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Abstract. This paper discusses a notion of approximate abstraction for
linear stochastic hybrid automata (LSHA). The idea is based on the con-
struction of the so called stochastic bisimulation function. Such function
can be used to quantify the distance between a system and its approx-
imate abstraction. The work in this paper generalizes our earlier work
for jump linear stochastic systems (JLSS). In this paper we demonstrate
that linear stochastic hybrid automata can be cast as a modified JLSS
and modify the procedure for constructing the stochastic bisimulation
function accordingly. The construction of quadratic stochastic bisimula-
tion functions is essentially a linear matrix inequality problem. In this
paper, we also discuss possible extensions of the framework to handle
nonlinear dynamics and variable rate Poisson processes. As an example,
we apply the framework to a chain-like stochastic hybrid automaton.

1 Introduction

Stochastic hybrid systems are widely used to model physical and engineering
systems, in which the continuous dynamics has many modes or discontinuities,
as well as stochastic behavior [I]. Applications of stochastic hybrid systems can
be found in telecommunication networks [2], systems biology [3], air traffic man-
agement [4], etc.

There are several available modelling formalisms for stochastic hybrid sys-
tems. One of the earliest frameworks is the one in [5], where a general type
of stochastic hybrid systems, whose continuous dynamics is described by dif-
fusion stochastic differential equation [6], is presented. Mode switching occurs
when some invariant condition in the corresponding mode is violated. Another
framework that involves multimodal diffusion equation is the switched diffu-
sion processes [7]. There are also modelling frameworks, where the continuous
dynamics is described by ordinary differential equation, such as the piecewise
deterministic Markov processes [§], stochastic hybrid systems [2], etc. In these
frameworks, the switching is modelled as a Poisson process. For a more thorough
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survey on the modelling formalisms for stochastic hybrid systems, the interested
reader is referred to [I].

Researchers have been working on how to tame the increasing complexity of
system analysis. There are two approaches. The first approach is to develop a
framework that allows the computation to be performed in a modular fashion.
The other approach is to develop a framework that allows abstraction of the com-
plex system. By abstraction we mean building a simpler system that is, in some
sense, equivalent to the complex system. The computation is then performed
on the simpler system and the equivalence guarantees that the results can be
carried over into the complex system. The discussion in this paper pertains to
the second approach.

Bisimulation is a concept of system equivalence that is widely used for ab-
straction of complex systems. Notions of exact bisimulation for some classes of
stochastic hybrid systems have been recently developed in [9[10]. In [9], a cate-
gory theoretical notion exact bisimulation for general stochastic hybrid systems
is discussed, while [I0] treats the issue of exact bisimulation for the so called
communicating piecewise deterministic hybrid systems. In this paper, we relax
the requirement that the abstraction is exactly equivalent to the original sys-
tem. Instead, we require that they are only approzimately equivalent [111[12].
We then need to define a metric, with which we can measure the distance be-
tween systems and hence the quality of the abstraction. In [I31[14], the authors
develop some metrics for labelled Markov processes and probabilistic transition
systems, inspired by the Hutchinson metric, which gives the distance between
two distributions of the transition probability. The approach that we take in this
paper differs from that, since we use a different kind of metric. The metric that
we use is based on the L., distance between the output trajectories of the sys-
tems. We develop a theory of approximate bisimulation for a class of stochastic
hybrid automata, in which the continuous dynamics is modelled by stochastic
differential equations and the switches are modelled as Poisson processes. This
class of systems is called the linear stochastic hybrid automata (LSHA).

The approach that we take in this paper is by computing the so called stochas-
tic bistimulation function. The stochastic bisimulation function is used to quantify
the quality of the abstraction. This approach has been used in [15] for jump lin-
ear stochastic systems (JLSS). The jump linear stochastic systems are stochastic
systems whose dynamics is described by a stochastic differential equation with
Poisson jumps in the continuous state. Thus, an LSHA can be thought of as a
generalization of JLSS, as in LSHA it is possible to have multiple modes for the
continuous dynamics. However, in this paper we also show that it is possible to
cast an LSHA as a modified JLSS, and hence we can compute the stochastic
bisimulation function for LSHA by modifying the procedure for JLSS. We also
demonstrate that the construction of quadratic stochastic bisimulation functions
for LSHA can be cast as a tractable linear matrix inequality problem. Further,
we also discuss possible extensions of the framework to deal with nonlinear dy-
namics and variable rate Poisson processes.
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2 Linear Stochastic Hybrid Automata

In this paper, we formally define a linear stochastic hybrid automaton (LSHA)
as a 5-tuple A = (L,n,m, T, F'), where

L is a finite set, which is the set of locations or discrete states. The number

of locations is denoted by |L|.

— n: L — N, where for every [ € L, n(l) is the dimension of the continuous
state space in location [,

— m € N, is the dimension of the output of the automaton A,

— T is the set of random transitions. A transition 7 € T can be written as
a 4-tuple (I, A\;,!’, R;). This is a transition from location [ € L to I’ € L
that is triggered by a Poisson process with intensity A\; € R;. The matrix
R, € RMW)xn() ig the linear reset map associated with the transition 7. The
number of transitions is denoted by |T'|.

— F defines the continuous dynamics in each location. For every | € L, F(l) is

a triple (4;, Gy, C;), where A; € R2Oxn() G e RrWxn)and ¢y € Rm*nd),

The state space of the automaton can be written as

||

x = (1) xR, (1)

i=1

We also define the functions source : T' — L and dest : T' — L, such that if
TeTis (I,A\,l', R;) then

source(r) = [, dest(r) = 1. (2)

The semantics of the linear stochastic hybrid automaton A can be explained as
follows. The state trajectory & = (I;, x¢) of the LSHA A is inherently a stochastic
process. Every state trajectory that the automaton executes is a realization of
the process. In each location [ € L, the continuous state of the system satisfies
the following stochastic differential equation (SDE).

dzy s = Ay dt + Gy dwy, (3a)
Yt = C’m,t, (3b>
Xt € R"(l),yt e R™. (30)

The process wy is an R valued standard Brownian motion, where E[w?] = t. The
R™ valued stochastic process y; is the output/observation of automaton A.

Remark 1. In general, it is possible to incorporate multi dimensional Brownian
motions in the framework. In this case, the term Gjx;; dw; in (Bal) would be re-
placed by Zf\;l G2+ dw; ¢ to incorporate an N-dimensional Brownian motion.
Hereafter, we stick to the one dimensional Brownian motion for simplicity.
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Denote the set of outgoing transitions of a location as
out : L — 27 out(l) := {r € T | source(r) =1}, (4)

and |out(l)| as the number of outgoing transitions from location [. While the
system is evolving in a location [ € L, each transition in out(l) is represented by
an active Poisson process. Each of these Poisson processes has a constant rate
indicated by the transition. The first Poisson process to generate a point triggers
a transition. Suppose that 7 = (I, A;,I’, R;) is the transition that corresponds
to the first process that generates a point (at time t), then the evolution of the
system will switch to location I’. The matrix R, defines a linear reset map,

= Ry, (5)

where ;- = limgy; .

Figure[lillustrates a realization of the execution of an LSHA. In Figure[ll the
execution starts in location ly by following the SDE that defines the dynamics
in the location. The set of outgoing transitions from Iy, out(lp) = {r, 6}. In this
particular realization, the Poisson process associated with 7 generates a point
before that of . Hence, a transition occurs that brings the trajectory to location
dest(7) = l1. The continuous state of the trajectory is reset by the linear map

Rn(l;;)

R (o) \

Fig. 1. An illustration of the execution of an LSHA. The solid bold arrows represent
transitions between locations that occur. The dotted bold arrows indicate transitions
that do not occur, since the associated Poisson process do not generate a point fast
enough. The dotted arrows denote the linear reset maps associated with the transitions
that occur.
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R;. In the new location, the continuous dynamics proceeds with the SDE that
defines the dynamics in location I. The set out(ly) = {7/,6'}. In this particular
realization, the Poisson process associated with 7/ generates a point before that
of 0'. Hence, a transition occurs that brings the trajectory to location l3. The
continuous state of the system is then subsequently reset by the linear map R,/.

3 Approximate Abstraction of LSHA

In this paper we will develop the notion of approximate abstraction of lin-
ear stochastic hybrid automata. The notion of approximate abstraction is con-
structed using the concept of stochastic bisimulation functions [15].

A stochastic bisimulation function is defined between two LSHA, A; = (L;,
n;,m, T;, F;), i = 1,2. Notice that we assume that the outputs of the automata
have the same dimension. We denote the state space of A; as X;, i = 1, 2. See ().

Definition 1. [75] A function ¢ : X1 x Xo — Ry U {400} is a stochastic
bisimulation function between Ay and Az if the following statements hold.
(i) Suppose that & = (l;,x;) € X;,i = 1,2, then

2 2
P(&1,62) > |Cr1 1,21 — Co 2™ = [lyr — w2l

where ||-|| denotes the Fuclidean distance in R™,
(ii) the stochastic process ¢ = ¢(&1.¢,82,¢) 15 a supermartingale for any distri-
bution of the initial state.

Remark 2. The definition of stochastic bisimulation function in this paper does
not exhibit the game theoretic aspect as that in [I5]. This is because we do
not model disturbance as a source of nondeterminism in this framework. We
could add disturbance as another affine term in (Bal), and we can see later in
Section Ml that the theoretical framework that we develop in this paper can be
extended easily to cover this case. However, this would be done at significant
computational expense.

The following theorem describes the relation between the stochastic bisimulation
function and the difference between the output of A; and As.

Theorem 1. (adapted from [15])Given two LSHA, A; = (L;,n;,m, Ty, F;), i =
1,2, and ¢(-) a stochastic bisimulation function. The following relation holds.

#(£1,0,62,0)
] .

P{ sup Nyre— ool > 6\ <51,0,52,0>} < (6)

0<t<oc0

Proof. Following Definition [l ¢(&14,&2¢) is a supermartingale. Since ¢(&14, £a)
is a nonnegative supermartingale, we have the following result [16].

P{ sup ¢(&e,Eayt) > 5’ (51,0752,0)} < (b(&’%’ 52’0). (7)

0<t<0

! The work is inspired by the nonstochastic version in [12].
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Moreover, since ¢(£1,&2) > ||ly1 — y2||* by construction, we also have that

P { ,Sup e — yaul* > 5‘ (51,0752,0)} < P{ sup  ¢(&1,6,82,6) > 5‘ (51,0752,0)} .

0<t<oo
(®)

Hence we have ([@l).

The stochastic bisimulation function can be used to guarantee that the difference
between the output of the original system and its abstraction will not exceed a
given bound, with a certain probability. The difference between the outputs is
measured in the sense of L. This makes this approach particularly suitable for
analyzing safety/reachability property of the system, as it is illustrated in the
following.

Given a complex system represented by an LSHA A; and its simpler abstrac-
tion Ay. Suppose that ¢(+) is a stochastic bisimulation function between the two
automata, and that the initial condition of the composite system is (£1,0,2,0)-
Given the unsafe set for the automaton A;, unsafe; C R™, we can construct
another set unsafes C R™, which is the ¢ neighborhood of unsafe; for some
6 > 0. That is,

unsafe; = {y | 3y’ € unsafey, ||y — || < 6}. (9)

We define the events unsafe;, := {3t > 0 s.t. y;; € unsafe;},i = 1,2. The
following theorem holds [I5].

Theorem 2. The following relation between the safety properties of the au-
tomata holds.
(61,0, €2,0)

52
Theorem [2 tells us that we can get an upper bound of the risk of the complex
system by performing the risk calculation on the simple abstraction and adding
a factor that depends on the stochastic bisimulation function.

P{unsafe; } < P{unsafe,} + ¢ (10)

4 Casting LSHA as Jump Linear Stochastic Systems

We have seen that we need to construct a stochastic bisimulation function be-
tween an LSHA and its abstraction, to measure the quality of abstraction. In
this section, we demonstrate how an LSHA can be cast as a modified jump lin-
ear stochastic system (JLSS) [I5]. We shall then use the tools that have been
developed for JLSS to construct stochastic bisimulation functions for LSHA.

First, we introduce the structure of a jump linear stochastic system. A jump
linear stochastic system (JLSS) can be modeled as a stochastic system that
satisfies the following stochastic differential equation.

N
dxy = Axy dt + Gay dwy + ZQﬂt dpi, (11a)
i=1
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Here, y; is the output of the system, the process w; is a standard Brownian
motion, while p; is a Poisson process with a constant rate ;. We assume that
the Poisson processes and the Brownian motion are independent of each other.

Remark 3. The model of jump linear stochastic system that we use here is
slightly different from that in [I5]. The difference is in the fact that the we
use a linear diffusion term (i.e. Gz), while in [I5] a constant term is used. With
this modification, we make sure that the origin is an equilibrium with probability
1. That is, P{xs # 0,t > O|zg = 0} = 0. As we shall see later, this property is
exploited to cast LSHA as JLSS.

Given an LSHA A = (L,n,m, T, F) as in Section 2] the following is an algorithm
to define a JLSS, structured as in (1), that represents .A.

— The state space of the JLSS has the dimension of Zy;ll n(l;), l; € L.
— The A and G matrices of the JLSS has a block diagonal structure, with ||
blocks. That is,

Al 0 0 G1 0 0
0 Ay --- 0 0 Gy--- 0

A= . . . G= . . . (12)
0 0 - Ay 0 0 - G

where A; := A;, and G; := Gy, are the A and G matrices of the LSHA in
location [;.

— The C matrix of the JLSS is structured as C := [C’l Coy - C|L|] , where
C; := (), is the C matrix of the LSHA in location [;.

— There are |T'| independent Poisson processes. Thus, N = |T'|. Each Pois-
son process represents a transition in 7. Denote the transitions as T =
{Ti}i<i<ir) and 7; := (loci, A, locj, R;). Then the Poisson process pi has the
rate of \;, and the matrix @); has a block diagonal structure as A and G,
where

0--- 00---0

0 —-I0 0| «— loc

@=10 RO 0| —1loc" (13)

)

0--- 00---0
that is, almost all the blocks are zero, except for two blocks:
(i) the diagonal block associated with loc;, which is —I, and

(ii) the block whose row is associated with loc; and its column with loc;,
which is R;.

The idea behind this procedure is as follows. We formulate a JLSS with |L|
invariant dynamics. That is, the state space can be written as the direct sum of
|L| subspaces, each of which is invariant with respect to the following dynamics:

dfﬂt = Al’t dt + Gl’t dwt. (14)
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Each invariant subspace represents a location in the LSHA. Further, we can
observe that the origin is also invariant with respect to (I4)) (see Remark [3)). As
the result, if we start the evolution of the system in one of the invariant subspaces
(hence, in one of the locations of the LSHA), the trajectory will remain in the
subspace. Let us call the location I. When a Poisson process generates a point, if
the process does not correspond to a transition whose source location is [, then
the reset map does not change the continuous state of the system. This is due
to the construction of (I3). If the source location is I and the target is, say, I/,
then the continuous state is reset to another invariant space that corresponds to
the location I’.

One apparent difference between the JLSS realization of the system and
the original LSHA is that in the LSHA, only the Poisson processes in the
active location are active. However, this difference does not affect the proba-
bilistic properties of the trajectories, since Poisson processes are memoryless
[8]. When we enter a location, it does not matter if we assume that the Pois-
son processes in the location are just started or that they have been running
before.

5 Computation of the Stochastic Bisimulation Function

In the previous section we demonstrate how we can cast a linear stochastic hy-
brid automaton (LSHA) as a jump linear stochastic system (JLSS). In general,
we can then exploit the available construction of quadratic stochastic bisimu-
lation function for JLSS [I5], and apply it for LSHA. However, since we also
modified the definition (see Remark [3)), we also need to modify the procedure
for constructing a stochastic bisimulation function.

Given two JLSS, for i = 1,2,

g . {dxi,t = Aixi,t dt + G,-xivt dw; + Zjvzl Q@‘.’L‘t dpz, (15>
i
Yir = Cixi .
We define the following composite system
| T L L A 0 L G1 0
Ty = |:$2’t:| s Yt 1= yl,t_y27t7A~— |: 0 A2:| 7C:.— |: 0 G2:| 5 (16&)
Qi O
= C:=|Cy —Cs|. 16b
Qj [ 0 Qo [Cy —Cs ] (16b)
Hence we have the following system:
g- {dxt = Az, dt + Gz dw + Zjvzl Qjxt dp{7 (17)
yr = Cuy.

As mentioned above, we want to construct a quadratic stochastic bisimulation
function. Thus, we want to find the conditions for a function of the form
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p(z) = 27 M, (18)

to satisfy Definition [l We can observe that the process ¢; := ¢(x;) satisfies the
following SDE.

dée = 24 1dT82¢d =227 M | Ay dt + Gy d o, dp]
(bt_@x Te + o A 92 4Tt = 2T¢ xy dt + Gy wt—&-ZQ]xt py
j=1
+afG"TMGry dt+ Y 2l QT MQ x, dpidp]. (19)

i,5€{1,2,--- ,N}

Using the fact that the Poisson processes are independent from each other, we
can establish that the expectation of the last term of the right hand side satisfies
the following relation,

. E [2I QT MQj x| A\iX;dt? i#j
T T ) i — t W5 J iAjat”, )
E [l‘t Q; MQjz, dptdpt] = {E [x%FQ;FMQ]xt] ()\jdt—l— )\?dtz), i=j.

The expectation of ¢, then satisfies the following equation.

E
d d[t(M = E [z{ Oz,], (20)
where
N N
6 :=2MA+2M> NQi +G"MG+ ) \QI MQ.. (21)

i=1 i=1

Theorem 3. The function ¢(x) = 2T Mz is a stochastic bisimulation function
for the systems in {I3) if and only if M > CTC, and © < 0.

This theorem in an immediate consequence of Definition [II The problem of
finding M such that the conditions in Theorem [l hold is a linear matrix equality
(LMI) problem.

Remark 4. If we see the quadratic stochastic bisimulation function as a stochas-
tic Lyapunov function, then the conditions in Theorem [3] guarantee that y; con-
verges to 0 in probability. However, in this paper we are not interested in the
asymptotic behavior of y; (the convergence), rather we are interested in the
bound on the magnitude of y;.

6 Extensions of the LSHA

In this section we discuss two possible extensions of the linear stochastic hybrid
automata, and the implications of the extensions to the computation of the
stochastic bisimulation function.
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6.1 Nonlinear Stochastic Hybrid Automata

Consider a linear stochastic hybrid automata A = (L,n,m,T, F'). Suppose that
instead of the linear dynamics in ([B]), we assume that the dynamics in location
l € L satisfies a nonlinear SDE of the following form.

dxyr = ai(zy ) dt + gi(ze) dwy, (22a)
Y = ci(xe), (22b)
z1, € R™D gy, e R™, (22¢)
We assume that for all [ € L,
a;(0) = 0,¢;(0) = 0. (23)

This assumption renders the origin invariant under the dynamics described by
@2). In general, we only need to have a point that is invariant under ([22).

Furthermore, assume that instead of the linear reset map (@), the reset func-
tion of a given transition 7 € T follows the relation x; = r,(z;- ),where z;- :=
limSTt Tt.

Analogous to the discussion in Section @ we can show that the nonlinear
version of the stochastic hybrid automata can be cast as a nonlinear version of
the jump linear stochastic systems, that is, systems of the form.

N
dxy = a(zy) dt + g(xt) dwe + Z qi(x¢) dpl, (24a)

i=1
yr = c(xt). (24b)

Furthermore, given two systems, for i = 1,2,
g - {dxi,t = ai(zi¢) dt + gi(xit) dwe + Z;\Ll qij (24) dp], (25)
i
Yit = Ci(Tit),

we can form a composite system in the form of [24]), by following a construction
analogous to (I6]).

Definition [ is still valid for the nonlinear version of the stochastic hybrid
automata. Hence, the results that relate the stochastic bisimulation function
with approximate abstraction and safety verification still hold.

Suppose that we are given a smooth function ¢(-) of the state of the composite
system (24)). It can be verified that the evolution of the expectation of ¢; := ¢(x¢)
can be written as:

2 N
dEd[th =F {gia(xt)} + ;E |:gT(a';t) gxfg(xt)] +Z N B[z +q;(:)) — plar)]-
" (26)
Define
Do 1 924 N
O(x) = 8xa(x) + 2gT(x) ang(x) + Z A (b + () — p(x),  (27)

then dEd[ft] = E[O(z4)].



328 A.A. Julius

Thus, to compute a general stochastic bisimulation function, we need to find
a smooth function ¢ such that

() = (c(x))*, O(x) <0. (28)

An automatic procedure for constructing such a function ¢ does not exist. How-
ever, if we assume that all the functions involved are polynomials, this problem
can be cast as a sum-of-squares problem. There is a software tool that can be
used to solve such problems, that is SOSTOOLS [17].

6.2 LSHA with Variable Rate Poisson Processes

In this subsection, we discuss the LSHA where the rate of the Poisson processes
are assumed to be functions of the continuous state. This type of LSHA can
still be cast as a JLSS of the form (IIJ). The only difference is that now the
Poisson processes {p] }1<j<n have rates that depend on the continuous state,
Aj(x) instead of a constant rate. We also assume that for every j € {1,2,--- , N},
there exist L; > 0 and U; > L; such that for every continuous state z,

Lj S )\J(.’L‘) S Uj. (29)

Thus, for all z, the vector [A1(z) A2(z) - -+ An(z)] is contained in a hyper rect-

angle defined by the lower and upper bounds in 29). Let I" € R2"XN he the
matrix with all the 2V vertices of the hyper rectangle. That is,

LiLy--- Ly-1 Ly

LiLy--- L1 Un
o= |LiLls-- Uv_1 LN

Ui Us--- Un—1 Un

Assuming quadratic stochastic bisimulation function ¢(x) = 27 Mz, we can
show that in the case of variable rate Poisson processes, equations (20)) and (Z1)

become 1B (6]
=Bl (30)
where

N N
O(z) :=2MA+2M> \i(2)Qi + G" MG+ Ni(x)Qf MQ;.  (31)

i=1 i=1
Theorem 4. Let M be a symmetric matriz that satisfies
M>cTc, (32a)
N N

0; :=2MA+2M» I;Q;i+G MG+ I};Qf MQ; <0, (32b)
Jj=1 j=1

for 1 <i < 2N then ¢(z) = T Mz is a stochastic bisimulation function.
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Proof. We need to show that (32D) implies that ¢; = ¢(x;) is a supermartingale
for any distribution of the initial state. Suppose that (32D) holds, then for any
x, the matrix ©(x) can be written as a convex combination of {©;}, ., o~ -
Therefore, O(x) < 0. From @) we can infer that ¢; is a supermartingale for
any distribution of the initial state.

The problem of finding M such that (B2)) holds can also be cast as a linear matrix
inequality problem.

7 Example: Chain-Like Linear Stochastic Hybrid
Automata

In this section we present an example, where we apply the framework of approx-
imate abstraction of linear stochastic hybrid automata. The original automaton
A has a chain like structure, with 21 locations. See Figure

Fig. 2. The chain-like automaton A with 21 locations

Chain-like automata is a structure that can be found in modelling of systems
that involve birth and death process. That is, each location represents the num-
ber of a certain object in the system, for example, persons in a queue or molecules
in a chemical reaction. Researchers have been working towards approximating
such systems in a way that allows for both fast and accurate simulations [I§], as
well as faster computation [19].

Adjacent locations in the automaton A4 are connected by a pair of transitions
with constant rate A = 0.02. The continuous dynamics of A is such that the
dynamics changes gradually from location [y to location log. The stochastic dif-
ferential equation that describes the dynamics in location [;, 0 < i < 20, is as
follows.

dl’i’t = Aixi,t dt -+ Gil't dwt,
yt = Cix; ¢, where

A — —0.01 —O.l(l—l—aw’)} G = {0.1 0 ] ’

01(1+a-i)  —0.01 0 0.1
C;=1[01],i=0...20,

We are going to apply the procedure for several values of a.



330 A.A. Julius

output

L L L L L L L
o 100 200 300 400 500 600 700 800 900 1000

location

. . . I . . . I I
o 100 200 300 400 500 600 700 800 900 1000
time

Fig. 3. A realization of the output trajectory (top) and the location (bottom) of the
linear stochastic hybrid automaton A

error

1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

error

0 100 200 300 400 500 600 700 800 900 1000
2 T T T T T T T T T
_ ir 0=0.02 i
% 0 ——— Dot - = —
_1 b vl
-2 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
time

Fig. 4. Ten realizations of the error trajectory for each of the a value. The parallel
lines indicate the 90% confidence interval stipulated by the stochastic bisimulation
functions.

We can easily observe that the continuous dynamics in each location is a
damped 2-dimensional oscillator driven by Brownian motion. A realization of
the output of A is plotted in Figure Bl As we go from location Iy to lyg, the
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frequency of the oscillation increases. We want to see if we can approximate A
with another automaton A’ that has only one location. The continuous dynamics
of A’ is the same as that in location l1¢ of A. Hence we compute a stochastic
bisimulation function between A and A’. The computation is done by solving
the linear matrix inequality problem explained in Section Bl We perform the
computation using the tool YALMIP [20)].

Three different values for o are used, namely 5 x 1073, 1072, and 2 x 1072
For these values of «a, the ratio between the oscillation frequency in location
log and [y are 1.1, 1.2, and 1.4 respectively. We simulate the execution of the
original automaton A and its abstraction A’. In the simulation we use [1 1]7 as
the initial condition for the continuous dynamics, and assume that automaton
A starts in location l1g. With the computed stochastic bisimulation function, we
can also compute the 90% confidence interval for the error between the outputs
of A and A’ (see Theorem [I]).

In Figure [ we can see ten realizations of the error trajectory for each of the
value of a. The 90% confidence intervals are also shown. We can observe that
the quadratic stochastic bisimulation function seems to give a good estimate
for the error, as the confidence intervals seem quite tight. We can also observe
that as the dynamics in the locations vary more, the error in the approximation
becomes larger.

8 Conclusions

In this paper we develop the notion of approximate bisimulation for linear
stochastic hybrid automata. The approach is based on the construction of a
stochastic bisimulation function that can be used as a tool to quantify the dis-
tance between an automaton and its abstraction. We show that this notion of
distance relates nicely with the safety properties of the automata (see Theorem
). An example of the application of the results is provided at the end of the pa-
per, where we evaluate approximate abstraction of a chain-like stochastic hybrid
automaton.

We also discuss two possible extensions to the framework, namely when the
continuous dynamics is nonlinear, and when the rates of the Poisson processes
are not constant. In each case, we show how the computation of the stochastic
bisimulation function will be. Future extensions of the work presented in this pa-
per can be highlighted as follows. Issues such as incorporating nondeterminism
(see Remark [2) and establishing necessary and sufficient conditions for the ex-
istence of the stochastic bisimulation function are possible research direction in
the future. Another interesting direction is exploring different construction pro-
cedure for the stochastic bisimulation function, for example, using polynomial
functions (which are generalization of quadratic functions).
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