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ABSTRACT
The model-based fault diagnosability analysis is concerned
with the timely detection and isolation of faults by using the
system model and observations of the system output. In this
paper, we propose the (δd, δm, α)-diagnosability notion for
hybrid systems with probabilistic reset, where the faults are
diagnosed by observing the timed event sequences. We also
present an approach for the analysis of such diagnosability.

The (δd, δm, α)-diagnosability notion characterizes the worst-
case probability α of detecting and isolating faults within
the maximum delay δd since their first occurrence, given the
measurement uncertainty δm in observing the time intervals
between observed events. We present a method of system
abstraction, and prove a quantitative relation between the
(δd, δm, α)-diagnosability of the original system and the ab-
straction. The abstraction has only finitely many trajecto-
ries that extend to the end of the time horizon of interest,
which allows us to practically calculate the diagnosability
and construct the diagnoser.

1. INTRODUCTION
When a complex system operates, a fault may occur in any
of its component. Detection and isolation of faults as quick
as possible could keep the system from incurring severe dam-
ages, and even saves human lives. Fault detection and iso-
lation comprise the major task in the fault diagnosis [9],
which can be performed by comparing available measure-
ments with the model information. Based on the system
model, a fault has some particular pattern of anticipated
measurements as its symptoms, called the fault signature [3].
Intuitively, fault diagnosability is determined by the dis-
criminability of fault signatures. If the symptom of a fault
is confounded with the normal system behavior, obviously
fault detection cannot be made. Similarly, fault isolability
requires the discriminability of different faults.
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In this paper, we propose (δd, δm, α)-diagnosability notion
for hybrid systems, and present a methodology for analyzing
such diagnosability. Since the discriminability of observed
symptoms can be impaired by low accuracy of the actual
measurements, the measurement uncertainty parameter δm
is incorporated into the diagnosability notion. In addition,
a delay parameter δd is specified, which represents the maxi-
mum delay for diagnosing the fault since its first occurrence.
Relevant works can be found in [6, 8, 16].

If the system model involves probabilistic dynamics, then it
could be the case that the symptoms are not completely dis-
criminable, but the probability of misclassifying a symptom
can be described. We thus propose the notion of (δd, δm, α)-
diagnosability as a weaker alternative to the logical diagnos-
ability [13]. The (δd, δm, α)-diagnosability notion requires
that the probability of misclassification do not exceed the
threshold (1 − α), while the logical diagnosability amounts
to α = 1.

There are some earlier works on diagnosability analysis of
stochastic discrete event systems, for example [14, 15]. Our
work is different from the probabilistic diagnosability of [14,
15] in the following way: [14, 15] are concerned with steady-
state behaviors of stochastic discrete event systems, while
the present paper investigates the finite-horizon fault diag-
nosability for hybrid systems with probabilistic reset. How-
ever, our notion of probabilistic diagnosability is inspired by
the similar definition therein.

The present research is motivated by problem of network
congestion diagnosis. The data communication network can
be modeled as a hybrid system [2], where package loss events
have probabilistic reset. By observing the timed events of
package loss at only a few of the routers, we want to diagnose
the congestion condition of the whole network. In Section
3.5, we illustrate this application with a simplified model.

Thus, the fault diagnosability analysis problem in this paper
can be formulated as follows: Given a hybrid system with
probabilistic reset, suppose one can only observe events with
their timing. Moreover, only a subset of the events are mod-
eled as observable, and the timing has limited measurement
accuracy. We want to analyze whether the occurrence of any
faulty event can be deduced within a limited time.

In the literature, there are some works on designing effec-
tive state estimators based on the measurement of contin-
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uous systems states [12, 17], that is, to efficiently improve
the state observalibility. In contrast, our approach focus on
obtaining the knowledge of temporal discrete-event behavior
of the hybrid system, given the limited observalibility. This
makes it possible to diagnose faults by using the timing and
order of observable events during the system operation. As
it will be more apparent in later sections, such diagnosis by
the observation of timed event sequences would require a
pairwise comparison of all the possible sequences generated
by the system. Due to the intrinsic complexity of hybrid
dynamics, directly analyzing the original model is hard or
even impossible. Therefore, an indirect approach by system
abstraction is presented: In Section 2, we present a method
to construct the system abstraction. Our system abstraction
has finitely many trajectories extending to the time horizon
of interest, so its probabilistic diagnosability can be easily
calculated. In Section 3, we prove a quantitative relation be-
tween the probabilistic diagnosability of the hybrid system
and the abstraction, which allows us to derive the former
from the latter, and also build a diagnoser.

2. HYBRID SYSTEMS ABSTRACTION
2.1 Hybrid Systems Definition
In this paper we model hybrid systems basically in the same
way as in [1] except that an event may have multiple target
discrete states. Whenever an event is triggered, the discrete
state is reset to one of the candidates with some probability.
See Def. 1 below.

Definition 1. A hybrid autonomous system with proba-
bilistic reset is a tuple H = (L×X,L0×X0, D,E, Inv) that
consists of:

• A set L × X of hybrid states (`, x), where ` ∈ L is
the discrete state, and x ∈ X is the continuous state.
Discrete states are also called locations.

• A set L0 ×X0 ⊂ L×X of initial states.

• D associates with each location ` ∈ L the autonomous
continuous time-invariant dynamics, D` : ẋ = D`(x).
This differential equation is assumed to admit a unique

global solution ξ`(t, x
0
`), where ξ` satisfies

∂ξ`(t,x0` )

∂t
=

D`(ξ`(t, x
0
`)), and ξ`(0, x

0
`) = x0

` is the initial condition
in `.

• Inv : L→ X associates with each location an invariant
set Inv(`) ⊂ X. Only if the continuous state satisfies
x ∈ Inv(`), can the discrete state be at the location `.

• E is a set of events. In each location `, the system state
evolves continuously according to D` until an event
e := (`, [`′], g, r, p), e ∈ E occurs. The event is guarded
by g ∈ Inv(`). Namely, a necessary condition for the
occurrence of e is x ∈ g. Let (`, x) denote the sys-
tem state that triggers e. After the event, the location
is reset to one of the possible targets, `′ ∈ [`′] ⊂ L,
and the continuous state is reset to r(`′, x) ∈ Inv(`′).
The probability of resetting the location to `′ is given
by p(`′, x), where p : [`′] × g → (0, 1] satisfies that for
any fixed x ∈ g,

∑
`′∈[`′] p(`

′, x) = 1.

Let G` denotes the set of guards such that the associated
events all have ` as the source location. Let ∂Inv(`)out
denote part of the boundary ∂Inv(`) where the continu-
ous state is evolving outward Inv(`), i.e., given ξ`(τ, x

0
`) ∈

∂Inv(`)out, for any t > 0, there exists t1 ∈ (0, t) such that
ξ`(τ+t1, x

0
`) 6∈ Inv(`). We adopt the following assumptions:

1. Non-deadlocking. We require ∂Inv(`)out ⊂ G` for all
` ∈ L in order to avoid deadlocking. Namely, when-
ever the continuous state is evolving outside Inv(`),
an event must be specified.

2. The initial set L0 × X0 is compact. The initial state
can vary in L0 ×X0 with non-determinism.

3. We assume that for any ` ∈ L, G` ⊂ ∂Inv(`)out holds;
and for any g1, g2 ∈ G`, g1, g2 are disjoint. With this
assumption, the occurrence of events is determinis-
tic: Whenever a guard is reached by the continuous
state, an unique event is forced to occur. The present
work can be extended to remove this assumption as
discussed later.

4. Well-posedness. The differential equation ẋ = D`(x)
admits a unique solution, namely, it satisfies the Lips-
chitz condition.

5. For any e = (`, [`′], g, r, p) ∈ E, for any fixed `′ ∈ [`′],
p(`′, x) is Lipschitz continuous with respect to x.

6. The system does not have Zeno behavior [10].

7. All the reset maps are continuous functions.

When the hybrid system runs, a sequence of events can be
triggered. Only some of the events are observable, which are
associated with observable output symbols ψ ∈ Ψo. Events
that could not be observed are associated with the empty
output symbol ψ = ∅. For convenience, we also define an
initialization event e0 6∈ E associated with the special output
symbol ι (starting signal). Then a trajectory of the hybrid
system can be defined as a sequence:

Definition 2. Given H = (L ×X,L0 ×X0, D,E, Inv),
a trajectory of H is

ρ = (e0, `0, x0, τ0), (e1, `1, x1, τ1) · · · = {(ei, `i, xi, τ i)}Ni=0,

such that

• ∀i ≥ 0, (`i, xi) ∈ L×X, and (`0, x0) ∈ L0 ×X0;

• ∀i ≥ 0, τ i ∈ R≥0, and ∀t ∈ [0, τ i], ξ`i(t, x
i) ∈ Inv(`i);

• ∀i ≥ 1, ei = (`i−1, [`i], gi, ri, pi) ∈ E, `i ∈ [`i], and
ξ`i−1(τ i−1, xi−1) ∈ gi, xi = ri(`i, ξ`i−1(τ i−1, xi−1)),
i.e., (`i, xi) is the reset state.

Suppose a trajectory ρ′ = {(e′i, `′i, x′i, τ ′i)}N
′

i=0 is exactly
the same as ρ except that ρ′ lasts for a shorter time horizon,
then we call ρ′ a sub-trajectory of ρ. Formally, it should be
satisfied (e′i, `′i, x′i, τ ′i) = (ei, `i, xi, τ i) for all i ∈ [0, N ′−1],

and (e′N
′
, `′N

′
, x′N

′
) = (eN

′
, `N

′
, xN

′
); it is also required

N ′ < N, τ ′N
′
≤ τN

′
, or N ′ = N, τ ′N

′
< τN

′
. In the special

case N ′ < N, τ ′N
′

= τN
′
, ρ′ is a prefix of ρ.
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Definition 3. If a nonempty set of trajectories [ρ] initi-
ated from (`0, x0) satisfies the following conditions, then it
is called a trajectory tree of (`0, x0).

• ∀ρ ∈ [ρ], ρ is not a sub-trajectory of any ρ′ ∈ [ρ].

• ∀ρ = {(ei, `i, xi, τ i)}Ni=0 ∈ [ρ] with N ≥ 1, for any
M ∈ {1, . . . , N}, there exists a subset of trajectories

[ρ]′ ⊂ [ρ], such that every ρ′ = {(e′i, `′i, x′i, τ ′i)}N
′

i=0 ∈
[ρ]′ satisfies N ′ ≥ M , and for all i ∈ {0, . . . ,M − 1},
(e′i, `′i, x′i, τ ′i) = (ei, `i, xi, τ i), e′M = eM , moreover,

the set {`′M |ρ′ = {(e′i, `′i, x′i, τ ′i)}N
′

i=0 ∈ [ρ]′} includes
all the possible target locations of eM .

In words, for any event e ever triggered by some ρ ∈
[ρ], there must be a bunch of trajectories in [ρ] that
keep being the same as ρ until e is triggered, and then
reset to every possible target location of e.

When we start a system run from (`0, x0), as time horizon of
the run indefinitely grows, if the outcome keeps being a sub-
trajectory of certain trajectory ρ until the end of ρ, then we
say the run is pinned down on ρ. The following proposition
says that given a trajectory tree [ρ], a system run is pinned
down on one and only one ρ in [ρ].

Proposition 1. Given a trajectory tree [ρ] of (`0, x0), ev-
ery system run initiated from (`0, x0) for sufficiently long
time horizon results in a unique ρ ∈ [ρ].

Proof. Suppose a run from (`0, x0) has been pinned down
on both ρ, ρ′ ∈ [ρ] successively, then by definition ρ is a sub-
trajectory of ρ′. This contradicts the definition of trajectory
trees. So a run for sufficiently long time horizon can result
in at most one trajectory in the tree.

For all `, ẋ = D`(x) admits a unique solution (Assumption
4); whenever a guard is reached, a unique event is forced to
occur (Assumption 3); after the event, for any possible target
location `′ of the event, there must be a trajectory ρ ∈ [ρ] that
takes `′ as its target location (Def. 3). Therefore, for any
system run initiated from (`0, x0), the outcome must match
(keep being a sub-trajectory of) at least one ρ ∈ [ρ] until the
maximum time horizon of ρ.

If Assumption 3 is eliminated, then a continuous state on a
guard may or may not trigger an event, and the event that
can be triggered by a continuous state is not unique. In that
case, Prop. 1 does not hold anymore, but the results can be
extended by defining a set of trajectory trees for (`0, x0).
For simplicity, we stick to determinism of events.

For each (`0, x0) ∈ L0×X0, given a trajectory tree of it, we
define a sample space, whose elements are the trajectories
that form the tree. These trajectories are called the paths
of the tree. Each experiment is a system run from (`0, x0)
for sufficiently long time horizon, which results in one path
by Prop. 1.

Definition 4. Given a trajectory tree [ρ] of (`0, x0), and
a path ρ = {(ei, `i, xi, τ i)}Ni=0 ∈ [ρ], define the probability

mass associated with ρ:

P (ρ) =
N∏
i=1

pi(`i, ξ`i−1(τ i−1, xi−1)). (1)

When N = 0 ([ρ] is a singleton), the expression is inter-

preted as 1 ·
∏N
i=1 · · · = 1.

Let Ψ := Ψo∪{∅, ι} be the set of output symbols associated
with the events, where Ψo, ∅, ι are respectively the observ-
able symbols, unobservable symbol, and starting signal as
stated before. Then the sequence of timed output symbols
produced by a trajectory is defined as follows:

Definition 5. Given a trajectory ρ = {(ei, `i, xi, τ i)}Ni=0,
the sequence of timed output symbols produced by ρ is

s = (∆0, ψ0), (∆1, ψ1) · · · = {(∆i, ψi)}Ni=0,

where (∆0, ψ0) = (0, ι), and for all i ≥ 1, ∆i = τ i−1, ψi ∈ Ψ
is the output symbol associated with ei ∈ E. For conve-
nience, we define a set of labels Σ := R≥0 ×Ψ, and refer to
a sequence of timed output symbols as a label sequence.

2.2 Abstraction
In this section, we construct a system abstraction Ĥ that
helps to analyze the probabilistic fault diagnosability of H
and construct a diagnoser. The main result is that Ĥ can
be constructed using finitely many simulated trajectories of
H. To that end, we make extensive use of results reported
in [11]. The details of [11] are not presented in this paper
due to space limitation.

The algorithm in [11] only considers an event with unique
target location. It computes robust neighborhoods around
the (reset) initial continuous states of any trajectory ρ̂ =

{(êi, ˆ̀i, x̂i, τ̂ i)}N̂i=0 that has been simulated for finite time
horizon, denoted as Robust(x̂i). The robust neighborhoods
computed with a parameter ε has the following property [11],
where dR is a time metric:

• For any (`0, x0) that satisfies `0 = ˆ̀0, x0 ∈ Robust(x̂0),
there exists a trajectory ρ = {(ei, `i, xi, τ i)}Ni=0 initi-

ated from (`0, x0), such that N = N̂ , ei = êi, `i = ˆ̀i,
xi ∈ Robust(x̂i), dR(τ i, τ̂ i) ≤ ε for all i ∈ {0, . . . , N}.

The algorithm can be easily extended to handle an event
with multiple target locations: We simulate a trajectory tree
[ρ̂] from (ˆ̀0, x̂0) ∈ L0×X0 for the time horizon [0, tend], and
compute robust neighborhoods for each path of [ρ̂]. Then for

any (`0, x0) such that `0 = ˆ̀0, x0 ∈ ∩ρ̂∈[ρ̂]Robust(x̂
0), a set

of trajectories [ρ] can be obtained: Any ρ ∈ [ρ] is initiated
from (`0, x0) and satisfies the robust neighborhood property
above with respect to some ρ̂ ∈ [ρ̂]; for each ρ̂ ∈ [ρ̂], only
one such ρ needs to be included in [ρ].

By Def. 3 and the robust neighborhood property, clearly [ρ]
is a trajectory tree of (`0, x0). We thus have the proposition
as below:

90

HSCC'15, April 14-16, 2015, Seattle, Washington



Proposition 2. Given a trajectory tree [ρ̂] of (ˆ̀0, x̂0), for

any (`0, x0) that satisfies `0 = ˆ̀0, x0 ∈ ∩ρ̂∈[ρ̂]Robust(x̂
0),

there is a trajectory tree [ρ] of (`0, x0), such that the paths
of [ρ] and [ρ̂] have a one-to-one correspondence C : [ρ]→ [ρ̂].

For ρ = {(ei, `i, xi, τ i)}Ni=0 ∈ [ρ], ρ̂ = {(êi, ˆ̀i, x̂i, τ̂ i)}N̂i=0 ∈
[ρ̂], ρ̂ = C(ρ), the following properties hold:

1. N = N̂ , ei = êi, `i = ˆ̀i, xi ∈ Robust(x̂i), dR(τ i, τ̂ i) ≤
ε for all i ∈ {0, . . . , N}.

2. Let κ1 be the Lipschitz constant in Assumption 5. Let
êi = (ˆ̀i−1, [ˆ̀i], ĝi, r̂i, p̂i) be the ith event triggered by ρ̂,

r̂i(−1)(ˆ̀i, Robust(x̂i)) be the inverse image of Robust(x̂i)

with respect to the map r̂i(ˆ̀i, ·) : ĝi → Inv(ˆ̀i). Given
κ2 > 0 such that ‖x − ξˆ̀i−1(τ̂ i−1, x̂i−1)‖ ≤ κ2 for all

x ∈ r̂i(−1)(ˆ̀i, Robust(x̂i)) and i ≥ 1, the probability
mass of ρ can be estimated by

P (ρ) ∈ [

N∏
i=1

max{0, β̂i − κ},
N∏
i=1

min{1, β̂i + κ}], (2)

where κ := κ1κ2, β̂
i := p̂i(ˆ̀i, ξˆ̀i−1(τ̂ i−1, x̂i−1)). When

N = 0 ([ρ] is a singleton), the expression is interpreted

as 1 ·
∏N
i=1 · · · = 1.

Proof. Property 1 follows from preceding discussion. To
prove Property 2, note that by Property 1, xi ∈ Robust(x̂i),

so ξ`i−1(τ i−1, xi−1) ∈ r̂i(−1)(ˆ̀i, Robust(x̂i)). It follows that

‖ξ`i−1(τ i−1, xi−1) − ξˆ̀i−1(τ̂ i−1, x̂i−1)‖ ≤ κ2. Since `i = ˆ̀i,

‖pi(`i, ξ`i−1(τ i−1, xi−1))−p̂i(ˆ̀i, ξˆ̀i−1(τ̂ i−1, x̂i−1))‖ ≤ κ1κ2 =
κ. By using Eq. (1), clearly Eq. (2) holds.

For convenience we call ∩ρ̂∈[ρ̂]Robust(x̂
0) the robust neigh-

borhood around x̂0 from this point on. As the next step, we
need to cover the initial set with the union of robust neigh-
borhoods computed around more simulated initial states [11].

The system abstraction is constructed as Ĥ = (L×X, L̂0 ×
X̂0, D,E, Inv), where L̂0 × X̂0 consists of the finitely many
simulated initial states whose robust neighborhoods cover
L0×X0. Then for any (`0, x0) ∈ L0×X0, there is (ˆ̀0, x̂0) ∈
L̂0 × X̂0, and respective trajectory trees [ρ], [ρ̂], such that
the properties in Proposition 2 hold.

Note that given a trajectory tree [ρ] and a subset of paths

{ρk = {(eik, `ik, xik, τ ik)}Nk
i=0}

K
k=1 ⊂ [ρ],K > 1, if there is

N∗ ≥ 0 such that (eik, `
i
k, x

i
k, τ

i
k) = (eik′ , `

i
k′ , x

i
k′ , τ

i
k′) for all

k, k′ ∈ [1,K], i ∈ [0, N∗], and also
∑K
k=1

∏Nk
i=N∗+1 β

i
k = 1

holds, where βik := pik(`ik, ξ`i−1
k

(τ i−1
k , xi−1

k )), then clearly

the total probability mass of {ρk}Kk=1 can be expressed as∏N∗

i=1 β
i with βi = βik for any k. In this case, we say that the

trajectories {ρk}Kk=1 can be combined to the trajectory ρ∗ =

{(ei, `i, xi, τ i)}N
∗

i=0, where the sequence {(ei, `i, xi, τ i)}N
∗

i=0 is

given by {(eik, `ik, xik, τ ik)}N
∗

i=0 for any k.

As a more convenient way of checking, if {ρk}Kk=1 ⊂ [ρ]
consists of all the trajectories ρ ∈ [ρ] such that ρ∗ is a prefix
of ρ (see the definition of sub-trajectories following Def. 2),
then {ρk}Kk=1 can be combined to ρ∗.

Corollary 1. Let [ρ], [ρ̂] be the trajectory trees in Prop.
2, [ρ̂]′ ⊂ [ρ̂] be a subset of paths. Let C−1 be the inverse map
of C in Prop. 2, and C−1([ρ̂]′) be the image of [ρ̂]′ for C−1.
Let B([ρ̂]′) denote a set of trajectories generated by combin-
ing some paths in [ρ̂]′. For an arbitrary ρ∗ ∈ B([ρ̂]′), denote

ρ∗ as {(ei, `i, xi, τ i)}N
∗

i=0, and βi := pi(`i, ξ`i−1(τ i−1, xi−1))
for all i ∈ [1, N∗], κ := κ1κ2. Then the total probability
mass of C−1([ρ̂]′) ⊂ [ρ] can be estimated by:

∑
ρ∈C−1([ρ̂]′)

P (ρ) ≥
∑

ρ∗∈B([ρ]′)

N∗∏
i=1

max{0, βi − κ}, (3)

∑
ρ∈C−1([ρ̂]′)

P (ρ) ≤
∑

ρ∗∈B([ρ]′)

N∗∏
i=1

min{1, βi + κ}]. (4)

Proof. If {ρ̂k}Kk=1 ⊂ [ρ̂]′ can be combined to ρ∗ ∈ B([ρ̂]′),
the total probability mass of {ρ̂k}Kk=1 ⊂ [ρ̂]′ can be expressed

as
∏N∗

i=1 β
i. By Prop. 2, clearly {C−1(ρ̂k)}Kk=1 can also be

combined, and the total probability mass of {C−1(ρ̂k)}Kk=1 is

within the interval [
N∗∏
i=1

max{0, βi − κ},
N∗∏
i=1

min{1, βi + κ}].

So the result follows.

The system abstraction Ĥ has finitely many initial states.
Its diagnosability can be easily analyzed and used to derive
the diagnosability of H. We see this in the next section.

3. PROBABILISTIC DIAGNOSABILITY
3.1 Projected Label Sequences
In Section 3, we investigate the problem of diagnosing faults
for hybrid systems with probabilistic reset without directly
observing the trajectories.

During the system operation, one can only observe a se-
quence of timed output symbols, which we call a label se-
quence by Def. 5. Due to the unobservable events, this
observed label sequence may be different from the original
one produced by the trajectory. Hence, we introduce the
definition of projected label sequences:

Definition 6. Let Σ∗ denote the set of all the label se-
quences generated over Σ. Let s = {(∆i, ψi)}Ni=0 ∈ Σ∗ be
a label sequence, and Π : Σ∗ → Σ∗ be a single-valued pro-
jection map. Then π := Π(s) is called the projected label
sequence of s through the map Π.

We define the projection map Π that absorbs all the la-
bels with the unobservable output symbol ∅ into the first
observable label that follows, while leaves the rest of the
labels unchanged. For instance, (∆0, ψ0), (∆1, ∅), (∆2, ψ2)
is projected to (∆0, ψ0), (∆1 + ∆2, ψ2). If a trajectory has
consecutive unobservable output symbols at its end, then
the unobservable end is abandoned in the projected label
sequence. Formally the projection map is defined as below:

Definition 7. Given a label sequence s = {(∆i, ψi)}Ni=0,
whose observable output symbol sequence is then written as

{ψin}N
′

n=0 ⊂ {Ψo, ι}, N ′ ≤ N , define the projection map:

Π(s) = {(∆′n, ψ′n)}N
′

n=0,
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where (∆′0, ψ′0) = (∆0, ψ0) = (0, ι), and ∀n ∈ [1, N ′],

(∆′n, ψ′n) = (
∑in
i=in−1+1 ∆i, ψin).

Projected label sequences are the only accessible information
for system diagnosis. They contain the following aspects of
information:

1. Fault diagnosis begins from the starting signal ψ′0 = ι.
So we assume the system operation is clear of faults
before the starting signal.

2. Each observable output symbol ψ′n, n ≥ 1 should be
generated ∆′n time units later than the preceding one;
in the meantime, no observable output symbol can be
generated.

In practice, it is often the case that the intervals between
the observed output symbols cannot be measured precisely.
Given δm as the uncertainty parameter, the measurement
∆̄′n of ∆′n must be located in a δm/2 neighborhood of ∆′n.

In what follows, a metric on Σ∗ is defined in such a way that
the distance only depends on the time sequences if the out-
put symbol sequences of two label sequences are the same,
and raised to infinity otherwise. This is motivated by the
application of diagnosing faults by observing the projected
label sequences. Unlike dwell time, which may be measured
with uncertainty, different output symbols are assumed to
be readily differentiable from each other.

Definition 8. Given s1 = {∆i
1, ψ

i
1}N1
i=0, s2 = {∆i

2, ψ
i
2}N2
i=0,

dΣ∗(s1, s2) ,


sup
i
dR(∆i

1,∆
i
2) if N1 = N2,

and ∀i ∈ [0, N1], ψi1 = ψi2;

∞ otherwise.

Definition 9 (Relative Time Metric).

dR(t1, t2) ,

{
0 if t1 = t2 = 0,
|t1−t2|
t1+t2

otherwise.

Proposition 3. dR is a metric on R≥0. The closed ball
{t|dR(t1, t) ≤ ε} is given by the interval [t1

1−ε
1+ε

, t1
1+ε
1−ε ].

Proof. Obviously, dR(t1, t2) = dR(t2, t1), dR(t1, t2) ≥ 0,
and dR(t1, t2) = 0 if and only if t1 = t2. Assume t1 ≥ t2 ≥
t3. Then

dR(t1, t2) + dR(t2, t3)− dR(t1, t3)

=
t1 − t2
t1 + t2

+
t2 − t3
t2 + t3

− t1 − t3
t1 + t3

=
(t1 − t3)(t1 − t2)(t2 − t3)

(t1 + t2)(t2 + t3)(t1 + t3)

≥ 0.

Using similar arguments we can prove dR(t1, t2)+dR(t1, t3) ≥
dR(t2, t3) and dR(t1, t3) + dR(t2, t3) ≥ dR(t1, t2).

To compute the ball centered at t1 with radius ε:
If t ≥ t1, then dR(t1, t) ≤ ε⇒ t−t1

t1+t
≤ ε⇒ t ≤ t1 1+ε

1−ε .

If t < t1, then dR(t1, t) ≤ ε⇒ t1−t
t1+t

≤ ε⇒ t ≥ t1 1−ε
1+ε

.

This metric is relative in the sense that it depends on the
elapsed time, i.e., the distance between a 1-second interval
and a 1.05-second one is the same as the distance between a
100-second interval and a 105-second one. The motivation of
using the relative time metric rather than the more intuitive
Euclidean metric is the proof of Prop. 4 (Section 3.3).

3.2 Definition of (δd, δm, α)-Diagnosability
Consider a hybrid system with probabilistic reset H = (L×
X,L0 × X0, D,E, Inv), and the projection map Π defined
in Section 3.1. Let Ef ⊂ E ∪ {e0} be the set of events that
model a fault. We call Ef the faulty events, whose elements
can be partitioned into M disjoint subsets

⋃M
j=1 E

f
j = Ef .

Each faulty subset Efj corresponds to a type of fault Fj ∈
F := {F1, . . . , FM}. The probabilistic fault diagnosability is
proposed in this section, which takes into account the delay
in discriminating a fault since it first occurs, as well as the
measurement uncertainty of time intervals.

We start from defining the trajectories that triggers some
faulty event and then keeps flowing for enough long time:

Definition 10. A trajectory ρ = {(ei, `i, xi, τ i)}Ni=0 is
Fjδ-faulty if and only if there exists a finite index if ∈ [0, N ]
such that:

1. ∀i < if , ei 6∈ Efj ;

2. ei
f

∈ Efj ;

3.
N∑
i=if

τ i ≥ δ.

In the special case where δ = 0, i.e., only the occurrence of
Fj is required, the term Fj-faulty is used. If a trajectory is
free of any fault, then it is called normal.

Later, an approach is presented that analyzes the finite-
horizon fault diagnosability of H through the analysis of
the abstraction Ĥ (Section 2.2). Recall that the initial set

of Ĥ is a finite set; in the construction of L̂0 × X̂0, a tra-
jectory tree [ρ̂] has been simulated for the horizon [0, tend]

for each (ˆ̀0, x̂0) ∈ L̂0 × X̂0. We use J (H) to denote the
set of trajectories that are of interest in the finite-horizon
fault diagnosis. J (H) consists of all the trajectory trees [ρ]
obtained from [ρ̂] (see Proposition 2) as (`0, x0) varies in
L0 ×X0, and the sub-trajectories of these trajectory trees.
Accordingly, the set of trajectories J (Ĥ) that are of inter-

est for Ĥ is specified as the collection of all the simulated
trajectory trees [ρ̂] and their sub-trajectories.

To avoid ambiguity, from this point on [ρ] ∈ J (H), [ρ̂] ∈
J (Ĥ) only refer to trajectory trees that extend to the end
of time horizon of interest, rather than any trajectory tree
formed by their sub-trajectories.

Based on the discriminability of Fjδ-faulty trajectories from
normal trajectories and faulty trajectories of other faults,
the probabilistic fault detectability and isolability can be
defined as below:
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Definition 11. Given a hybrid automaton H and a faulty
event set Ef = {Ef1 , . . . , E

f
M}, let Fj(H) ⊂ J (H) denote

the set of all the Fj-faulty trajectories, and Fδj (H) ⊂ Fj(H)
denote the set of all the Fjδ-faulty trajectories. Let s1, s2

denote the label sequences produced by the trajectories ρ1, ρ2

respectively, and π1 = Π(s1), π2 = Π(s2).

1. F is called (δd, δm, α)-detectable if and only if for any
trajectory tree [ρ] in J (H),

∑
ρ∈A1([ρ]) P (ρ) ≤ 1 − α

holds, where A1([ρ]) ⊂ [ρ] is the set of all paths ρ ∈ [ρ]
such that:

• ρ has a sub-trajectory ρ1, or ρ = ρ1, which is
Fjδd-faulty for some fault Fj ∈ F, while cannot be
discriminated from some normal trajectory ρ2 ∈
J (H); formally, ρ1 ∈ Fδdj (H), ρ2 is normal, and
dΣ∗(π1, π2) ≤ δm.

2. F is called (δd, δm, α)-isolable if and only if for any
trajectory tree [ρ] in J (H),

∑
ρ∈A2([ρ]) P (ρ) ≤ 1 − α

holds, where A2([ρ]) ⊂ [ρ] is the set of all paths ρ ∈ [ρ]
such that:

• ρ has a sub-trajectory ρ1, or ρ = ρ1, which is
Fjδd-faulty for some fault Fj ∈ F, while cannot be
discriminated from some Fi-faulty trajectory ρ2 ∈
Fi(H), where Fi ∈ F, Fi 6= Fj; formally, ρ1 ∈
Fδdj (H), ρ2 ∈ Fi(H), dΣ∗(π1, π2) ≤ δm.

Similarly, the (δd, δm, α)-diagnosability that requires both
probabilistic fault detectability and isolability is defined:

Definition 12. Given a hybrid automaton H and a faulty
event set Ef = {Ef1 , . . . , E

f
M}, the system H is said to be

(δd, δm, α)-diagnosable if and only if for any trajectory tree
[ρ] in J (H),

∑
ρ∈A([ρ]) P (ρ) ≤ 1− α holds, where A([ρ]) :=

A1([ρ]) ∪ A2([ρ]), A1,A2 are defined in Def. 11.

The probabilistic diagnosability of faults can be extended
from single-fault to multiple-fault cases. For example, given
F = {F1, F2, F3} and a combination of faults f = {F1, F3} ∈
2F, define fδ-faulty trajectories as both F1δ-faulty and F3δ-
faulty, i.e., the intersection of the sets of F1δ-faulty and
F3δ-faulty trajectories forms the set of fδ-faulty trajecto-
ries. Then multiple-fault probabilistic diagnosability can be
defined and analyzed based on the discriminability of fδ-
faulty trajectories.

3.3 Bridging The Abstraction to Probabilistic
Fault Diagnosability Analysis

In this section, we establish a quantitative relation between
the probabilistic fault diagnosability of a hybrid system and
the abstraction.

Proposition 4. Given s1, s2 ∈ Σ∗ and π1 = Π(s1), π2 =
Π(s2), we have dΣ∗(π1, π2) ≤ dΣ∗(s1, s2).

Proof. If dΣ∗(s1, s2) is finite, then clearly s1, s2 have the
same output symbol sequence. According to the definition of
Π, π1, π2 must also have the same output symbol sequence.

Moreover, for any ∆1
1,∆

1
2,∆

2
1,∆

2
2, > 0,

|∆1
1+∆2

1−∆1
2−∆2

2|
∆1

1+∆2
1+∆1

2+∆2
2
≤

|∆1
1−∆1

2|+|∆
2
1−∆2

2|
∆1

1+∆2
1+∆1

2+∆2
2
≤ max{ |∆

1
1−∆1

2|
∆1

1+∆1
2
,
|∆2

1−∆2
2|

∆2
1+∆2

2
}. Therefore, by

combining some labels’ dwell time distance after the projec-
tion, the supremum of dwell time distance over all the labels
remains unchanged or becomes smaller.

Thus, we obtain dΣ∗(π1, π2) ≤ dΣ∗(s1, s2).

Theorem 1. Given δ̂d, δ̂m, the maximum value of α̂ such
that Ĥ is (δ̂d, δ̂m, α̂)-diagnosable can be calculated by using
the formula:

α̂ = min
[ρ̂]⊂J (Ĥ)

∑
ρ̂∈[ρ̂]\A([ρ̂])

P (ρ̂)

= min
[ρ̂]⊂J (Ĥ)

∑
ρ̂∈[ρ̂]\A([ρ̂])

N̂∏
i=1

β̂i;

= min
[ρ̂]⊂J (Ĥ)

∑
ρ∗∈B([ρ̂]\A([ρ̂]))

N∗∏
i=1

βi; (5)

and H is (δ∗d , δ
∗
m, α

∗)-diagnosable with

δ∗d = δ̂d
1 + ε

1− ε , (6)

δ∗m = δ̂m − 2ε, (7)

α∗ = min
[ρ̂]⊂J (Ĥ)

∑
ρ∗∈B([ρ̂]\A([ρ̂]))

N∗∏
i=1

max{0, βi − κ}, (8)

where A([ρ̂]) := A1([ρ̂]) ∪ A2([ρ̂]) is defined in Def. 11, 12,

and κ, β̂i,B, βi are defined in Proposition 2, Corollary 1.

Proof. The abstraction Ĥ constructed in Section 2.2 has
finitely many trajectory trees. The calculation of α̂ directly
follows from Def. 11 and 12.

Since L0 × X0 is covered by the robust neighborhoods of
L̂0 × X̂0, for any trajectory tree [ρ] in J (H), there exists

a trajectory tree [ρ̂] in J (Ĥ), such that the paths of [ρ] and
[ρ̂] have a one-to-one correspondence C : [ρ] → [ρ̂] with the
properties in Prop. 2. Let ρ be an arbitrary path of [ρ], and
ρ̂ ∈ [ρ̂] be C(ρ).

Given the parameters δd = δ∗d , δm = δ∗m, suppose ρ ∈ A([ρ]).
This implies, by Def. 11 and 12, the existence of ρ1 as a
sub-trajectory of ρ or ρ1 = ρ, a trajectory ρ2 ∈ J (H), and

a fault Fj ∈ F, such that ρ1 ∈ F
δ∗d
j (H), ρ2 is either normal

or contained in Fi(H) for some fault Fi 6= Fj, and their
projected label sequences satisfy dΣ∗(π1, π2) ≤ δ∗m. Denote
ρ1, ρ2 as

ρ1 = (e0
1, `

0
1, x

0
1, τ

0
1 ), . . . , (ei

f

1 , `
if

1 , x
if

1 , τ
if

1 ),

. . . , (eN1
1 , `N1

1 , xN1
1 , τN1

1 ),

ρ2 = (e0
2, `

0
2, x

0
2, τ

0
2 ), . . . , (eN2

2 , `N2
2 , xN2

2 , τN2
2 ).

Since ρ1 ∈ F
δ∗d
j (H), we have

N1∑
i=if

τ i1 ≥ δ∗d.

By Prop. 2, there exist ρ̂1 as a sub-trajectory of ρ̂ or ρ̂1 = ρ̂,
and a trajectory ρ̂2 ∈ J (Ĥ), such that N1 = N̂1, ei1 = êi1,
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`i1 = ˆ̀i
1, dR(τ i1, τ̂

i
1) ≤ ε for all i ∈ [0, N1]; N2 = N̂2, ei2 = êi2,

`i2 = ˆ̀i
2, dR(τ i2, τ̂

i
2) ≤ ε for all i ∈ [0, N2]. Denote ρ̂1, ρ̂2 ∈

J (Ĥ) as

ρ̂1 = (ê0
1, ˆ̀0

1, x̂
0
1, τ̂

0
1 ), . . . , (êi

f

1 , ˆ̀if
1 , x̂

if

1 , τ̂
if

1 ),

. . . , (êN̂1
1 , ˆ̀N̂1

1 , x̂N̂1
1 , τ̂ N̂1

1 ),

ρ̂2 = (ê0
2, ˆ̀0

2, x̂
0
2, τ̂

0
2 ), . . . , (êN̂2

2 , ˆ̀N̂2
2 , x̂N̂2

2 , τ̂ N̂2
2 ).

Clearly, ρ1 and ρ̂1 have the same event sequence, ρ2 and ρ̂2

have the same event sequence. It follows that ρ̂1 ∈ Fj(Ĥ),

ρ̂2 is either normal or contained in Fi(Ĥ). By Def. 8, we
also have

dΣ∗(s1, ŝ1) ≤ ε, dΣ∗(s2, ŝ2) ≤ ε. (9)

Let π1, π2, π̂1, π̂2 be the projected label sequences produced
respectively by ρ1, ρ2, ρ̂1, ρ̂2. By the triangle inequality, Prop.
4 and Eq. (9), the following holds:

dΣ∗(π̂1, π̂2) ≤ dΣ∗(π1, π̂1) + dΣ∗(π1, π2) + dΣ∗(π2, π̂2)

≤ δ∗m + 2ε

= δ̂m.

For all i ∈ [0, N1], dR(τ i1, τ̂
i
1) ≤ ε, namely, τ i1

1−ε
1+ε
≤ τ̂ i1 ≤

τ i1
1+ε
1−ε . It follows that

N̂1∑
i=if

τ̂ i1 ≥
N1∑
i=if

τ i1
1− ε
1 + ε

≥ δ∗d
1− ε
1 + ε

. (10)

By definition, ρ̂1 ∈ Fδdj (Ĥ) with δd = δ∗d
1−ε
1+ε

= δ̂d, and thus

ρ̂ ∈ A([ρ̂]) for the parameters δd = δ̂d, δm = δ̂m.

Therefore, ρ̂ ∈ [ρ̂] \ A([ρ̂]) implies ρ = C−1(ρ̂) ∈ [ρ] \ A([ρ]),
which means C−1([ρ̂] \A([ρ̂])) ⊂ [ρ] \A([ρ]). It follows from
Corollary 1 that

∑
ρ∈[ρ]\A([ρ])

P (ρ) ≥
∑

ρ∗∈B([ρ̂]\A([ρ̂]))

N∗∏
i=1

max{0, βi − κ}. (11)

3.4 Diagnosers
The abstraction Ĥ constructed in Section 2.2 has finitely
many trajectories extending to the time horizon of interest.
In this section, a diagnoser based on Ĥ is constructed, which
works in the following way: It stores a finite list of candidate
paths whose event sequences can be triggered by H, and
keeps narrowing down the list by observing the timed output
symbol sequence of H until a decision is made. When a
decision has to be made without certainty, the diagnoser can
make choices from the candidates based on their probability
conditioning on the current observation [7].

Suppose the delay parameter and measurement uncertainty
for H are given by δ∗d , δ

∗
m. That is, the measurements of

time intervals must lie inside a ball of radius 1
2
δ∗m centered

at the true value. We construct Ĥ with a parameter ε, and
compute δ̂d = δ∗d

1−ε
1+ε

, δ̂m = δ∗m + 2ε, and α̂ as Eq. (5). By

Theorem 1, Ĥ is (δ̂d, δ̂m, α̂)-diagnosable, H is (δ∗d , δ
∗
m, α

∗)-
diagnosable with α∗ computed from Eq. (8).

The diagnoser is then constructed as a hybrid automaton
Hd = (Ld ×Xd, L0

d ×X0
d , Dd, Ed, Invd), where the sematics

is the same as Def. 1 except that each event has a unique
target location.

• Let {ρ̂k}Kk=1 be the collection of all the paths of all [ρ̂] ∈
J (Ĥ), where ρ̂k = {(êik, ˆ̀i

k, x̂
i
k, τ̂

i
k)}N̂k

i=0. The state

space of the diagnoser is defined as Ld := 2{1,...,K} ×
{0, 1, 2, . . .}, Xd := R. Clearly, each location `d ∈ Ld
is a set of pairs (k, n), k ∈ {1, . . . ,K}, n ∈ {0, 1, 2, . . .}.

• Let ŝk = {(∆̂i
k, ψ̂

i
k)}N̂k

i=0 be produced by ρ̂k, and ψ̂
i(k,n)

k

be the nth observable output symbol of ρ̂k following

the starting signal (i(k,n) is the index of ψ̂
i(k,n)

k in

ŝk). We define the set of fault labels W := 2F, where
F := {F1, . . . , FM} are the modeled M types of faults.

Each pair (k, n), n ∈ {0, 1, . . . , N̂k} possesses a com-
plete fault label wall(k,n) ∈ W as the collection of all

faults made by ρ̂k, a current fault label wnow(k,n) ⊂ wall(k,n)

as the set of faults made by event sequence of ρ̂k upto
index i(k,n), and a overdue fault label wdue(k,n) ⊂ wnow(k,n)

such that
∑i(k,n)

i=if+1
∆̂i
k ≥ δ̂d.

• Given a location `d, define the conditional probability
scores y(k,n) for each pair (k, n) ∈ `d:

y(k,n) :=
P (ρ̂k)

Σk′∈[k]′P (ρ̂k′)
, (12)

where [k]′ is the subset of {1, . . . ,K} such that k′ ∈ [k]′

satisfies (k′, n) ∈ `d, and ρ̂k′ has the same initial state
as ρ̂k, i.e., ρ̂k′ , ρ̂k belong to the same trajectory tree.

• L0
d ×X0

d := ({1, . . . ,K}, 0)× {0}.

• Dd : ẋ = 1 for all the locations `d ∈ Ld.

• Let π̂k = {(∆̂′nk , ψ̂
i(k,n)

k )}N̂
′
k

i=0 = Π(ŝk), where ∆̂′nk =∑i(k,n)

i=i(k,n−1)+1 ∆̂i
k. Whenever a timed output symbol

(∆̄, ψ) is observed from H, the diagnoser Hd will reset
its location from `d to `′d by triggering an event. The
target `′d is defined as the set of all pairs (k, n) such

that (k, n−1) ∈ `d, ψ = ψ̂
i(k,n)

k , and ∆̄ ∈ B(∆̂′nk ,
1
2
δ̂m),

where B(∆̂′nk ,
1
2
δ̂m) is the relative time metric ball cen-

tered at ∆̂′nk with radius 1
2
δ̂m. The event also resets

the continuous state to 0.

• Invd(`d) := R for all `d ∈ Ld.

The diagnoser Hd operates along with H. Clearly, Hd is
deterministic. The continuous state xd is the time. The
discrete state `d updates according to the observed events of
H with their timing, where measurement uncertainty exists.
Thus, despite the difference between ∆̄ and ∆̂′nk , we still
consider ρ̂k as a candidate path and include (k, n) in the
updated diagnoser state, as long as the difference in time
intervals is bounded by 1

2
δ̂m = 1

2
δ∗m + ε, and the output

symbol matches the observation completely.

Whenever Hd reaches a location `d such that wnow(k,n) ⊂ F for
all (k, n) ∈ `d, a fault detection alarm should be activated
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Figure 1: A network model with two routers and
two flows. Each router has one buffer. The package
loss event is observable at only one of the routers.

with certainty. In particular, if wnow(k,n) 3 Fj (or wnow(k,n) =
{Fj}) for all (k, n) ∈ `d, the fault Fj is detected (or isolated)
with certainty.

The diagnoser could also encounter an undesired case where
for (k1, n), (k2, n) ∈ `d, the overdue fault label wdue(k1,n) con-
tains Fj , while wnow(k2,n) 6= {Fj}, meaning that Fj cannot
be detected or isolated in time. According to Def. 11, 12,
(1 − α∗) overestimates the probability that some fault will
be incurred for at least δ∗d time units while fail to be de-
tected or isolated. Thus, if we stick to the rule that a de-
tection/isolation alarm is raised only when a fault can be
diagnosed with certainty, the overall detection failure (false
negative) and isolation failure rate should not exceed the
threshold (1− α∗).

The diagnoser may run into the undesired case mentioned
above ((k1, n), (k2, n) ∈ `d, w

due
(k1,n) 3 Fj , w

now
(k2,n) 6= {Fj})

with probability 1− ā∗ > 1− a∗, since the probability mass
of ρ̂k2 is not necessarily counted in the estimation of (1−α∗).
We can easily modify Def. 11, 12 to characterize (1 − ᾱ∗)
instead, and all the results including Theorem 1 still hold.
The proof is basically the same and not discussed.

If the diagnoser has to make diagnosis in an ambiguous state,
the conditional probability scores y(k,n) can be used, which
represent the probability of ρ̂k conditioning on the observed
timed events. For example, given `d = {(k1, n), (k2, n)},
wnow(k1,n) = {Fj}, wnow(k2,n) = {}, we can adopt the strategy that
Fj alarm is raised if y(k1,n) > y(k2,n). The conditional prob-
ability here is defined with respect to a trajectory tree [ρ̂] as
before, and we may have multiple [ρ̂] involved in `d. Thus,
the scores y(k1,n) > y(k2,n) does not necessarily mean that
ρ̂k1 is more likely than ρ̂k2 . If ρ̂k1 , ρ̂k2 live in the same prob-
ability space, their conditional probability scores can offer
good reference for the diagnoser to make smarter decisions.

Remark 1. By the way we define wall(k,n), if the detection

(or isolation) alarm is raised as soon as wall(k,n) 3 Fj (or

wall(k,n) = {Fj}) for all (k, n) ∈ `d, then it is possible to
prognose Fj before its occurrence.

3.5 Implementation Example
In this section we discuss the application of our framework
in network package loss diagnosis. For a group of networked
routers, it is assumed the package loss event is observable
at only some of the routers. The problem is to diagnose the
congestion of the whole network. In the present work we
only consider a simplified model as follows:

Let vij and rij denote respectively the arrival rate and trans-
mission rate of Router i, Flow j. See Figure 1. LetBWi, qi, Qi

denote respectively the bandwidth, queue length, and buffer
size (maximum queue length) of Router i.

The arrival rate v1j to Router 1 equals the sending rate of
Flow j from the sender. For simplicity, we assume the flow
sending rates increase linearly. When the the total transmis-
sion rate of flows is less than the bandwidth, the transmis-
sion rate of each flow equals the arrival rate, and the queue
remains empty. If the total transmission rate reaches the
bandwidth, and is less than the total arrival rate, then the
transmission rate of each flow keeps constant, and the queue
starts filling. Once the queue is filled, the buffer drops a
package and reduces the queue length by the package length
M . The dropped package may come from each of the flows,
with the probability equal to the fraction of the flow’s arrival
rate of the total arrival rate. In the simplified model, it is
assumed the sender immediately halves the sending rate of a
flow when a package loss occurs. The state space equations
are listed below.

1. Both q1, q2 are empty.

v̇11 = K1,
v̇12 = K2,
ṙ11 = K1,
ṙ12 = K2,
ṙ21 = K1,
ṙ22 = K2,
q̇1 = 0,
q̇2 = 0.

2. q1 is increasing/decreasing, q2 is empty.

v̇11 = K1,
v̇12 = K2,
ṙ11 = 0,
ṙ12 = 0,
ṙ21 = 0,
ṙ22 = 0,
q̇1 = v11 + v12 − r11 − r12,
q̇2 = 0.

3. q1 is empty, q2 is increasing/decreasing.

v̇11 = K1,
v̇12 = K2,
ṙ11 = K1,
ṙ12 = K2,
ṙ21 = 0,
ṙ22 = 0,
q̇1 = 0,
q̇2 = r11 + r12 − r21 − r22.

4. Both q1, q2 are increasing/decreasing.

v̇11 = K1,
v̇12 = K2,
ṙ11 = 0,
ṙ12 = 0,
ṙ21 = 0,
ṙ22 = 0,
q̇1 = v11 + v12 − r11 − r12,
q̇2 = r11 + r12 − r21 − r22.
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v11 + v12 = BW1

q1 = 0D1

D3

r11 + r12 = BW2

D2

D4

v11 + v12 = BW1

q1 = 0

q2 = 0 r11 + r12 = BW2

q2 = Q2 q2 = Q2

q1 = Q1

q1 = Q1

Figure 2: The guards of events are given by the
equations. When vi1 + vi2 = BWi, qi starts filling;
when qi = 0, the buffer is emptied; when qi = Qi, a
package is dropped.

The four modes of dynamics listed above are referred to
as D1, D2, D3, D4 respectively. Based on the dynamics, we
model the locations and events. As shown in Figure 2, there
are three types of events: bandwidth reached, buffer emptied,
package dropped.

In particular, when a package loss event occurs, the reset is
probabilistic. Either Flow 1 or Flow 2 loses a package and
reduces the sending rate to half of the current value. For
convenience, besides the locations `1, `2, `3, `4 with dynamics
D1 to D4, we also define locations `′2, `

′′
2 , `
′
3, `
′′
3 , `
′
4, `
′′
4 . The

continuous dynamics of `′i, `
′′
i is the same as `i.

When a package loss event occurs in `2, the target location
can be `′2 or `′′2 , respectively meaning Flow 1 or Flow 2 suffers
a package loss. The associated reset map r(`′2, x) changes
v11 to 1

2
v11, and r(`′′2 , x) changes v12 to 1

2
v12, where x =

[v11, v12, r11, r12, r21, r22, q1, q2]T is the continuous state that
triggers the event. The corresponding probability is given
by p(`′2, x) = v11

v11+v12
, p(`′′2 , x) = v12

v11+v12
. The package loss

events in `3, `4 are defined similarly.

The probability function p above is Lipschitz continuous
with respect to x. We have the Lipschitz constant κ1 = 1.

Let K1 = 3,K2 = 1, BW1 = 8, BW2 = 4, Q1 = 5, Q2 =
7,M = 1, L0 = {`1}, X0 be the set ‖v0

11−1‖ ≤ 0.0001, ‖v0
12−

0.5‖ ≤ 0.0001, r0
i1 = v0

11, r
0
i2 = v0

12, q
0
i = 0 for any i, and tend

be 3.3 time units. By using the Matlab toolbox STRONG [4],
we can simulate a trajectory tree [ρ̂] from the initial state

(ˆ̀0, x̂0) = (`1, [1, 0.5, 1, 0.5, 1, 0.5, 0, 0]T ). We enumerate the
location sequences, event sequences and label sequences for

all the paths of [ρ̂]:

path 1: `1, `3, `4, `
′
4, `
′
4;

start, BW2 reached, BW1 reached,

q2 drops (Flow 1), q2 drops (Flow 1);

(0, ι), (0.625, ψ1), (1, ψ2),

(1.2778, ψ3), (0.2778, ψ3);

path 2: `1, `3, `4, `
′
4, `
′′
4 ;

start, BW2 reached, BW1 reached,

q2 drops (Flow 1), q2 drops (Flow 2);

(0, ι), (0.625, ψ1), (1, ψ2),

(1.2778, ψ3), (0.2778, ψ3);

path 3: `1, `3, `4, `
′′
4 , `
′
4, `
′
4;

start, BW2 reached, BW1 reached,

q2 drops (Flow 2), q1 drops (Flow 1),

q2 drops (Flow 1);

(0, ι), (0.625, ψ1), (1, ψ2),

(1.2778, ψ3), (0.1574, ψ4), (0.1204, ψ3);

path 4: `1, `3, `4, `
′′
4 , `
′
4, `
′′
4 ;

start, BW2 reached, BW1 reached,

q2 drops (Flow 2), q1 drops (Flow 1),

q2 drops (Flow 2);

(0, ι), (0.625, ψ1), (1, ψ2),

(1.2778, ψ3), (0.1574, ψ4), (0.1204, ψ3);

path 5: `1, `3, `4, `
′′
4 , `
′′
4 , `
′
4;

start, BW2 reached, BW1 reached,

q2 drops (Flow 2), q1 drops (Flow 2),

q2 drops (Flow 1);

(0, ι), (0.625, ψ1), (1, ψ2),

(1.2778, ψ3), (0.1574, ψ4), (0.1204, ψ3);

path 6: `1, `3, `4, `
′′
4 , `
′′
4 , `
′′
4 ;

start, BW2 reached, BW1 reached,

q2 drops (Flow 2), q1 drops (Flow 2),

q2 drops (Flow 2);

(0, ι), (0.625, ψ1), (1, ψ2),

(1.2778, ψ3), (0.1574, ψ4), (0.1204, ψ3);

where ψ1, ψ2, ψ3, ψ4 are the output symbols associated with
the events BW2 full, BW1 full, q2 drops, q1 drops. Suppose
the package loss events are observable only for Router 2.
Then ι, ψ3 are the observable output symbols, while the rest
are unobservable.

The event q1 drops is a faulty event we want to diagnose.
Given any δd = δ̂d ≥ 0, δm = δ̂m ≥ 0, clearly the Fδd-faulty
trajectories Path 3 to 6 cannot be discriminated from Path
1 or 2, since their projected label sequences are exactly the
same. Path 3 to 6 have the total probability mass 0.2656,
which equals (1− α̂).

The toolbox computes a robust neighborhood around (ˆ̀0, x0).
With the parameter ε = 0.02 in relative time metric, κ2

(see Prop. 2) is calculated to be 0.001. Therefore, as the
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initial state varies in the robust neighborhood with non-
determinism, the system is (1.04δ̂d, δ̂m − 0.04, α̂ − 0.001)-
diagnosable (see Theorem 1; for this particular example,

δ̂d, δ̂m, δ
∗
d , δ
∗
m can actually be any non-negative numbers be-

cause the abstraction has no faulty trajectory that can be
discriminated from normal trajectories). According to the
discussion on the diagnoser in Section 3.4, if we raise an
alarm only when the running trajectory is completely de-
termined as faulty, 0.2666 is then an overestimation of the
detection failure (false negative) rate of the diagnoser.

From the discussion above, the observation of package loss
at Router 2 does not provide detectability of package loss at
Router 1. In order to diagnose the network congestion, we
can observe the package loss at Router 1 instead: Let ι, ψ4 be
observable, and the rest of output symbols be unobservable.
We want to diagnose the combination of the faulty events
q1 drops, q2 drops (see the discussion of multiple-fault in
Section 3.2). Clearly such a combination is diagnosable by
observing the timed output symbols. In specific, as long as
ψ4 is observed (q1 drops), then all the routers in the network
drop packages.

4. CONCLUSION
We presented an approach to finite-horizon diagnosability
analysis for hybrid systems with probabilistic reset. In our
notion of probabilistic diagnosability, given the maximum
delay for fault diagnosis and the measurement uncertainty
of time intervals, the worst-case probability of detecting and
isolating the faults is characterized. So it generalizes some
existing diagnosability notions [5, 16]. To practically ana-
lyze such diagnosability for a hybrid system, we constructed
a system abstraction, whose probabilistic diagnosability is
proved to be quantitatively related to that of the original
system. The abstraction has finitely many initial states, so
the diagnosability analysis and diagnoser construction can
be performed. We implemented the methodology in a net-
work diagnosis problem.
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