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1 Introduction

This document is intended to be used by new comers to Uppaal and veri�cation. Students or
engineers with little background in formal methods should be able to use Uppaal for practical
purposes after this tutorial.

Section two describes Uppaal and section three is the tutorial itself.

2 Uppaal

Uppaal is a tool box for validation (via graphical simulation) and veri�cation (via automatic
model-checking) of real-time systems. It consists of two main parts: a graphical user interface and
a model-checker engine. The user interface is implemented in Java and is executed on the users
work station. It requires that Java 1.2 or higher is installed on the computer. The engine part
is by default executed on the same computer as the user interface, but can also run on a more
powerful server.

The idea is to model a system using timed-automata, simulate it and then verify properties
on it. Timed-automata are �nite state machines with time. A system consists of a network of
processes that are composed of locations. Transitions between these locations de�ne how the
system behaves. The simulation step consists of running interactively the system to check that it
works as intended. Then we can ask the veri�er to check reachability properties, i.e. if a certain
state is reachable or not. This is called model-checking and it is basically an exhaustive search
that covers all possible dynamic behaviours of the system.

More precisely, the engine uses on-the-
y veri�cation combined with a symbolic technique re-
ducing the veri�cation problem to that of solving simple constraint systems [YPD94, LPY95]. The
veri�er checks for simple invariants and reachability properties for eÆciency reasons. Other prop-
erties may be checked by using testing automata [JLS96] or the decorated system with debugging
information [LPY97].

3 Learning Uppaal

Uppaal is based on timed automata, that is �nite state machine with clocks. The clocks are the
way to handle time in Uppaal. Time is continuous and the clocks measure time progress. It is
allowed to test the value of a clock or to reset it. Time will progress globally at the same pace for
the whole system.

A system in Uppaal is composed of concurrent processes, each of them modeled as an automa-
ton. The automaton has a set of locations. Transitions are used to change location. To control
when to �re a transition, it is possible to have a guard and a synchronization. A guard is a con-
dition on the variables and the clocks saying when the transition is enabled. The synchronization
mechanism in Uppaal is a hand-shaking synchronization: two processes take a transition at the
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same time, one will have a a! and the other a a?, a being the synchronization channel. When
taking a transition actions are possible: assignment of variables or reset of clocks.

The following examples will make you familiar with this short description.

3.1 Overview

Uppaal main window (�gure 1) has two main parts: the menu and the tabs.

Figure 1: Overview of Uppaal.

The menu is described in the integrated help, accessible through the help menu. The help
describes the GUI in detail, so this tutorial will focus on how to use the tool. The three tabs give
access to the three components of Uppaal that are the editor, the simulator and the veri�er.

Figure 1 shows the editor view. The idea is to de�ne templates (like in C++) for processes that
are instantiated to have a complete system. The motivation for the templates is that system often
have several processes that are very alike. The control structure (i.e. the locations and edges)
is the same, only some constant or variable is di�erent. Therefor templates can have symbolic
variables and constants as parameters. A template may also have have local variables and clocks.

start end

Figure 2: Your �rst automaton.
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To get a �rst contact with Uppaal, double click in the drawing area to get a location, repeat
this, you have two. Double click on these locations to rename them to start and end. Click on
the Transition Mode button, click on the start location and on the end location. Right click on
the start location and mark it as initial. A small circle appears inside the state. You have your
�rst automaton ready, as depicted in �gure 2.

Click on the Simulator tab to start the simulator, click on the yes button that will pop up
and you are ready to run your �rst system.

Figure 3: A snapshot of the graphical simulator.

Figure 3 shows the simulator view. On the left you will �nd the control part where you can
choose the transitions (upper part) and replay/save/load a trace (lower part). In the middle are
the variables and on the right the system itself.

To simulate our trivial system pick one of the enabled transitions in the list in the upper
left part of the screen. Of course there is only one transition in our example. Click Next. The
process view to the right will change (the red dot indicating the current location will move) and
the simulation trace will grow.

We have now simulated our system and will proceed with veri�cation. Click on the Verifier
tab. The veri�er view as in Figure 4 is displayed. The upper section allow you to specify queries
to the system. The lower part logs the communication with the model-checking engine.

Enter the text E<>P.end in the Query �eld below the Overview. This is the Uppaal notation
for the temporal logic formula 9 � P:end and should be understood as \is it possible to reach the
location end in process P". Click Model Check to let the engine verify this. The bullet in the
overview will turn green indicating that he property indeed is satis�ed.

The goal of the rest of this document is to explore some key points of Uppaal though examples.

3.2 Mutual Exclusion Algorithm

We will study now the known Petterson's mutual exclusion algorithm to see how we can derive a
model as an automaton from a program/algorithm and check properties related to it.

The algorithm for two processes is as follows in C:
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Figure 4: A snapshot of the veri�er view.

Process 1 Process 2
req1=1; req2=1;

turn=2; turn=1;

while(turn!=1 && req2!=0); while(turn!=2 && req1!=0);

//critical section //critical section
job1(); job2();

req1=0; req2=0;

You will construct the corresponding automata. Notice that the protocol is symmetric, so we
may use a template of Uppaal to simplify the model. First reset the system (New system) to
clear the \Hello World" example. Rename the default template P to mutex.

We will abstract the actual work in the critical section since it has no interest here. The
protocol has four states that come directly from the described algorithm, similar to goto labels:

Process 1
idle:

req1=1;

want:

turn=2;

wait:

while(turn!=1 && req2!=0);

CS:

//critical section
job1();

//and return to idle req1=0;

Draw the automaton as depicted in �gure 5.
Now you will de�ne it as a template: double click on the parenthesis below the template name.

There you can de�ne the template parameters. Type int[0,1] req1,req2 ; const me which
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idle want

waitCS

req1:=1

turn:=(me==1 ? 2 : 1)

turn==me

req2==0

req1:=0

Figure 5: Mutex template

means that you de�ne three variables for instantiation of type integer, bounded between 0 and 1,
boolean in fact. The last parameter will be a constant.

As you guess now from your drawing, two instances of the type P1:=mutex(req1,req2,1);

and P2:=mutex(req2,req1,2); will do the job. Examine how the expression (like C syntax)
turn:=(me==1 ? 2 : 1) will evaluate. To create the instances open the Process assignment

label in the Project tree and type the declarations above.
Something is still missing: the variables, they have to be declared. Click on the Global

declarations label and declare: int[0,1] req1,req2; and int[1,2] turn;We have to de�ne
the system now: click on the System definition label and de�ne there system P1,P2;.

Now you have de�ned your template, instantiated them, used the instantiations in the system
and declared proper variables. As you noticed the variables declared are global! This is used for
turn that is common. The scope of the name declaration are local �rst and then global: you
notice this on the parameters of the templates and the name of the global variables. The names
in the model are chosen to be the same in the di�erent places on purpose to show how it works.

Now click on the Simulator tab and examine how the two automata were instantiated. Look
particularly at the names of the two automata that are symmetric. You can simulate your system
by choosing interactively the transitions. Try to reach the critical section in both processes at the
same time . . . well you cannot, a better idea is to use the veri�er to be sure of this.

Click on the Verifier tab, click on the Insert button, click in the Query text area and write
the mutual exclusion property: A[] not (P1.CS and P2.CS). Press the Model Check button and
you are done. There should be a green button lighted on, which means that the property was
veri�ed. If the button were red it would mean that the property was not veri�ed. The property
A[] is a safety property: you check that not (P1.CS and P2.CS) is always true. Another type
of property, the E<> may be used for reachability properties. For example insert a new property
E<> P1.CS, that checks if process P1 may reach the critical section.

If the system was not correct Uppaal can return an diagnostic trace. First change the model
so it is faulty. E.g. change the guard req2==0 to req2==1. Then go to the Options menu and
check the Diagnostic Trace, select the mutual exclusion property, then press the Model Check

button. Now this property should not be satis�ed and you will get a dialog window asking to
save the trace, answer yes and return to the simulator. You can go through the found trace, press
Replay for this.

You have now modeled, simulated and veri�ed a simple mutual exclusion protocol. In the
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demo folder in the distribution directory there are a few other simple examples. For example the
�le �scher contains another mutual exclusion protocol.

3.3 Time in Uppaal

This sub-section intends to explain intuitively the concept of time in Uppaal.
The time model in Uppaal is continuous time. Technically, it is implemented as regions and

the states are thus symbolic, which means that at a state we do not have any concrete value for
the time, but rather di�erences [AD94]. To grasp how the time is handled in Uppaal we will
study a simple example. We will use an observer to show the di�erences. Normally an observer
is an add-on automaton in charge of detecting events without perturbing the observed system. In
our case the reset of the clock (x:=0) is delegated to the observer to make it work, the original
behaviour with the reset directly on the transition loop to itself is not changed actually.

Figure 6 shows the �rst model with its observer. Time is used through clocks. In the example
x is a clock declared as clock x; in the Global declarations label. A channel is used for
synchronization with the observer. The channel synchronization is a hand-shaking between reset!
and reset? in our example. So in this example the clock may be reset after 2 time units. The
observer detects this and actually performs the reset.

loop x>=2
reset!

idle taken

reset?

x:=0

Figure 6: First example with the observer.

Draw the model, name the automata P1 and Obs, de�ne them in the system. Notice that the
state taken of the observer is of type commit. If you simulate the system you will not see much.
To train to interpret what you see we will use queries and modify the system progressively. The
expected behaviour of our system is depicted in �gure 7. Declare the channel with chan reset;

in the global variables section.

2 4 6 8

2

4

"time"

cl
oc

k
 x

Figure 7: Time behaviour of the �rst example: this is one possible run.

Try these properties to exhibit this behaviour:
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� A[] Obs.taken imply x>=2 : all fall-down of the clock value (see curve) are above 2. This
query means: for all states, being in the location Obs.taken implies that x>=2.

� E<> Obs.idle and x>3 : this is for the waiting period, you can try values like 30000 and
you will get the same result. This question means: is it possible to reach a state where Obs
is in the location idle and x>3.

Add now an invariant to the loop state as shown in �gure 8.

loop

x<=3

x>=2
reset!

2 4 6 8

2

4

"time"
cl

oc
k

 x

Figure 8: Adding an invariant: the new behaviour.

The invariant is a progress condition: the system is not allowed to stay in the state more than
3 time units, so the transition has to be taken and the clock reset in our example.

To see the di�erence, try the properties:

� A[] Obs.taken imply (x>=2 and x<=3) to show that the transition is taken when in the
interval 2-3.

� E<> Obs.idle and x>2 : it is possible to take the transition in the interval 2-3.

� A[] Obs.idle imply x<=3 : to show that the upper bound is respected.

The former property E<> Obs.idle and x>3 no longer holds.

Remove the invariant and change the guard to x>=2,x<=3. You may think that it is the same
as before but it is not! The system has no progress condition, just a new condition on the guard
now. Figure 9 shows the new system.

loop x>=2,x<=3

reset!

2 4 6 8
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"time"
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 x

Figure 9: No invariant and a new guard: the new behaviour.

As you can see the system may take the same transitions as before, but there is now a deadlock:
the system may be stuck if it does not take the transition after 3 time units. To see what happens
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Retry the same properties, the last one does not hold now. Actually you can see the dead-
lock with the following property: A[] x>3 imply not Obs.taken, that is after 3 time units the
transition is not taken any more.

3.4 Urgent/Committed Locations

We will now look at the di�erent kind of locations of Uppaal. You already saw the type commit
in the previous example. There are three di�erent types of locations in Uppaal that are normal
locations with or without invariants (the x<=3), urgent locations and committed locations. Draw
the automata depicted in �gure 10. De�ne the clocks locally to try this feature: open the sub-tree
of the automata, you will see a Declarations label under the template. Click on it and de�ne
clock x;.

S0 S1 S2x:=0

S0 S1 S2x:=0

S0 S1 S2

Figure 10: Automata with normal, urgent and commit states.

Name the automata P0, P1 and P2 respectively. The state marked U is urgent and the one
marked C is committed. Try them in the simulator and notice that when in the commit state, the
only possible transition is always the one going out of the commit state. The commit state has to
be left immediately. To see the di�erence between normal and urgent state, go to the veri�er and
try the properties:

� E<> P0.S1 and P0.x>0 : it is possible to wait in S1.

� A[] P1.S1 imply P1.x==0 : it is not possible to wait in S1.

Time may not pass in an urgent state, but interleavings with normal states are allowed as you
can see in the simulator.

3.5 Verifying properties

In the examples above we have used the veri�er several times. We will now give a more complete
treatment of the language that the veri�er understand. In summary, the queries available in the
veri�er are:

� E<> p: there exists a path where p eventually hold.

� A[] p: for all paths p always hold.
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� E[] p: there exists a path where p always hold.

� A<> p: for all paths p will eventually hold.

� p --> q: whenever p holds q will eventually hold.

where p and q are state formulas of the form: (P1.cs and x<3). The full grammar of the
query language is available in the on-line help. Note the useful special form A[] not deadlock

that checks for deadlocks.

3.6 Some Modeling Tricks

Uppaal o�ers urgent channels that are synchronization that must be taken when the transition
is enabled, without delay. Clock conditions on these transitions are not allowed. It is possible
to encode \urgent transitions" with a guard on a variable, i.e. busy wait on a variable, by using
urgent channels. Use a dummy process with one state looping with one transition read!. The
urgent transition will be x>0 read? for example.

There is no value passing though the channels but this is easily encoded by shared variable:
de�ne globally a variable x, and use it to write and read it. Notice that it is not clean to do read!
x:=3; and read? y:=x; but it is better to use a commit state: read? commit state and y:=x;.

There is no broadcast communication: synchronization is only by pairs. To get broadcast use
a series of commit states. The sequence will be typically: go1! commit go2! commit go3! and
three automata having the corresponding go1?, go2? and go3?. Several solutions are possible.

Arrays of integers may be useful, declare them as int a[3]; to have an array indexable from
0 to 2. The index can be an other variable i typically int[0,2] i; to be clean.

To keep a model manageable, one has to pay attention to some points:

� The number of clocks has an important impact on the complexity.

� The use of committed locations can reduce signi�cantly the state space, but one has to be
careful with this feature because it can possibly take away relevant states.

� The number of variables plays an important role as well and more importantly their range.
One should be careful that the integer will not use all the values from -32000 to 32000 for
example. In particular avoid unbounded loops on integers since the values will then span
over the full range.
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Version history

March 2001 First version by Alexandre David.

28 Apr 2001 Corrections by Alexandre David. Bug in a requirement, added: chan declaration,
bug in declarations: int[0,1] req1,req2, turn; turn is int, not int[0,1]!

17 Dec 2001 Updates by Alexandre David. Added how to mark initial states (because the new
UPPAAL does not make the �rst state initial by default anymore).

16 0ct 2002 Updates by Tobias Amnell. Changed screen-shoots to recent version (3.2.11), added
veri�cation walk-through in start-end example, added section on query language plus text
updates on several places.

10


