(TQ) then 75 ‘ZQO — 17 ‘:go

Language equivalence and inclusion are difficult to check
& Penn

Language Equivalence 5> CTL equivalence

Simulation Relations

Consider two transition systems
T=(Q.Z,-,0,())
-‘-2 — (QZ: Z/ _)2/ O, <>2)

over the same set of labels and observations. A relation S € Q; x Q,
is called a simulation relation (of T,byT,) if it
1. Respects observations

if (9,p) €S then(q), = (p),

2. Respects transitions

if (q,p) e S and qi>q', then pi>p' forsome(q',p')eS

If a simulation relation exists, then T, < T,
& Penn

Game theoretic semantics

Simulation is a matching game between the systems

T, T,

Check that T, < T, but it is not true that T, <T,

& Penn

The parking example

The parking meter

ti ck ti ck ti ck “tick T'Ck
op

A coarser model

tick
f tick

tick

Tlck

S ={(0,0),(1,many)...., (60, many)}
& Penn

Simulation relations

Consider two transition systems T, and T,

Simulation implies language inclusion

If T1 STQ then L(Tl) gL(Tg)

CompleXiTy of L(Tl) g L(TQ) O((nl _I_m1)2n2)

Complexity of 17 <15 O((ny +mq)(ng +my))

& Penn

Two important cases

Abstraction

Refinement

& Penn

Bisimulation Relations

Consider two transition systems

T=(Q.Z,-.,0,())
=(Q,,Z,-,,0,(),)

over the same set of labels and observations. A relation S € Q; x Q,
is called a bisimulation relation if it
1. Respects observations

if (q,p) € S then(q), = (p),

2. Respects ’rransu’rlons

if (q,p) €S and q—>q then p—>p forsome(q',p')eS
if (q,p)eS and p—>p, then q—>q forsome(q',p)eS

If a simulation relation exists, then T, =T,
& Penn

Bisimulation

Consider two transition systems T, and T,

Bisimulation

11 =15 it 17 <T5 N Ty, <Tj

Bisimulation is a symmetric simulation
Strong notion of equivalence for transition systems

CTL* (and LTL) equivalence
It 77 =15 then Tj |:g0 <15 ‘:gp

It T1 = T2 then L(Tl) — L(TQ)

& Penn

Special quotients

Abstraction

When is the quotient language equivalent or bisimilar to T ?
& Penn

Quotient Transition Systems

Given a transition system
T=(QZx,-0,))
and an observation preserving partition * € Q xQ , define
T/ ~=(Q/~%,—>_,0,0).)

naturally using
1. Observation Map

(P)_ =0 iff there exists pePwith (p)=o
2. Transition Relation

P . P' iff there exists peP,p eP with p > p

& Penn

Bisimulation Algorithm

Quotient system T/ ~ always simulates the original system T

When does original system T simulate the quotient system T/~ ?

(o] 0,
O @

S
0, 0/ -®

& Tenn

Bisimulation Algorithm

Quotient system T/ ~ always simulates the original system T

When does original system T simulate the quotient system T/~ ?

(o] 0,
O @

»
»

& Tenn

Transition Systems

A region is a subset of states P 2 Q

We define the following operators

Pre. P)={qeQ|3peP qi>p}
Pre(P)={qeQ|3oeX 3dpeP qi>p}

Post,(P)={qcQlIpcP p->q)
Post(P)={qeQ|3oeX 3FpeP PLQ}

& Penn

Bisimulation algorithm

Bisimulation Algorithm

initialize Q/. ={p~gq iff <g>=<p>}

while JdP,P € /. such that (£ C PN Pre(P)#CP
P, := PN Pre(P)
Py := P\ Pre(P)
Q/~ = (Q/ NP} U{P, P}

end while

If Tis finite, then algorithm computes coarsest quotient.
If Tis infinite, there is no guarantee of termination

& Penn

Relationships

Bisimulation

Strongest, more properties, easiest to check

!

Simulation

Weaker, less properties, easy to check

!

Language Inclusion

Weakest, less properties, difficult to check

& Penn

& Penn

Complexity comparisons

Bisimula’rion
O(m - log(n))

!

Simulation

!

Language Equivalence

O(m - 2")

