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Safety Controller Synthesis Using
Human Generated Trajectories

Andrew Winn, Student Member, IEEE, and A. Agung Julius, Member, IEEE

Abstract—This paper focuses on the task of safety controller
synthesis, that is, designing a controller that will take a system
from any point within a compact set of initial states to a point
inside a set of acceptable goal states, while never entering any
state that is deemed unsafe. To do this we use a human generated
trajectory-based approach. We introduce the control autobisimu-
lation function, which is the analog of the control Lyapunov func-
tion for approximate bisimulation. We consider a class of hybrid
systems and use this function to determine a set of admissible
feedback control laws that guarantee trajectory robustness for
underlying dynamics that are linear affine, feedback linearizable,
and differentially flat. This property ensures that any trajectory of
the closed-loop system that is initialized within some neighborhood
of a nominal trajectory will stay within some tube of the nominal
trajectory when given the same input. This feedback control and
input can be used as the controller for some subset of the initial
states. We demonstrate how to combine multiple trajectories into
a synthesized controller that satisfies the safety problem.

Index Terms—Feedback linearization, hybrid systems, nonlin-
ear systems.

1. INTRODUCTION

HE issue of safety/reachability is a concept that has been

examined in great detail by the hybrid systems commu-
nity. On one side of the issue we have analysis, which is
a concept where a system is analyzed to see if it reaches
a desired state or states while maintaining safety, wherein
the system does not enter any state that is deemed unsafe.
Safety/reachability has seen a lot of practical use in varied
applications such as the safety analysis of air traffic systems
[1], design verification for electronic circuits [2], design ver-
ification for synthetic biology (e.g., [3]), and model analysis
for biochemical processes [4]. The other side of the issue is
synthesis, wherein there is no preexisting controller and the
desired safety/reachability properties are used to guide the
controller design. For example, the optimal control method
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in [5], [6] and the simulation based method in [7] directly
characterize the influence of the control input in the reachability
formulation. The predicate abstraction technique for systems
with piecewise affine dynamics in polytope sets leads to a
control procedure based on the transversality of the vector
field on the facets of the polytopes [8], [9]. The technique for
discrete-time systems presented in [10] utilizes partitioning of
the state space by polygonal approximation of the reachable
set. For continuous dynamical systems, the theoretical results
presented in [11] discuss some sufficient conditions for the ex-
istence of a controlled system trajectory that enters a prescribed
goal set.

Our approach is distinguished from these methods in that
it is a trajectory-based technique. The synthesis paradigm
uses execution trajectories of a system or simulations thereof
to directly formulate a safe controller. The main idea is to
guarantee that some compact set of initial states nearby a
trajectory will produce trajectories that continue to stay nearby.
This property can be ensured using trajectory robustness [12],
[13]or incremental stability [14], [15]. Roughly speaking, these
properties can provide us with a bound on the divergence of
the trajectories (i.e., their relative distances in L,). The main
conceptual tool that is used in this approach, the approximate
bisimulation, was developed by Girard and Pappas [16], and
has been used for trajectory-based analysis of hybrid systems
in [17]-[19].

The approach in [14], [15] and our approach differ in the way
trajectory robustness is used in controller synthesis. In [14],
[15], the notion of approximate bisimulation is used to establish
a quantization of the continuous state space, which can result
in a countable transition system approximation of the original
dynamics. In our approach, the controller is synthesized using
finitely many valid human generated trajectories [13]. Also,
we do not require the open loop dynamics to be incrementally
stable. Instead, a part of the controller synthesis procedure is
devoted to establishing this property. In a similar spirit, more
recent works by Zamani and Tabuada [20], [21] also drop the
incremental stability requirement and aim to recover it by using
a backstepping controller design.

For our research we use the notion of a control autobisim-
ulation function [12] to characterize a class of feedback laws
that formally guarantee the trajectory robustness property used
in our synthesis design. This can be thought of as an analogue
of the control Lyapunov function [22] for autobisimulation.
Approximate bisimulation [16] is a tool that quantifies the
extent to which two different systems are similar. We use the
term autobisimulation to emphasize that we are considering an
approximate bisimulation between a system and itself.

The trajectories used in our controller synthesis technique
can be generated by any means; however, our motivation is
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to have humans generate trajectories via computer simulations,
i.e., video games. For complex systems where generating fea-
sible controllers is too computationally intensive, the task can
be “crowdsourced” to allow humans to generate the required
trajectories. The idea behind doing this is that humans can
employ heuristics that allow them to find a solution without
searching the entire state space. Further, this would allow many
humans working simultaneously on their own computers to
solve the problem, which provides much more computational
power than might be otherwise available. Since the generation
of one trajectory does not depend on the generation of other
trajectories, the task is highly parallelizable, and hence well
suited for the crowdsourcing paradigm. A recent work by
Langbort et al. investigated the use of a network of human
players in a collaborative computer game [23]. In this case, an
online ouija board game is introduced. This is a server-based
game with the goal of driving a token across an alphabetical
board and spelling as many words as possible in a given
time by a team of agents. The highly parallelizable nature of
the trajectory-based approach makes it ideal for this setup.
Pioneering efforts in the area of exploiting online computer
games to construct reliable human centered computation can
be found in [24]-[26] and the references therein.

This paper provides a cohesive treatment of the results pre-
sented in [13] and [27], and extends the mathematical analysis
to a class of hybrid systems. In this way we present a technique
for synthesizing a controller that meets some given safety
criteria using human generated trajectories for hybrid systems
whose underlying continuous dynamics are linear affine, feed-
back linearizable [28], or differentially flat [29], [30]. We
present three example systems to illustrate the techniques and
design methodologies presented in this paper. The first and third
are taken from [13] and [27], and the second is a novel example
of a hybrid system with feedback linearizable dynamics.

II. PROBLEM FORMULATION

Consider a hybrid system defined by the tuple
(L, X, Y, A U,E Inv,Y) as described in [31]. £ is a
finite set that represents the different discrete states or locations
that determine the continuous dynamics of the system. X C R"
represents the continuous state space for the hybrid system, and
Y C Rl represents the output space. A is a finite set of symbols
which can be viewed as the values of the discrete input to the
hybrid system. The discrete input of the system consists of a
sequence of tuples afi] = (a(,t®)) fori =1,2,..., N where
a € A is the value and ¢(¥) is the time at which the input
is applied. U is the space of continuous external variables,
which in our case is the space of input signals. £ is a set of
five-tuples (¢, a,Guard,Reset, /') known as transitions or
events. For each tuple (a(?,t(®) in the input sequence, if
there is an event such that a = a9, the discrete state of the
system at time ¢(*) is given by £ € £, and the continuous state
x € X at time t(9) is within the set Guard C X, then the event
occurs, and the discrete state changes to state ¢ € £ and the
continuous state x resets to a new state ' € X given by the
mapping Reset : X — X. If two events have the same ¢ and
a, then their Guards must be mutually exclusive sets, so that
only one event occurs at a given time. Inv is the location
invariant of location /¢, and defines the set of states for which
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x € Inv(f) C X whenever the system is at location ¢, and %
assigns to each location a set of continuous dynamics

de __ _ TN m
E(g):{dt—fe(%u),wEX—R ,ueld CR™, 1)

y=hila), ye Y =R’

where fy(x,w) is locally Lipschitz in = and continuous in .

Throughout this paper we shall use the term “trajectory” as
defined in [31]. The trajectory of a hybrid system consists of a
sequence of continuous trajectories and discrete inputs such that
every transition between consecutive continuous trajectories
corresponds to some event in .

Suppose that there is a given compact set of initial states
Init C X x £, where the state is initiated at ¢t =0, i.e.,
(2(0), £p) € Init. Also, we assume that there is a set of goal
states, Goal C ) x L, a set of unsafe states Unsafe C ) x L,
and a function Input : £ — 2“ which assigns a set of allow-
able inputs to each location. As usual, a trajectory is deemed
unsafe if it enters the unsafe set. The safety control problem
can be formulated as follows [13].

Problem 1 (Safety Controller Synthesis): Design a dis-
crete input afi] = (a(?,¢(*)) and a feedback control law u =
k(t,¢,x) such that for any initial state (zo,%p) € Init, the
trajectory of the closed loop system enters Goal before time
T = Thax, and both remains safe and respects input constraints
until it enters Goal.

Definition 1 (Valid Trajectory): Any trajectory that satisfies
the conditions in Problem 1 is called a valid trajectory.

Remark 1: Note that Goal and Unsafe in Problem 1 are
formulated in terms of the output space ) for the system.
This will be necessary when considering systems with zero
dynamics in Section IV-B. To consider safety criteria with
respect to the full state space, one may set the output functions
he(z) in (1) to be the identity function, and Y = X'.

III. AUTOBISIMULATION AND TRAJECTORY ROBUSTNESS

We establish trajectory robustness through a Lyapunov-like
function called a control autobisimulation function (CAF) [13].

Definition 2 (Control Autobisimulation Function): Consider
a hybrid system with input whose continuous dynamics are as
given in (1). A continuously differentiable function v, : X' x
X — R, is a control autobisimulation function for location
¢ of (1) if it is a pseudometric and there exists a function ky :
[0,7] x X — U such that

vz'l/)g(.fb, Zl)f(l', kf(tv ff))Jer/?/Je(wa x')f(x’, k‘z(t, xl)) SO (2)

Note that a pseudometric, unlike a metric, does not require
separate points to be distinguishable, i.e., ¢ (z, z") is allowed
to be zero for x # 2.

The control autobisimulation function is an analog of the
control Lyapunov function (CLF) [22] for approximate bisim-
ulation [18], [32]. Whereas CLFs have been used to construct
control laws that guarantee stability about an equilibrium point,
[33], we shall use CAFs to construct control laws that guarantee
stability about a nominal trajectory, a property that we call
trajectory robustness.

The concept of approximate bisimulation was first intro-
duced in the seminal work of Girard and Pappas [32]. It has
been used for bounding the divergence of output trajectories of
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continuous and hybrid systems. For autonomous systems (i.e.,
systems without inputs/nondeterminism), approximate bisim-
ulation is similar to the notion of contraction metric coined
by Lohmiller and Slotine (see, e.g., [34]). A minor difference
between the two notions lies in the fact that approximate bisim-
ulation allows for the use of pseudometric in the state space
because it emphasizes on the distance between the outputs of
the systems.

One can compare the CAF to a CLF for the product space of
the system with itself,, i.e., the system defined by

dx dz’

E = f@(x7u)7

i fela',u').

However, whereas a CLF for this system could set u =
ke(z,2') and v’ = k¢(x,2’), that is, a function of both states,
the CAF requires that u = k¢(¢,2) and v’ = ke(¢,2'). In this
way the requirement for a CAF is more restrictive than that for
a CLE.

Definition 3 (Class of Admissible Feedback Laws for a
Location): Consider location ¢ of a hybrid system with input
whose continuous dynamics are as given in (1), and assignto £ a
control autobisimulation function ;. The class of all feedback
control laws k¢ (t, z) such that 1,(-, -) and kg (-, -) satisfy (2) for
each ¢ € L is called the class of admissible feedback laws for
location ¢, n(X(¢),y).

In our discussion of trajectory robustness we make use of the
following notations.

Notation 1: Consider a hybrid system with input whose
continuous dynamics are as given in (1) and a feedback control
law u = k(t, x), the evolution of the system dynamics from
state xg within location ¢y with no discrete input to induce an
event is denoted by & (t, £o, ). Further, given a discrete input
sequence ali], the closed loop trajectory initiated at x(0) =
and location £(0) = £y is denoted by &, (¢, {0, zo). For each
event occurring at time t(*) we denote lim, ;- &,.x(t, Lo, o),
the trajectory’s value immediately prior to the event occurring,
by g;)k(t(i) l gOa $Q)-

Notation 2: For any x € X and § > 0 we denote the set
{2/ € X|e(x,2") <} as By, (x,9).

Proposition 2: Consider a hybrid system with input whose
continuous dynamics are as given in (1), with a CAF (-, -)
assigned to location ¢ € £ and a feedback law k(-, ¢, -) in the
class of admissible feedback laws for location ¢. For any two
initial states 2o € X and z(, € X" at time ¢, of the closed loop
system ‘fl—‘f = fo(x, k(t,¢,2)) and any time span [to,¢1] during
which no switching occurs, we have that

"/}Z (gk(t7£7 $0)7§k(t,£, "EE))) SW ({L‘(), (EE]) ) vte [t07 tl]' (3)

Proof: This situation is analogous to a continuous sys-
tem with dynamics % = f(z, k(t,z)), where f = fo(-,-) and
k() = k(-,¢,-), along with CAF ¢ (-, -) = ¢y(-, -). The result
follows from the proof given for continuous systems in [18]. [

A closed loop system that satisfies (3) is said to be imbued
with the property of trajectory robustness for location /.

IV. CONTROLLER SYNTHESIS

To solve Problem 1, we seek to synthesize a controller that
will drive any state in Init to Goal in time 7' < Tj,.x While
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both ensuring that the state never enters Unsafe and that the
continuous input remains in Input(¢), which may be a bounded
subset of R™.

To achieve this, we first have a human generate a discrete
and a continuous input that yields a valid trajectory for some
initial state (g, o) € Init. For each location ¢ visited by the
trajectory, we use this input to design a feedback controller
in the class of admissible feedback laws for location ¢ (if not
already done) using the techniques presented in Section I'V-B.
Using the trajectory robustness imbued by these feedback laws,
we use the results presented in Section IV-A to find the ro-
bustness ball around the initial state. Section IV-C provides
the computational tools for applying these results. This dis-
crete input and feedback law provide a controller that solves
Problem 1 for all states in the robustness ball around (xq, ).
We can now repeat the process for a different state (x1, ;) €
Init \ By(zo,dp). As aresult, we have two different compact
subsets of Init (not necessarily disjoint) that have safe control
laws. One then repeats the above steps until Init is covered by
a finite number of compact subsets that each have a correspond-
ing safe control law.

Remark 3 (Set Coverage): In general, coverage assessment
is nontrivial. One way to generate a coverage estimate is to
generate random points uniformly over Init and determine
the ratio of these points that are covered to the total number of
generated points, which is an unbiased estimator of the actual
coverage ratio. The confidence interval of this estimate depends
only on the total number of sampled points and the coverage
ratio, but not on the dimension of the state space.

The complete final controller operates by applying the fol-
lowing steps:

1) Determine initial states x(0) and ¢y (assumed to be in

Init).

2) Determine the set of By, (2;,0;) to which z(0) belongs.
Since the By, (i, d;) are a finite cover of Init, z(0) is
guaranteed to belong to at least one set. If 2(0) belongs
to more than one set, then the controller can choose a set
by any method, e.g., by choosing the set that minimizes
[2(0) — .

3) Apply the control law corresponding to the 7** trajectory.

A. Hybrid Trajectory Robustness

In this section we shall consider a hybrid system with input
whose dynamics are as given in (1).

Definition 4 (Valid Control Law): The discrete input a[i] =
(a™,t®) for i =1,2,...,N and the continuous feedback
control law k(t, ¢, z) for t € [0,T] along with a set of initial
conditions tg, £y, and zq are said to form a valid control law if

(i) &ak(t, Lo, o) is a valid trajectory beginning at time ()
and ending at time tN*1) with N events occurring at
times t(1), ¢t (V).

(ii) the function ks (-,-) = k(-,£(),-) is in the class of
admissible feedback laws for location ¢() for each i =
0,1,...,N., where /() denotes the location ¢ at time
t € [t® t+),

For brevity we denote this control law as (a, k, to, £o, Zo).

Note that for a wvalid control law (a,k,to, %o, o),
Ear(t, 0o, xo) will consist of N + 1 partitions. Our goal
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at this point is to use the robustness property imbued by the
feedback control law to show that there is a neighborhood
By, (z0,6) of initial conditions for which ali] and k(t, £, x)
will produce valid trajectories. This will be done by finding the
largest neighborhood about each trajectory partition such that

1) the neighborhood does not intersect Unsafe;

2) k(t,¢,z) € Input({) over the neighborhood,;

3) and either the neighborhood around the end point is en-
tirely within Goal if it is the last partition, or the end point
is entirely within both the guard of the switching event
and within the robust neighborhood of the beginning
point of the next partition.

To this end, we formalize the requirements on the neighbor-
hood sizes as follows. For the last partition of &, (¢, {0, zo),
define

5(N) A

Goal — inf

N+1
a1 Yo <€a,k (t( + ),507550) axng) )
This defines the shortest distance with respect to the CAF )~
between the end point of the trajectory and the boundary of
Goal. Next we define the set of neighborhood sizes respecting

the input bounds via

k (t,ﬁ(i),x) € Input (E(i)) ,

AD 25| Ve By, (Earltlo,70),0), v (9)
vt € [t®),¢+D)

For each partition 7 we define

Seaze = Inf Uy (€anlt lo,m0),a))  (6)
Unsafe of SUncate () \Sa, kL, €0, 2L0), T
() <<t (i+1)
i A 4

Olmpas = SUD Al @)

These represent the largest distances for each partition such
that the corresponding neighborhoods do not violate the safety
criteria or input bounds, respectively. Let

Reset'(5) = {:E‘x €Guard® Reset(z)e S, 5C X} (3)

where Guard(” and Reset(") are the Guard and Reset map
associated with the i*" event.
Now define
5@ A T (5@) 5(i)

Unsafe’ “Input>

360)

is the largest value of ¢ such that

©))

where fori < N, 6((;)

oal
ng('i) (&;k (t(iJrl)aKOv Q:O) 75)
g Reset(i+l)T(BwZ(i+1) (ga,k (t(l+1)a 607 .T()) ) 5(1-"—1))) . (10)

This specifies the largest neighborhood about each partition that
maintains validity with respect to Problem 1. Note that (9) and
(10) are used to iteratively determine & () from i = N toi = 0.
We shall now use these distances to prove the following lemma.

Lemma 4: Consider a hybrid system with input whose con-
tinuous dynamics are as given in (1) along with the valid
control law (a, k, to, {o, zo). Further consider a trajectory ini-
tiated at x(, generated by the same inputs a[¢] and k(¢, £, x). If
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Ea (1D Ly, xh) € By, (ar(tD, Ly, 20),5@)) for some 0 <
i < N, then for all t € [t() ¢(i+1)

€ak (t, 0o, 2y) & Unsafe (11)
k (t7€(i)7§a,k (t7£0,$6)> € Input (ﬂ”) (12)

Sak (t(iJrl)’EO’ xb) EB%(HD (ga,k (t(”l),éo7 JUO) ’5(i+1)> .
(13)

Proof: By Proposition 2 and Notation 2 we have

we(i) (ga,k(t7 607 xO)a fa,k (ta EO? $6))
< ey (fa,k (t(l)Jo,x(]) vEak (t(z),&),%)) <59 (14

From (9) we see that §(?) < 51(]i)safe. Combining this fact with

(14) and (6) we note that for t € [t(*), t(i1))

Yo (fa,k(t» Ly, p), a,k (, Lo, xé)))

< Yeeiy (Eak (.00, 0), ), VYV, € Unsafe.

If &, (¢, Lo, x0) € Unsafe for some ¢ = ¢, then we could set
Ty = Eak(t, Lo, z0) to yield

Vot (Eak(ts Loy o), Eak (£, 40, 20)) _
< ’L/)e('i) (£a7k(t> an .170), faJC (t7 £07 '/176))

a contradiction. Thus (11) must hold.
From (9) we also see that () < 6&)},“. By using this fact
with (14) and applying Notation 2 we see that &, (¢, {o, () €
me’) (&ax(t, 0o, x0), 5&)1)“). Combining this fact with (5) and
(7) yields (12).
By the same logic we have

€ (10 b0,01) € By (60, (1 bo,0) ,8) (15)
By (10) we have

o (t(i+1), lo, %)
€ Reset(”l)T(Bwé(Hl)(fa,k (t(i+1), £y, xo) , 5(”1)) ) (16)

By (8), we see that 5;’,9(75(”1),60,3:6) will be in the guard
of the it event, and will correctly transition to the next
discrete state. Further, we can see that the trajectory will be
reset into By ., (Ear (t0HD Ly, ), 80HD), yielding (13),
as desired. |

Definition 5 (Radius of Robustness): Consider a hybrid sys-
tem with input whose continuous dynamics are as given in (1)
along with the valid control law (a, k, to, {o, xo). The radius of
robustness for the trajectory &, 1. (t, €9, 7o) is given by § = §(9),
where §(©) is determined via (4)-(10).

Now we are in a position to present the main result of this
section.

Proposition 5: Consider a hybrid system with input whose
continuous dynamics are as given in (1) along with the valid
control law (a, k, to, £o, x0). For all x;, € By, (20,0), where
d is the radius of robustness, &, (t, {o, ) is a valid trajectory.

Proof: By Lemma 4, we have that for all t € [t(*) +(1)),
&a.i(t, Lo, xp) is safe and respects the inputs bounds. Further,
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we have that €a,k(t(1) ) gOa 'I/O) € B’L/J (1) (g(l,k(t(l) ) gOa IO), 6(1)),
from which we can again apply Lemma 4. By repeated appli-
cation of Lemma 4, we see that the entire trajectory is safe and
respects the input bounds. We also see that

§a,k(t(N),€o,$6> €By, ) (5a,k(t<N>,fo,xo) ,5<N)). 17)

It only remains to prove that the trajectory terminates inside of
Goal. By Proposition 2 and Notation 2 we have

Yy (fa,k (t(N+1) o, 930) »Sak (t(N+1) 4o, 306))
<t (€ (K7 o, w0) €k (1) £, ) ) <. (18)

From (9) we see that §(V) < 5((;5)\?1 Combining this fact with

(18) and (4) we have

Yo (fa,k: (t(NH),f(),x()) vEak (t(NH),Eo,xf)))
< Yoy <§a,k (t(NH),EO,xO) ,xng) . Tng € Goal. (19)

If §a7k(t(N+1), ly, () is not in Goal, then we can set 2,4 to be
this state in (19), yielding a contradiction. Thus, the final state
of the trajectory must be in Goal, and validity of the trajectory
is proven. O

Remark 6: If any of the Guards associated with the hybrid
switching of a trajectory have measure zero, such as a two-
dimensional plane in a three-dimensional state space, then the
radius of robustness will necessarily be zero. As such, the
method outlined in this paper is only useful for trajectories that
pass through Guards with non-zero measure.

B. Generating Feedback Laws for Different Classes of Systems

In order to apply the results given in Section IV-A, one needs
to be able to find a valid control law (a, k, to, £o, o). This can
be achieved via the following method.

1) Have a human find a valid open-loop trajectory with
initial condition (xg,%y) by controlling the system or
a simulation thereof. Call the discrete and continuous
inputs to this trajectory a[i] and ug(t) respectively.

2) For each location / that the trajectory visits, find a CAF
e and a k¢(t, x) in the class of admissible feedback laws
for location ¢ such that k(t, &q 1 (¢, Lo, x0)) = uo(t).

3) Define k(-,¢,-) = ke(-,-) for each location ¢ visited by
the trajectory.

A method for performing steps 2-3 above for three different
classes of nonlinear dynamics are given in Section IV-B1-
IV-B3. Since this method applies to an individual location, we
will drop the indexes that identify the location. For example,

%, Sunsates and Srnpur Will be used in place of $(¢()), 5

> Unsafe®
and 5&)})“.

1) Linear Affine Systems: The results in this section have
been adapted from [13]. Consider a system with linear affine
dynamics, that is

d
—x:Am—&—Bu—&—c, reR” ueR™

Einl
g

(20)
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where A € R™" B € R™™, and ¢ € R™. For such systems
we propose to construct a CAF using quadratic functions that
satisfies (2). Specifically, we take the CAF to be

2

Pz, a') = [(a: - :c')TP(x — ) (21)
where P € R™*"™ is a symmetric positive definite matrix. We
see from (2) that in order to be a CAF this function must satisfy

(x —2")P(Ax + Bk(t,z) + ¢)

1

(x — :c’)TP(;L' - w’)} ’

o / /
_ (z—2)P (A2’ + Bk(t,2') 4+ ¢) <0

[(x — ' Pz — x’)} :

for all z, ' € R™. By multiplying through by the denominator
and combining terms, we can represent this condition as
(z— ) P(A(w —a') + B (k(t,z) — k(t,2")) <0 (22)

for all z, 2’ € R™. We propose to construct a feedback law of
the form

u(t) = k(t,z) = Kz +v(t) (23)
where K € R™*™ and v(t) € R™. We take v(¢) to be
v(t) = uo(t) — ng(t, CE()) (24)

where ug(t) is the nominal input generated by a human (or
some other external entity) and £ (¢, zo) is the corresponding
state trajectory. This guarantees that u(t) = uo(¢) when x(0) =
xg. Further, note that k(t,z) — k(t,2') = K(x — 2') does not
depend on v(t), and thus K may be chosen to satisfy (22)
without prior knowledge of v(t). Combining (22) with (23)

(x—2)"P(A+ BK)(z —2') <0, Vz,2' €R". (25)
Finding a K that satisfies inequality (25) is equivalent to finding
a K such that (A + BK) is Hurwitz. Such a K will exist if
and only if (A, B) is stabilizable. We can determine this K
using the following method. We first recognize that (A + BK)
is Hurwitz if and only if (A 4+ BK)T is Hurwitz. If this is true,
then there exists a solution to the Lyapunov equation

(A+ BK)P+ P(A+ BK)" <0, P=P" 0.

Carrying out some algebraic manipulations allows us to write

AP+ BD + PAT + D"BT <0 (26)
where we define D = K P. We can now use standard tools [35]
to solve the above linear matrix inequality for D and P, and
then solve for K and P using

K=DP' p=p" (27)
Since P is positive definite, it is invertible, and (27) is a valid
expression.
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By applying the feedback control law (23) to the system (20),
we obtain the closed loop system

d
Sa ¥ = (A+ BK)z + Bv + ¢,

i reX,vel.

(28)

2) Feedback Linearizable Systems: The results in this sec-
tion have been adapted from [27]. Consider a dynamical system
with input and output

reX, uel,

Yio { % = f(SC) =+ g(x)u, (29)

y=nh(z), yeR™

where X = R"™ and &/ C R™. Note that the system is affine
with respect to its input, and that the dimensions of the input
space and the output space are the same. We assume that f(-) is
Lipschitz and that f(-), g(-), and h(-) are sufficiently smooth
functions, in the sense that all partial derivatives appearing
in the ensuing analysis exist. Hereafter, we use the notation
fi(+) and h;(-) to denote the i-th element of the vector valued
functions f(-) and h(-), respectively. For the matrix valued
function g(-), we use g;(-) to denote its i-th row.

Feedback linearization is a classical controller design tech-
nique for nonlinear systems (see e.g., [28], [36]). A special case
of feedback linearization that is applicable in the output safety
controller synthesis problem is the input-output linearization
[28]. The idea is to introduce a new control input w(t) and
design a (nonlinear) feedback law

u(t) = k(z) + AMx)w(t), w(t)eR™ (30)
such that the new system, with input w(¢) and output y(t), is a
linear system. The design procedure for x(z) and A(x) is given
as follows [36].

Notation 3 (Lie Derivatives): [36] For a smooth scalar
valued function h: R™ — R, we use the following standard
notation for Lie derivatives:

LY(h) £ h(z),
ALk (h)
k+1 A f
K W_a%>
A OLK(h
Ly Li(h) = o

f(),

T
J

Definition 6 (Relative Degree): [36] For the input-output
system i, in (29), we define the vector relative degree
{ry,re, -+, rm} atapoint zp € R™ as the largest integers such
that:

(i) Foralli e {1,...,m},0<j<r,—1L,ke{l,...,m}
Lg, L} (hi(zo)) = 0. (31

(ii) The m x m matrix I'(xo) defined such that the element
in the ¢th row and jth column is given by
Fi,j (3?0) = ngL?’71 (hl(.’lﬁo)) (32)

is nonsingular.
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If the system 3, in (29) has a uniform relative degree

{ry,72,--, 7} in the entire state space,' then by definition,
we have
T L' ha(x)
: = : + I(x)u. (33)
drwym ] LIy (@)
28 (a)
Therefore, by using the feedback law (30), with
k(z) = =T z)®(x) 34)
Mz) =T""(2) (35)

we obtain a linear input-output system in the chain integrator
form [28]

%yl wy(t)
S| i | =] (36)

Furthermore, a state space realization of X3, can be obtained
through some state transformation from x. For example, we can
observe that forany ¢ € {1,...,m} and j <r;

J .
yi = hi(x), %Z/z = L} (hi(z)). (37

Since Xj;, is linear, we can apply the controller synthesis
technique give in Section IV-B1 for linear affine systems.

Remark 7 (Zero Dynamics): In controller design for nonlin-
ear systems, one typically wants to have asymptotically stable
zero dynamics. In this paper, we ignore the possibility of
unstable zero dynamics since they are not observable from the
system output, and hence are irrelevant to the safety control
criteria.

3) Differentially Flat Systems: The results in this section
have been adapted from [27]. Differential flatness is a major
tool in nonlinear controller design [29], [30]. The concept was
first coined by Fliess et al. in [37], and since then there have
been thousands of papers that use it in controller design. In
this section, we outline a controller synthesis technique for
Problem 1 for differentially flat nonlinear systems. Our devel-
opment in this paper follows the work of van Nieuwstadt and
Murray [38], who used differential flatness for trajectory gener-
ation in motion planning for constrained mechanical systems.

Any nonlinear system that is affine with respect to its input

dx

o = 1@+ g

reX=R"'ueld CR™
is said to be differentially flat if it has a set of flat outputs
y = h(z,u,u,...,u?), yeR™

for some integer p. The outputs y = (y1,...,Yym) are flat
outputs if x and u can be written as functions of y and its time

!"This can be relaxed to an invariant subset of interest of the state space.
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derivatives

(38)
(39)

x:E<y7y,---7y“)>
u:T (y’y.,""y(EJrl))

for some integer ¢, and (y,9, ... ,49) are not constrained to
satisfy a differential equation by themselves. In other words,
any sufficiently smooth trajectory y is admissible.

The concept of differential flatness is tightly related to feed-
back linearization. In fact, we can show that if ¥, in (29) is
feedback linearizable and it does not have any zero dynamics,
then it is differentially flat and y = (y1, . . . , ¥, ) are flat outputs
[29], [38].

In the subsequent discussion, we assume that >3, is differ-
entially flat, with y as the flat outputs. Consider the following
m¥-th order linear system

Eﬂa‘c
n 0 I 0 0 n 0
n 00 I 0 n 0
d . . .
Y s = : : | w,
“=n110 0 0 I||n¢D 0
n® 00 0 oJL n® I
y=n

(40)

where n € R™, w € R™ is the input, and 7 € R™ is the output.
Observe that, by construction, any output trajectory of g, is
at least (£ + 1) times differentiable. Therefore, any y(¢) that
is an output trajectory of g, (regardless of the input w(t)) is
also an output trajectory of ., and vice versa. Furthermore,
the corresponding state and input trajectories of X;, can be
computed from (38), (39).
For brevity, let us rewrite the state equation of Xg,; as

do  ~  ~
d—?:Aq%—Bw, ¢ €R™ w e R™ (41)
7=Cq, JER™. (42)

Notation 4: We denote the output trajectory of g, starting
from an initial state gy € R™ under an input signal w(t) by
9(t; qo, w).

Notation 5: Given that ¢ = [nTnT .- n(f)T]T and w =
n*1 | we introduce the following shorthand notation:

—_ A — .
:(Q) == (777777 U ,77(4)) )
A .
T(qaw) =T (777 /P 777(£+1)> .

Definition 7 (Valid Flat Trajectory): Consider Problem 1. An
output trajectory of Mgat, §(t; go,w), is said to be a valid flat
trajectory for an initial state zp € Init if

(i) Z(q0) = o;

(ii) the trajectory y(¢;qo,w) enters Goal before time ¢ =
Tinax, and remains safe (i.e., does not enter Unsafe) until
it enters Goal.

Therefore, a valid flat trajectory for an initial state xp € Init
is mapped by (38) to a valid trajectory of X;,, whose states
originate at xo. Further, the control input u(t) that achieves
this valid trajectory can be found by using (39). These facts are
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crucial in our controller synthesis technique, since they essen-
tially allow us to design a feedback control law that establishes
output trajectory robustness for Yg,¢ and then translate the
result to X, via (39). Since g, is a controllable linear system,
establishing output trajectory robustness is straightforward, and
for that we can use linear feedback gain according to, for
example, the results reported in [13]. The procedure is further
explained as follows.

Suppose that for an initial state xy € Init we obtain a valid
nominal trajectory for ;,, which we denote by y(¢). This can
be obtained, for example, from a human playing a computer
game that simulates »;,. We will demonstrate that by having
knowledge of y(t) we can find the appropriate control input
u(t; xy) that results in a valid trajectory for any initial state x{,
in the neighborhood of .

First of all, we notice that y(t) is also an output trajectory of
>flat, 1.€., the one corresponding to the input signal

~ et
B(t) = Lo i) 43)
and initial states qg, which are given by
~ . ~ Y/ ~
m =500 =50 - 5 0 =700). 4

Further, observing that (A\, E) is in controller canonical form,
we infer the existence of:
(i) a feedback gain K € R™*™¢ such that (A + BK) is
Hurwitz;
(ii) a symmetric positive definite matrix P € R™*™¢ that
satisfies the Lyapunov equation
(A+ BEK)"P + P(A+ BK) < 0. (45)
We then form a linear feedback loop around Xg,; by
defining

w=Kq+v (46)

where

v=0u-Kq 47)
which is analogous to (23), (24) from Section IV-B1. The
closed-loop system is then given by
S : (A+ BK)q+ Bu. (48)

Notation 6: We denote the state trajectory of Y. starting
from the initial state gy by ¢(¢; qo). The corresponding output
trajectory is denoted by y(¢; qo)-

Proposition 8: Define the quadratic function ¢ : R™ x
R™ — R, as

>

[N

W(a,@2) = (0 — @) " Play — ¢2)]

Then, for any (q1,q2) € R™ x R™, 9(q(t; 1), q(t; g2)) is
monotonically nonincreasing with time.

Proof: This is straightforward from the fact that P defines
a quadratic Lyapunov function for the closed-loop system X;.
Equivalently, ¢ defines a control autobisimulation function for
the linear system Xq,¢ (see Section IV-B1). O
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Proposition 8 establishes trajectory robustness for the state
trajectories of X.;. Its consequence on the output trajectories is
given as follows.

Proposition 9: Let ¥(q1, q2) be as defined in Proposition 8
and let the matrix P be partitioned as

Py Pro
P =
{Png Py
where
P € ]R7n><7n7 Py emx(m—l)E’ Py € R(m—l)@x(m—l)l'

Let S = Py; — P12 Py, Pl denote the Schur complement of
Pyo in P. For any (q1,¢2) € R™ x R™¢

(AT S(AY) < (g1, q2) (49)

where

Proof: Let z € R(™~ D¢ A result given in an appendix of
[39] concerning linear algebra states that

@psan —utl@n’ 1| ]. 6o
If we choose z = 2 such that [Ag”, 27T = Agq, then from (50)
we have
(A7)TS(Ap) < (Ag)" P(Ag). (51)
Substituting the right hand side of (51) using the definition of
¥(q1, q2) yields (49), as desired. |
Intuitively, .S defines the ellipsoid that is the projection from
the state space of Xg,; to the space of flat outputs of the

robustness ball defined by P. Observing that S is a symmetric
positive definite matrix, we can define a norm in R" as follows:

A
lynll = Vy*'Sy.

In the following, we establish the trajectory robustness for
Yio- Recall that y(¢) is a valid nominal output trajectory cor-
responding to a state trajectory of X, with initial state z¢ €
Init.

Theorem 10: Denote the output trajectory of X, starting
from an initial state o € R™ under an input signal u(t) by
y(t; o, u). Suppose that there exists a d; > 0 such that any
output trajectory y(t) satisfying

(52)

sup ly(t) — 4(®)ll,, <o (53)

is also a valid output trajectory. Also, suppose that there exists

a 2 > 0 such that the following two conditions are satisfied.

(C1) E(+) is continuously differentiable in By (qo, d2), i.e., the
|| - || ball of radius d around g as defined in (44).

(C2) The Jacobian ‘g—f has full row rank (equals n) in

B’l/i(q(% 52)
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Then, there exists a neighborhood around g, N'(xg), such
that for any ¢ € N (=), the following are true:
(i) There exists a g¢ € R™* such that Z(g¢) = €.
(i) y(t;&, ue) is a valid output trajectory, with the input
signal u¢ defined by

ug = T (q(t; g¢), (1))
where w(t) is given by (43).

Proof: Define 0 2 min(dq, d2). Then:

(1) According to the Implicit Function Theorem, conditions
C1 and C2 imply the existence of a neighborhood around
xo, N (x0), such that for any & € N (z), there is a g¢ €
By(qo, 0) satisfying Z(g¢) = &.

By definition of differential flatness, applying the input
signal w¢ to X, with initial state £ € N (zo) yields the
output trajectory y(t; g¢ ). Further, from Proposition 9 we
can see that

(54)

(i)

ly(t; q¢) =y, = vt ge) —y(E )l

Therefore y(t; g¢) is a valid output trajectory. O

C. Calculating the Radius of Robustness

In this section we examine how to calculate the various
0’s defined in Section IV-A using the CAFs generated by the
methods described in Section IV-B.

These methods rely on transforming the states in order to
find a quadratic CAF vy (z,2') = \/(z — 2/)P(x — ') with a
linear feedback law. These CAFs generate level sets By, that
are ellipsoids. If the states are transformed using z = P'/2z,
then 1/3@, the CAF given in terms of the z-coordinates, is

Do(z,2) =/ (2 — ) (z = 2) (55)

which shows that 1), is just the Euclidean distance in

z-space. Thus, to find 5§i)safe one needs only to find the

minimum distance between the i*" trajectory partition and
Unsafe. Similarly, to find 5((;5,\3 for a trajectory with N
events, one needs to find the minimum distance between the
terminal z-coordinate of the trajectory and Goal. To find

5((;?,&1 for ¢ <N, one needs to find the minimum distance
between the z-coordinate of the trajectory at time ¢t and
Reset(iﬁ_l)-r (B¢e(i+1) (gayk(t(i-i_l)’gm xO)v 5(i+1)))'

Handling (5&)}]“ is a little trickier, as the bound will depend
on the underlying dynamics. In the following analysis we will
use input bounds of the form ||u(t)|| < M.

Consider the linear affine case presented in Section IV-B1. If
we combine (23) with (24), we find that

u(t) =K (J: — &k (t(i),ﬁo,m)) + up(t). (56)

Keeping in mind Notation 2, we see from (5) and (7) that

HK(x—&Lk (t(i),ﬂmxo)) +up(t) H§ M

max
,,e[,(i),t(#l))

. )
€4, (6o 0,205 )
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Further, we note that equality is obtained as otherwise there

would exist a § > 5&)},“ satisfying (5) and (7), a contradiction.

Applying the triangle inequality and performing the transforma-
tion of variables z = P'/2(x— &, 1 (t%, £, 20))/ 5£2put we see that
(@) -3

\T?Haﬁ)i 5Input KP =z

~os M —lu()]
Input HKP_%

+ luo (Bl = M,

(57)

where we have applied the definition of a matrix norm.

Consider the feedback linearizable case presented in
Section IV-B2. Using the same method as was used to derive
(56), we see that

w(t) = K (2= & (19, 00,20) ) +wolt)  (58)

where w(t) is the nominal linearized input. This implies

(el @)+ 2@) (K (2= (89,00 ) ) +uo ()| <.
(59)

We again apply a transformation of variables to z = pl/2 (x —
Ea(tD, Lo, z0) so that ||2]] = Yy (2, &an(t?), Lo, 20)),
yielding
|5(0) +20) (K(P722) +won) | <M (60)
where we define 6 = P~1/22 + &, ,.(t%), £y, o). If we can
manipulate (60) into the form ||z]| < d, then we see that (12)
holds for ¢, making it a lower bound for 5&)},“, which we can
then use as a conservative estimate for the controller synthesis
procedure.
Consider the differentially flat system given in Section IV-B3.

(5:&?})“ is determined by first finding the largest value ¢ such that

T((a-0+a3 K(a-)+2) | <M. Vg-al<s  ©D

and then setting

S e = 53/ Ain (P). (62)
Note that finding the value § in (61) is nontrivial, and depends
heavily on the form of Y(-, -).

Remark 11: If the nominal input generated by the human
approaches the boundary of Input(¢) during the segment ¢ €
[t@) ¢+ then 5%;)1,“ in most cases will go to zero. Rather
than making the human responsible for ensuring that their gen-
erated inputs are bounded away from Input(¢)’s boundary, the
control system designer may wish to impose on the simulation
a conservative set of input bounds. This imposes a trade-off

wherein a slightly conservative set of bounds may lead to very

small 5&)})ut’s, but a very conservative set of bounds may make
it exceedingly difficult for the human to find a valid trajectory.
A simple method for handling this trade-off is to try to find a set
of bounds where 5&)})“ is the same size as min(&éfl)safe, 5((;?211),
balancing the trade-off. For example, if the input bounds are
given by ||u(t)|| < M, then search over A (say, by a bisection
search) where the input bound ||u(t)|| < M — A is imposed on

the human.
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Fig. 1. Linear affine example. (a) Vehicle to be controlled in the linear affine
case. (b) Safety problem specification.

V. EXAMPLES

In order to demonstrate the utility of the methods de-
scribed in Sections IV-B, three examples were devised to
illustrate the applicability of these techniques to nonlinear
systems. We start with a relatively simple linear affine system
(Section V-A). We next consider an input-output linearizable
system which is a more general class of nonlinear system
in that every linear affine system is trivially input-output lin-
earizable (Section V-B). Finally, we consider a differentially
flat system, which again is a more general class of nonlinear
systems in that all feedback linearizable systems are differen-
tially flat, if they are controllable, observable and have no zero
dynamics [40].

A. Control of a Linear Affine Planar Vehicle

Consider the task of controlling the vehicle presented in
Fig. 1(a). Suppose that the vehicle starts in some compact set
around the origin and we wish to drive it to some region of
the point (2,0). Further, the environment is such that there
is an object at (1,1) the vehicle must avoid that provides a
constant attractive force. Finally, the system has an anti-friction
term which causes the autonomous system to be unstable. The
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orientation of these regions are shown in Fig. 1(b). This system
can be modeled with the following dynamics:

d
5 Y Av+Bute (63)
dt
0 0 1 0 0 0 0
0o 0 0 1 00 0
A=17 0 01 o’ B=|1 o =i
0 -1 0 01 0 1 1

For our example, we take X = R?* and define Init, Unsafe
and Goal to be

Init = {z||z1] < 0.2,]|z2] <0.2,23 = 0,24 = 1}, (65)

Unsafe = {x ‘\/(xl — 12+ (22 —1)2 < 0.3} (66)

Goal = {ar

(1 —2)2 422 < 0.1} ) (67)

Further, we wish to impose the constraint that the vehicle
enter the goal set within ¢ € [0, 5] seconds and with the input
constraints ||u(t)| < 1.

We use the convex optimization solver cvx [41] to solve (26)
for a feedback gain K which will guarantee the existence of a
quadratic CAF. The gain matrix (up to three decimal places) is
calculated to be

0.000 0.000 —0.100  0.000
K= 0.000 0.000  0.000 —0.100|" (68)
With this feedback gain we see that
0O 0 10
0 0 01
A+BE=1 " 4 o o (69)
0 -1 0 0

The control autobisimulation function for this system is given
by any function

1
2

oz, o) = |(z — x’)TP(x —a)

such that P satisfies (25). We can see that if P is the identity
matrix, then the quadratic form in (25) will be zero for all
(xz — '), and the condition will be met. Note that for this P
our CAF becomes the Euclidean norm, which is especially
convenient and intuitive. Now that we have designed a feedback
control law that guarantees trajectory robustness, we need to
design the open loop trajectories that will cover Init. To this
end we developed a video game in MATLAB that simulates the
closed loop system

0 0 1 0 0 0 0

dx 0 0 0 1 0 0 0
Y =121 0 0 o x4+ 1 0 v+ 1 (70)

0 -1 0 O 0 1 1

We discretize these dynamics with a constant time step J,
and assume the open loop input is constant between time
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intervals, that is, the input to the system is a zero order
hold of a discrete control sequence. For the affine dynam-
ics that we consider in this example, the discretization can
be made exact by integrating the closed loop dynamics (70)
analytically.

In order to make sure our input bound is met, we need
to choose a desired drnpyt, an upper bound on the radius of
robustness. Note that for this system, the radius of Goal is 0.1,
which means that the largest dgoa1 that we can generate is 0.1.
For any value of 51nput larger than this, we would be limiting the
input without any gain in the robustness radius, so let’s choose
dtnput = 0.1. We can see from (57) that our open loop control
must be bounded by

[v]] € M = Stnpue | KP7Y2| = 2 = 0.1(0.1) = 1.99.  (71)

This is a minor change in the upper bound and it guarantees
robustness, so we have little motivation to choose a smaller
O1nput to allow for large inputs. Note that in general there will
be a trade-off between these two values.

The input to the video game is generated by a human using
a joystick. One of the benefits of using a simulation to generate
the controller is that the system can be simulated at a slower
rate than the actual dynamics, allowing a human to generate
feasible trajectories for a system that would otherwise exceed
the bandwidth of a human’s sensory capabilities. In this case
we simulate the system at one-third of the speed of the system’s
dynamics.

Fig. 2(a) shows the graphical user interface for the
MATLAB video game. The user chooses an initial condition
in Init from which to start the simulation. The position
coordinates (z; and x5) are displayed on the screen. When
the simulation begins, a point begins to follow a trajectory
determined by the dynamics and the user input. There are many
possible ways that the video game designer can aid the player
in generating feasible trajectories. In our program, we include
a timer in the upper left to help players determine the efficacy
of their current input strategy. At each point in the simulation
we determine the trajectory that will be generated if the input is
held constant up to some finite horizon, and plot this graphically
for the user to use to adjust their input. The results from one
session with the video game are given in Fig. 2(b). The solid
lines show the trajectories generated by the human player. The
union of the robustness bounds around the initial conditions
cover Init, and thus the controller that uses the feedback law in
(68) and the open loop input given by one of those four nominal
trajectories (to be determined by the initial condition) solve the
safety controller synthesis problem.

B. Control of a Hybrid Input-Output Linearizable Rotating
Planar Vehicle

Now consider a vehicle that is similar to that presented in
Section IV-B1, but with one difference. Assume that the axis
of the thrusters on the vehicle are not in line with the center
of mass, but rather they are offset by some fixed amount.
See Fig. 3(a) for an illustration. Therefore, the control inputs
will induce both translational and rotational motions on the
object.
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Fig. 2. Screenshots for linear affine example. (a) Interface for the MATLAB
simulation. (b) Four trajectories (solid) that form the controller along with
several trajectories (dashed) generated by the controller.

The safety problem for this example consists of three unsafe
regions; please refer to Fig. 3(b). Each region exerts a force
along each coordinate that is linear with respect to the distance
from that region along the corresponding coordinate. The user
has control over whether this is a repulsive (positive) force
or an attractive (negative) force. Thus, this is a hybrid system
where the discrete input determines the signs on these terms in
the dynamics. Since there are three regions with two possible
states each, there are 22 = 8 locations. The dynamics for each
location are given by

i=F) cos §— Fysin 040.12+3 5 _ | si(0)(z—x),
g:Fl sin 0+ F, cos 9+0.1y+2§:1 s (y—yr),
O=F4% — F 2

D(0) =

(72)

where I denotes the object’s moment of inertia, xj, and y are
the 2 and y coordinates of the center of the k' unsafe regions
and sy (¢) = +1 determines the sign of the force induced by the
k*" unsafe region in location /.
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Fig. 3. Hybrid linear affine example. (a) The rigid object with two off-center

jet thrusters. (b) Safety problem for hybrid system.

We define the (z, y) coordinate of the object’s center of mass
as the system’s output. In state space form, the dynamics for
location ¢ are given by

X Ly
X9 Ts
i T3 o 3 Te
dt | x4 01(174 + Zkzl Sk:(g)(xl - xk?)
T5 0.1zs + S5, su(0)(xa — yi)
Te 0
1)
0 0
0 0
0 0 Iy
cosxs —sinzs |:F2 } (73)
sinxzs; coszxs
_b a
T T
Sg(x)
A
y:{?}:h@) (74)
2
Observing that
[y1:| _ |:01334 + 2221 Sk(g)(xl - xk):|
U 0.1xs + 22:1 Sk(g)(xQ - yk)
cosxs —sinxs | | Fy
{sinaﬁg) COS T5 } [FJ (75)
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we conclude that the vector relative degree of the system given
by (73), (74) is {2,2}.

The safety control that we want to solve is identical to
Section IV-B1, except that the sets are defined to include all
angles and angular velocities in our new higher-dimensional
state space. It can be formulated as follows. Suppose that we
are to steer the system from the initial set in X = RS

Init
={z||z1—3.5| < 3.5, ]z + 6| <0.5,z3=x4=25=26=0}.
The sets of unsafe and goal outputs are given by

Unsafe = {y € R?| ||y — [73,0]TH2 <1}
U{y e R?[[ly - [3,0]"[|, <1}
U{y € R?|[ly — [0, V3]"||2 < 1},
Goal = {y € R?| Hy - [6,6]THOO <1}

Additionally, we also require that the control inputs are
bounded in magnitude, i.e.,

(76)

To solve this problem, we can define a linearizing input
transformation as follows:

wi(t) | A [cosxs —sinas | | Fi(t) 77
wo(t)| | sinws cosws ) |-
This yields a linear affine system for each location
Ii’l [ i’j 0
d |9 Ty 0
— N = ~ N 5 78
dt |3 0123430, 81 (0) (&1 —x) Tlw (78)
Ty _0.1@44—22:1 Sk(g)(i'g—yk) Wo
vi| _ [
=\, | 79
b)) ™

We can now find the a feedback law for each of the eight
locations using the techniques presented in Section IV-B2 to
guarantee trajectory robustness. As in the last section, we
are able to find gains that provide trajectory robustness for a
quadratic CAF where P = I.

Observe that the linear system has a lower order than the
original nonlinear systems. This is because the rotational dy-
namics has now become unobservable. We see that for this
linearizing input x(z) =0 and A(x) is the rotation matrix.
Since ||[A(x)|| = 1 for all  we see that

lw®)] <M - K (x =)

mgx
2€By (%,0mmput)

Since we can use the same quadratic control autobisimulation
function as the previous section, we see that this bound becomes

[w(t)]| < M — Ornpue

KP*WH

Again, choosing 51nput = 0.1 will yield a bound on the nominal
linearized input of ||w(¢)|] < 1.99.
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Fig. 4. Covering set of valid post-simulation trajectories. The colors along the
trajectory represent the discrete state at that time.

We augment the video game used previously to also simulate
the rotational dynamics. The graphical user interface was aug-
mented to show an image of the vehicle traversing the screen
to give the user information on the orientation of the vehicle.
The thrusters on the vehicle also light up to a color that is
proportional to the magnitude of the input. Valid trajectories
can then be obtained from a human player. In Fig. 4, we can
also see that a single valid trajectory can be generalized to cover
a robust neighborhood around its initial condition.

C. 2-D Control of a Differentially Flat Quadrotor

We consider the control problem related to the motion of
a quadrotor on a vertical plane, as shown in Fig. 5(a). This
example is inspired by a similar one used in [42]. This two-
dimensional quadrotor is idealized as having two propellers,
one on the front of the body, the other on the rear. These
propellers are able to induce a positive force along the propeller
axis, which we shall choose as our first controller input u,
and a rotational motion in the vertical plane, which we shall
choose as our second controller input us. In this system gravity
is acting along the negative y-axis, and a force is induced by a
constant wind w = [w1, we]T with friction coefficient .

The system’s dynamics are given by (80)—(82)

i1 = plwr —@1) — Lsing (80)
m
. . Ui
i =p(we —y) — g+ — cost @81
m
0 = us. (82)

Here m denotes the object’s mass. We define the (z1,x2)
coordinate of the object’s center of mass as the system’s output.
This system is differentially flat with a set of flat outputs
given by

[n1,m2]” = [, y)" (83)

The equations that satisfy Equations (38), (39) are given below.
For brevity they are given with respect to Ay =7j; — pu(w, —1n1),



WINN AND JULIUS: SAFETY CONTROLLER SYNTHESIS USING HUMAN GENERATED TRAJECTORIES

(a)

Robustness Tube

TIME =6.32sec

Simulated System
Output

Fig. 5. Setup and results for quadrotor system. (a) 2D control of a quadrotor.
(b) Simulation of quadrotor system.

Ay = fjp — p(wy — 7)2) + g, and their time derivatives

T =11, T =1,
Yy =n2, y:h%

B Ay . AjAy — A Ay
0= arctan (142> 5 0= W

uy =my/ A3 + A3,
(A2 + A3) (A1 Ay — AxAy)
(A2 + 43)°
(AyAy — A3 A))(241 A1 + 245 A,)
(43 + 43)°

Thus, given a trajectory of class C** in the flat output space, a
unique set of inputs can be determined to generate the trajectory
for a system with the same set of initial conditions.

We now need to verify the two conditions of Theorem 10.
For z,y, @, y, 2 1is clearly continuously differentiable. The func-
tions for # and 6 are continuously differentiable everywhere
except for A1 = Ay = 0. The Jacobian is lower block diagonal
and given by

_ Iya 04 04,1 04,1 04,1
0= . A, A 0 0
p— A2+A2 A2+A2 9
8 1 2 1 2

q Ay A,

TrAZ AT
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This will lose full row rank only when A; = A5 = 0. From the
dynamics, we see that A; = wu; sinf/m and Ay = uy cosd/m.
Both values can be zero only if u; = 0. Quadrotor helicopters
always operate at some minimum idling speed for their pro-
pellers, and thus u; can never have a thrust of zero while
operating. Therefore the conditions are satisfied.

As seen in Fig. 5(b), the trajectory in our controller is
generated by a human via the game interface. To ensure the
property of trajectory robustness in Xq,¢, a feedback gain K
was chosen to be

= 625 0 500 O 150 O 20 O

K= [ 0 625 0 500 0 150 0O 20 84)

We compute the P that solves (45) using the convex opti-
mization solver cvx [41]

r0.05 0.00 —0.06 0.00 0.03 0.00 0.02 0.007
0.00 0.05 0.00 —0.06 0.00 0.03 0.00 0.02
—0.06 0.00 0.10 0.00 —0.07 0.00 —0.06 0.00
p_ 0.00 —0.06 0.00 0.10 0.00 —0.07 0.00 —0.06
0.03 0.00 —0.07 0.00 0.11 0.00 —0.01 0.00
0.00 0.03 0.00 —-0.07 0.00 0.11 0.00 —0.01
0.02 0.00 —0.06 0.00 —0.01 0.00 2.00 0.00
L0.00 0.02 0.00 —0.06 0.00 —0.01 0.00 2.00

(85)

As in the feedback linearization case, a MATLAB graphical
user interface was created to obtain the nominal trajectory from
a human. Fig. 5(b) shows the simulated result of this controller.
The size of the robustness tube was chosen such that it does
not intersect with UnsafeOutput, and ends entirely within
GoalOutput.

VI. CONCLUSION

In this paper, we addressed the tasks of safety controller
synthesis. We described the concepts of autobisimulation and
trajectory robustness and introduced a general framework for
synthesizing controllers using the concepts. We developed spe-
cific techniques for applying this framework to hybrid systems
whose continuous dynamics are linear affine, feedback lineariz-
able, and differentially flat. In addition, we discussed how to
synthesize controllers that respect a given set of input bounds.
For each class of dynamics, an example system was considered,
and a feedback law that guaranteed trajectory robustness was
found. For each example a MATLAB video game was con-
structed that would synthesize a controller by having the user
provide nominal trajectories using a joystick.

The resulting controller from the presented method is guar-
anteed to be safe with respect to the given safety problem. The
nominal trajectories may be generated by any means. If one
were to have humans generate these trajectories, then one can
crowdsource the task, which could be especially useful in high-
dimensional or otherwise complex scenarios where classical
techniques may fail to yield a valid controller. Techniques
to locally improve the nominal trajectories with respect to
some cost function were not considered here, but are being
examined by the authors and will appear in a forthcoming
publication.
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