
Homework 1

ESE 601, Spring 2006

Truong Xuan Nghiem

nghiem@seas.upenn.edu

Problem 1

1. We have:

• U0 = V which is a subspace of Rn. Thus, U0 is a vector space

• Assume that Ui is a vector space, for i ≥ 0. We will show that Ui+1 = Ui ∩A−1Ui is also a vector
space. From the definition of Ui+1, it is clear that Ui+1 ⊆ Ui. We also have:

– For any x, y ∈ Ui+1: x, y ∈ Ui ∩ A−1Ui, thus x ∈ Ui and x ∈ A−1Ui ⇒ Ax ∈ Ui. Similarly,
y ∈ Ui and Ay ∈ Ui. Since Ui is a vector space, it follows that x + y ∈ Ui and Ax + Ay =
A(x + y) ∈ Ui. Therefore, x + y ∈ Ui ∩ A−1Ui = Ui+1.

– For any number a ∈ R and x ∈ Ui+1: because x ∈ Ui, Ax ∈ Ui, and Ui is a vector space, we
have ax ∈ Ui and aAx = A(ax) ∈ Ui, which means ax ∈ Ui ∩ A−1Ui = Ui+1

Thus, Ui+1 ⊆ Ui is a vector space.

By induction on i, it follows that Ui, where i ≥ 0, are vector spaces.

Since, for any i ≥ 0, Ui+1 ⊆ Ui, and Ui+1 and Ui are vector spaces, dim(Ui+1) ≤ dim(Ui), i.e. the
dimensions of the sequence of spaces Ui are non-increasing. There are only two cases:

• If Ui+1 is a proper subset of Ui, then dim(Ui+1) < dim(Ui). This can be proved by contradiction.
Assume dim(Ui+1) = dim(Ui) = k, then there exists a basis {u1, u2, . . . , uk} of Ui+1 such that
Ui+1 = span{u1, u2, . . . , uk}. Since dim(Ui) = k and u1, u2, . . . , uk ∈ Ui, {u1, u2, . . . , uk} is also
a basis of Ui. Thus Ui = span{u1, u2, . . . , uk} = Ui+1, which contradicts the hypothesis that
Ui+1 ⊂ Ui.

• If Ui+1 = Ui, then it must be that Ui+2 = Ui+1, Ui+3 = Ui+2, and so on. In other words, for all
j ≥ i, Uj+1 = Uj = Ui

Since dim(V) is finite, it follows that the sequence dim(Ui), for i ≥ 0, is decreasing until the first finite
index N such that UN+1 = UN , after which we have Uj+1 = Uj, ∀j ≥ N , and the iteration terminates.
In other words, the iteration of the algorithm terminates after a finite number of steps.

2. The fix point of the iteration is the index N , corresponding to the vector space UN .

Since UN+1 = UN ∩ A−1UN = UN , we have UN ⊆ A−1UN . Thus, for any x ∈ UN , x ∈ A−1UN ,
which means Ax ∈ UN . Therefore AUN ⊆ UN , or equivalently, UN is invariant under A.

1

3. We will prove that UN is the largest invariant subspace in V by contradiction.

Assume that UN is not the largest invariant subspace in V , i.e. there exists a subspace W ⊆ V such
that

• W is A-invariant: AW ⊆ W

• W * UN

The vector space W may be a superset of UN or not. However, we only need to consider the case
when W ⊃ UN since for the case W 6⊃ UN , we can always define W ′ = UN ∪ W which is a superset of
UN and is invariant under A in V (because for all x ∈ W ′, x ∈ UN or x ∈ W , thus Ax must be in UN

or W , which means Ax ∈ W ′ or AW ′ ⊆ W ′).

We’ve shown in part 1 that dim(Ui), where i ≥ 0, is decreasing until i = N . Also dim(W) > dim(UN)
since UN is a proper subset of W . Thus, there are only two cases that may happen

• There exists M < N such that UM = W , i.e. W is in the sequence Ui produced by the iteration.
However, as shown in part 1, the iteration must stop at i = M and Ui = UM = W for all i > M ,
which contradicts the existence of UN ; or

• The vector space W is not in the sequence Ui produced by the iteration. In this case, because
W ⊂ V (W cannot equal V , otherwise W = U0 which is in the sequence) and dim(Ui) is decreasing,
there must exist M ≥ 0 such that M < N and UM ⊃ W , but UM+1 ⊂ W . For every x in W , we
have x ∈ UM and Ax ∈ W ⇒ Ax ∈ UM which means x ∈ A−1UM . Thus, x ∈ UM ∩ A−1UM =
UM+1. Therefore, W ⊆ UM+1 which contradicts the fact that UM+1 is a proper subset of W .

By proof by contradiction, it follows that UN is the largest A-invariant subspace of V .

Problem 2 To prove L2 = L∗
1L3, we will show that L2 ⊆ L∗

1L3 and L2 ⊇ L∗
1L3.

Prove L2 ⊆ L∗
1L3: Given any string w in L2. Since L2 = L1L2 ∪L3, w must be in L3 or in L1L2.

If w ∈ L3 then it is in L∗
1L3.

Otherwise, w is in L1L2 and it can be decomposed into two strings, w1 ∈ L1 and w♭
1 ∈ L2, such that

w = w1w
♭
1. String w1 must be non-empty since ǫ 6∈ L1, however w♭

1 may be empty. Because w1 6= ǫ,
|w♭

1| < |w| (where | � | denotes the length of a string). Perform the following algorithm: for k = 1, 2, . . .
and w♭

k ∈ L2

• If w♭
k = ǫ or w♭

k ∈ L3 then the iteration stops.

• Otherwise, w♭
k must be in L1L2 and it can be decomposed into two strings, wk+1 ∈ L1 and w♭

k+1
∈

L2, such that w♭
k = wk+1w

♭
k+1

. String wk+1 is non-empty (because ǫ 6∈ L1), thus |w♭
k+1

| < |w♭
k|.

Repeat the iteration for w♭
k+1

.

Because |w♭
k| is strictly monotonically decreasing, and |w♭

k| < |w|, and |w| is finite, the algorithm must
terminate after a finite number of steps, resulting in w = w1w2 . . . wm−1w

♭
m where w1, w2, . . . , wm−1

are in L1 and w♭
m is either in L3 or empty. If w♭

m = ǫ then L3 must contain ǫ, i.e. w♭
m ∈ L3, because

otherwise, ǫ = w♭
m ∈ L2 = L1L2 ∪ L3 ⇒ ǫ ∈ L1L2 ⇒ L1 ∋ ǫ which contradicts the assumption that L1

does not contain the empty string. Therefore, w ∈ Lm−1
1 L3 ⇒ w ∈ L∗

1L3.

It follows that w ∈ L∗
1L3 for all w ∈ L2. In other words, L2 ⊆ L∗

1L3.

2

Prove L2 ⊇ L∗
1L3: we have L∗

1L3 =
⋃

k≥0
Lk

1L3, thus we only need to show that Lk
1L3 ⊆ L2 for all

k ≥ 0. We will prove this by induction on k.

• Basis: When k = 0, we have Lk
1L3 = L3 ⊆ L2 since L2 = L1L2 ∪ L3.

• Induction: Assume that Lk
1L3 ⊆ L2, where k ≥ 0, we need to prove that Lk+1

1 L3 ⊆ L2. For any
string w ∈ Lk+1

1 L3, w can be written as w = w1w2 where w1 ∈ L1 and w2 ∈ Lk
1L3. It follows that

w2 ∈ L2 and w ∈ L1L2. Because L1L2 ⊆ L2, w must be in L2. Thus, Lk+1
1 L3 ⊆ L2.

Therefore, Lk
1L3 ⊆ L2, ∀k ≥ 0, which means L∗

1L3 ⊆ L2.

We have shown that L2 ⊆ L∗
1L3 and L2 ⊇ L∗

1L3. Thus, L2 = L∗
1L3.

Problem 3

1. We will prove by induction on i that Qi
r is the set of all states reachable from q0 by strings of

length i.

• Basis: when i = 0, Q0
r = {q0} which is clearly the set of all states reachable from q0 by the empty

string ǫ whose length is 0. Because D is a DFA (deterministic finite automaton), any state of D

that is different from q0 cannot be reached from q0 by the empty string.

• Induction: assume that Qi
r, where i ≥ 0, is the set of all states reachable from q0 by strings of

length i. We need to prove that Qi+1
r is the set of all states reachable from q0 by strings of length

i + 1.

– For any state q ∈ Qi+1
r , from the definition of Qi+1

r , it follows that there exist a state p ∈ Qi
r

and a symbol a ∈ A such that δ(p, a) = q. Because p ∈ Qi
r, we have δ(q0, w) = p for some

string w of length i. Thus, δ(q0, wa) = q in which string wa is of length i + 1. Therefore, all
states in Qi+1

r are reachable from q0 by some string of length i + 1. However, this does not
prove that all states reachable from q0 by strings of length i + 1 are in Qi+1

r .

– If q′ is a state reachable from q0 by a string w′ such that |w′| = i + 1, then it must be that
w′ = ŵa for some symbol a ∈ A and some string ŵ of length i. Let q̂ = δ(q0, ŵ), then
δ(q̂, a) = q′. Since q̂ is reachable from q0 by string ŵ of length i, q̂ must be in Qi

r. From the
definition of Qi+1

r , it follows that q′ ∈ Qi+1
r . Thus, all states reachable from q0 by strings of

length i + 1 are in Qi+1
r .

Therefore, Qi+1
r is the set of all states reachable from q0 by strings of length i + 1.

However, it is generally false that there is an index i0 such that Qi0+1
r = Qi0

r . This is shown in the
following counter-example. Consider the simple DFA in figure 1, with Q = {q0, q1}, A = a, Q0 = {q0},
and Qm = ∅. Applying the algorithm to this DFA, we have Q0

r = {q0}, Q1
r = {q1}, Q2

r = {q0},

q0 q1

a

a

Figure 1: Counter-example of problem 3

Q3
r = {q1}, In other words, Qi

r = {q0} whenever i is even, and Qi
r = {q1} whenever i is odd.

Therefore, there is no index i0 such that Qi0+1
r = Qi0

r .

3

2. Using the given algorithm, it is generally false that Qi0
r = Qr for some index i0. In the example

given in part 1 (figure 1), it is easy to see that Qr = Q = {q0, q1}, however Qi
r is either {q0} or {q1}

depending on the value of i. Thus, there never exists an index i0 such that Qi0
r = Qr for this DFA.

Therefore, the statement is generally false.

3. First, we will prove by induction on i that Qi
r is the set of all states reachable from q0 by strings

w such that |w| ≤ i.

• Basis: when i = 0, Q0
r = {q0} which is the set of all states reachable from q0 by the empty string

ǫ whose length is 0 ≤ i.

• Induction: assume that Qi
r, where i ≥ 0, is the set of all states reachable from q0 by strings of

length less than or equal to i. For any state q ∈ Qi+1
r , since

Qi+1
r = Qi

r ∪ {q ∈ Q | ∃p ∈ Qi
r,∃a ∈ Σ : q = δ(p, a)},

there must exist a string w such that |w| ≤ i and either δ(q0, w) = q or δ(q0, wa) = q for some
a ∈ Σ. Thus, all states in Qi+1

r are reachable from q0 by strings w such that |w| ≤ i + 1. On the
other hand, for any state q′ reachable from q0 by a string w′ such that |w′| ≤ i + 1, it must be
that either |w′| ≤ i or, if |w′| = i+ 1, w′ = ŵa for some symbol a ∈ Σ and some string ŵ of length
i. In the latter case, let q̂ = δ(q0, ŵ), then δ(q̂, a) = q′ and q̂ ∈ Qi

r. Thus, q′ ∈ Qi+1
r , which means

that all states reachable from q0 by strings of length i + 1 or less are in Qi+1
r . Therefore, Qi+1

r is
the set of all states reachable from q0 by strings w with |w| ≤ i + 1.

The number of states of D is finite. For any state q ∈ Qr, since it is reachable from q0, there must
exist a smallest integer Nq which is finite such that δ(q0, w) = q for some string w of length Nq. Because
Qr is finite and Nq is finite for each q ∈ Qr, max

q∈Qr

Nq exists and is finite. Let i0 be this maximum value. It

follows that every state q in Qr is reachable from q0 by a string of length i0 or less. Thus, Qi0
r = Qr (by

the above result). We also have Qi0
r ⊆ Qi0+1

r (by the definition of Qi0+1
r) as well as Qi0+1

r ⊆ Qr = Qi0
r .

Hence, Qi0
r = Qi0+1

r .

To prove that i0 is smallest, we assume that it is not true, i.e. there exists j < i0 such that Q
j
r = Qr.

Then all states q ∈ Qr are reachable from q0 by strings w such that |w| ≤ j < i0. Thus Nq < i0 for all
q ∈ Qr. It follows that max

q∈Qr

Nq < i0 which contradicts the fact that i0 = max
q∈Qr

Nq. Therefore, i0 must

be smallest.

To conclude, there exists a smallest integer i0 such that Qi0+1
r = Qi0

r = Qr.

Problem 4

1. The deterministic hybrid automaton modeling the system is given in figure 2. The hybrid
automaton has four discrete modes, corresponding to the four locations q1, q2, q3, and q4, which have
invariants corresponding to the four quadrants. The specification, according to the definition given in
reference [R1], is as follows:

• Set of locations L = {q1, q2, q3, q4}

• Continuous state space X = R2

• Continuous external variables space W = ∅

4

{

ẋ1 = 1

ẋ2 = −3
{

x1 ≥ 0

x2 > 0

q1

Act

Inv

{

ẋ1 = −3

ẋ2 = −1
{

x1 > 0

x2 ≤ 0

q2

Act

Inv

{

ẋ1 = 3

ẋ2 = 1
{

x1 < 0

x2 ≥ 0

q4

Act

Inv

{

ẋ1 = −1

ẋ2 = 3
{

x1 ≤ 0

x2 < 0

q3

Act

Inv

Guard: x2 = 0

Guard: x1 = 0

Guard: x2 = 0

Guard: x1 = 0

x
′

1
= x1

x
′

2
= x2

x
′

1
= x1

x
′

2
= x2

x
′

1
= x1

x
′

2
= x2

x
′

1
= x1

x
′

2
= x2

Figure 2: Hybrid Automaton modeling the system in Problem 4

• Location invariants:

– Inv(q1) = {(x1, x2) ∈ R2 |x1 ≥ 0, x2 > 0}

– Inv(q2) = {(x1, x2) ∈ R2 |x1 > 0, x2 ≤ 0}

– Inv(q3) = {(x1, x2) ∈ R2 |x1 ≤ 0, x2 < 0}

– Inv(q4) = {(x1, x2) ∈ R2 |x1 < 0, x2 ≥ 0}

• Location dynamics (activities) Act:

– Act(q1) =

{

ẋ1 = 1
ẋ2 = −3

– Act(q2) =

{

ẋ1 = −3
ẋ2 = −1

– Act(q3) =

{

ẋ1 = −1
ẋ2 = 3

– Act(q4) =

{

ẋ1 = 3
ẋ2 = 1

• Set of transitions:

– Transition from q1 to q2 with Guardq1,q2
= {(x1, x2) ∈ R2 |x2 = 0} and Jumpq1,q2

=
{(x1, x2, x

′

1, x
′

2) ∈ R4 |x
′

1 = x1, x
′

2 = x2}

– Transition from q2 to q3 with Guardq2,q3
= {(x1, x2) ∈ R2 |x1 = 0} and Jumpq2,q3

=
{(x1, x2, x

′

1, x
′

2) ∈ R4 |x
′

1 = x1, x
′

2 = x2}

– Transition from q3 to q4 with Guardq3,q4
= {(x1, x2) ∈ R2 |x2 = 0} and Jumpq3,q4

=
{(x1, x2, x

′

1, x
′

2) ∈ R4 |x
′

1 = x1, x
′

2 = x2}

– Transition from q4 to q1 with Guardq4,q1
= {(x1, x2) ∈ R2 |x1 = 0} and Jumpq4,q1

=
{(x1, x2, x

′

1, x
′

2) ∈ R4 |x
′

1 = x1, x
′

2 = x2}

5

2. For any non-zero initial continuous state x(0) 6= 0, the hybrid automaton starts in one of the
four locations q1, q2, q3, and q4, according to the quadrant that (x1,0, x2,0) is in.

• If the hybrid automation is in location q1, i.e. x1 ≥ 0 and x2 > 0, x1 keeps increasing (since ẋ1 = 1)
while x2 keeps decreasing faster (since ẋ2 = −3) until x2 = 0. When x2 = 0, the invariant is
violated and the guard of the sole transition to q2 is satisfied, thus the hybrid automaton changes
to location q2.

• If the hybrid automation is in location q2, i.e. x1 > 0 and x2 ≤ 0, x2 keeps decreasing (since
ẋ2 = −1) while x1 decreases faster (since ẋ1 = −3) until x1 = 0. When x1 = 0, the invariant is
violated and the guard of the sole transition to q3 is satisfied, thus the hybrid automaton changes
to location q3.

• If the hybrid automation is in location q3, i.e. x1 ≤ 0 and x2 < 0, x1 keeps decreasing (since
ẋ1 = −1) while x2 increases faster (since ẋ2 = 3) until x2 = 0. When x2 = 0, the invariant is
violated and the guard of the sole transition to q4 is satisfied, thus the hybrid automaton changes
to location q4.

• If the hybrid automation is in location q4, i.e. x1 < 0 and x2 ≥ 0, x2 keeps increasing (since
ẋ2 = 1) while x1 increases faster (since ẋ1 = 3) until x1 = 0. When x1 = 0, the invariant is
violated and the guard of the sole transition to q1 is satisfied, thus the hybrid automaton changes
to location q1.

From above, we can see that the hybrid automaton keeps switching repeatedly between the four loca-
tions, without making (x1, x2) reach the origin.

On the other hand, it is easy to see that in each location we have d

dt (|x1(t)| + |x2(t)|) = −2.
Therefore, the sum |x1(t)| + |x2(t)| decreases with time (in other words, (x1, x2) goes to (0, 0)) and
(x1, x2) reaches the origin after 1

2
(|x1,0| + |x2,0|) units of time. However, the continuous state cannot

arrive at the origin without going through an infinite number of transitions between the four locations
q1, q2, q3, and q4 (shown above).

It follows that the system has Zeno execution for every non-zero initial state. The Zeno time is
1

2
(|x1,0| + |x2,0|).

Problem 5

1. This system has a livelock whenever x1 reaches 0. It is because when x1 = 0, sgn(x1) is
undefined, thus x1 may become either positive (x1 > 0) or negative (x1 < 0). However, since ẋ1 =
− sgn(x1), variable x1 will return to 0 immediately. This is repeated again and again, and the system
switches infinitely between the two modes: the mode when x > 0 and the mode when x < 0. Thus, the
system has a livelock.

2. Using the forward Euler method to approximate the derivatives of x1 and x2 with respect to
time, we have

x1,k+1 − x1,k

h
= − sgn(x1,k)

x2,k+1 − x2,k

h
= −x2,k

6

which leads to

x1,k+1 = x1,k − h sgn(x1,k)

x2,k+1 = x2,k − hx2,k

With initial condition (x1,0, x2,0) = (1, 1), we can simulate the execution of the system using the
formulae above with k = 1, 2, 3, . . ., for time 0 ≤ t = k.h ≤ 5. For three different values of time step
h = 0.1, 0.05, 0.01, we have three simulations. Their results are given in figure 3. The upper plot shows
the values of x1(t) and x2(t) of all three simulations. The lower plot shows the graph of (x1, x2) in
the state space plane. In the graphs, we can see the repeated switches of the system between the two
modes: x > 0 and x < 0, which illustrate the livelock of the system.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

x
1

x
2

h = 0.1
h = 0.05
h = 0.01

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

h = 0.1

h = 0.05

h = 0.01

Figure 3: Simulation results with h = 0.1 (dotted line), h = 0.05 (dashed line), and h = 0.01 (solid line)

7

3. With the new definition of sgn(�) we have

• The differential equation ẋ2 = −x2 gives the solution x2(t) = x2,0e
−t. With x2,0 = 1, we have

x2(t) = e−t, t ≥ 0

• With x1,0 = 1 > 0, we have the differential equation ẋ1 = − sgn(x1) = −1, which gives the
solution x1(t) = 1− t for t ≥ 0 and while x1 > 0. At time t = 1, x1 is 0 and, since sgn(0) = 0, the
differential equation for x1 becomes ẋ1 = 0. Thus, after time instant t = 1, the value of x1 does
not change and is 0. Mathematically, we have:

x1(t) =

{

1 − t if 0 ≤ t < 1

0 if t ≥ 1

In this solution, we do not see the repeated switches of the system between the two modes, x1 > 0
and x1 < 0, as in the results of the previous part. It is because we introduced a new mode (the sliding
mode) to the system, corresponding to x1 = 0, by defining the value of sgn(0) to be 0. Therefore, the
new system does not have a livelock as does the original system. If we plot the graph of (x1, x2) of the
new system, we will have the result as in figure 4. As we can see, the main difference between the plots
in the previous part and this plot is that there are no repeated switches between x < 0 and x > 0 in
this plot. The vertical line represents the sliding mode of the system.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Figure 4: Graph of (x1, x2) of the new system with the sliding mode

8

