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Abstract—The problem of system diagnosability verification is con-
cerned with whether a fault in the system operation can be diagnosed by
using the system model and observations of the system output. In this
paper, we investigate the (δd, δm)-diagnosability of hybrid automata,
which characterizes the maximum delay for diagnosing faults since their
first occurrence, given the measurement uncertainty in observing the
system output.

We present a methodology that analyzes the (δd, δm)-diagnosability
of hybrid automata. Due to the complex dynamics, the hybrid system
diagnosability is often difficult to analyze directly. We thus propose an
approach of constructing an abstraction using the trajectories of the
original system. Their (δd, δm)-diagnosability properties are proved to
be quantitatively related to each other. The abstraction has only finitely
many trajectories that extend to the end of the time horizon of interest,
so its diagnosability can be easily calculated, and then used to derive the
diagnosability of the original system. We illustrate this procedure with
an example.

I. INTRODUCTION

For safety and economic considerations, diagnosing faulty states of
system operation plays an import role in industry. For an aircraft, for
example, we want the system to be able to locate an abrupt engine
malfunction in time to take remedial action so that a catastrophic
accident is avoided; or for a household air purifier, we want its
filter screen degradation to be tracked and indicated to the user for a
replacement; etc. This paper presents fault diagnosis for systems that
are modeled as hybrid automata, by only observing ordered discrete
events with their timing, which is assumed to be inaccurate to some
extent. We reduce the problem to a finite one, and practically compute
the diagnosability as well as the diagnoser.

Fault diagnosis involves three tasks: detection (whether something
goes wrong), isolation (where it goes wrong), identification (what size
the fault has), while the former two deserve primary emphasis [1].
Thus the essential task consists in discriminating a fault from normal
system behaviors as well as from other faults. Based on the system
model, this can be fulfilled by comparing available measurements
with information analytically derived from the mathematical model
of systems. As modeled, a fault has some particular pattern of
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anticipated measurements as its symptoms, which generate the fault
signature [2]. Intuitively, fault diagnosability is determined by the
discriminability of fault signatures.

Efficient fault diagnosis requires fault signatures that make good
use of the measurement and computation resources to increase the
signature discriminability. Indeed, when a system operates, only a
limited source of information is available for measurement. Such
considerations for hybrid systems motivates our research work in this
paper. By definition, a hybrid system has interacting discrete and
continuous dynamics. The system state can flow continuously, and
can also jump by triggering an event. We want to diagnose faults
for hybrid systems based on the discrete event sequences for the
following reasons: First, without tracking discrete events, the system
model and measurement information may be underutilized. Second,
for a hybrid system where multiple modes (discrete states, also called
locations) exist, if one does not track events, a mechanism that works
in one location to diagnose faults may be invalid when the location
changes. Third, it is presented in this paper that observing the timed
event sequences can be sufficient for diagnosing faults. Consider a
bouncing ball for instance. Suppose the only sensor is human ears
that hear the sound when the ball hits the ground. By just tracking a
sequence of sounds, one can tell whether the ball leaks, or is subjected
to a sudden impact, etc. The time intervals between the sounds here
are informative for fault diagnosis.

To study the fault diagnosability analysis problem for hybrid
systems, we use some ideas on fault detection and isolation from
the FDI (fault detection and isolation) community. There, information
from measurement and model is synthesized in so-called residuals [3],
which serve as the basis for diagnosis. A fault corresponds to a partic-
ular pattern of residuals (fault signature). So the diagnostic problem
comprises of residual generation and decision making stages [4], see
Fig.1 from [5]. This approach has wide application in continuous-
time and discretized dynamical system models [6], [7]; but for hybrid
systems, diagnosing faults in this way does not work efficiently due
to the difficulty in capturing event sequences.

System Residual Decision
Generation Making

input output residuals fault

information

Fig. 1. Fault diagnosis in FDI community [5].

On the other hand, it is presented in [8], [9] that a hybrid system
can be cast into the discrete event system (DES) framework so that
approaches for DES diagnosis based on the order of events [10] can
be drawn on. The present paper also reports on the hybrid system
diagnosability problem relying on ordered events, but besides the
event sequences we also want to make use of another property of
the traces of the system that is closely related to the continuous
dynamics, i.e., the time intervals between observed events. With timed
behaviors considered, better diagnosability can be achieved due to the
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discriminability increased by the temporal properties; relevant works
can be found in [11], [12].

Due to the limited measurement and computation resource, not
every event is observable, and moreover the measurement uncertainty
can be introduced thereby. It is clear that the inaccuracy of actual
measurements can impair the discriminability of observed symptoms.
Fault diagnosability is then affected. We thus formally formulate the
fault diagnosability analysis problem in this paper for hybrid automata
as follows: Suppose for the system, one can only observe events with
their timing. Moreover, only a subset of the events are modeled as
observable, and the timing has limited measurement accuracy. Any
event that causes the system state to enter a faulty set is called a faulty
event. We want to analyze whether the occurrence of any faulty event
can be deduced within a limited time.

With this setting, sequences of timed observable events serve as the
information available for fault diagnosis. In other words, symptoms
are given by them; but due to the intrinsic complexity of hybrid
dynamics, it can be rather difficult to analyze their discriminability
directly. As illustrated in later sections, such analysis requires a
pairwise comparison of all the possible observed event sequences, in-
cluding comparing the events themselves and their timing. In general
this is impossible for hybrid systems. We thus present a methodology
that solves the problem in an indirect way: In Section II, we propose
to construct for the hybrid automaton a system abstraction, whose
diagnosability is very easy to analyze; in Section III, a quantitative
relation between the diagnosability of the trajectories of the original
system and the abstraction is proved, which allows us to derive
the former from the later. An example is presented to illustrate the
methodology.

The present paper uses (δd, δm)-diagnosability definition for hy-
brid automata that characterizes the limitation on the time delay for
a fault to be diagnosed, as well as the uncertainty in measuring time
intervals (see Section III-B). The (δd, δm)-diagnosability definition is
initially proposed in [13], which we extend from faulty detectability
to both detectability and isolability. The quantitative relation between
the diagnosability of a hybrid automaton and its system abstraction
can be found in Theorem 1. Another significant contribution of this
paper is that we demonstrate a method to reduce a hybrid automaton
to an abstraction of finitely many trajectories that extend to the
end of the time horizon of interest (see Section II-C). This, in
turn, allows us to practically diagnose faults that appear in the time
horizon of interest. System abstraction has been studied previously
for reachability analysis [14], [15], [16], [17], [18] and controller
synthesis [19], [20], [21], [22], [23]. Compared to these literature, our
work is different in the sense that: (i) We construct the abstraction for
finite-horizon fault diagnosis; (ii) Our abstraction of hybrid automata
does not grid the state space, so the computational cost does not
necessarily grow exponentially as the state space dimension increases.
The abstraction consists of only finitely many simulated trajectories.
Its diagnosability can be easily calculated, and then used to analyze
the diagnosability of the original hybrid automaton and construct the
diagnoser.

II. HYBRID AUTOMATA ABSTRACTION

A. Definition of Hybrid Automata

Hybrid automata are autonomous systems with interacting con-
tinuous and discrete dynamics, where the interaction between the
continuous and discrete part can be described by events and invariant
sets. We use the definition proposed by [24]:

Definition 1 (Hybrid Automaton). A hybrid automaton H = (L ×
X,L0 ×X0, D,E, Inv) is a tuple that consists of:

• A possibly infinite set L×X of hybrid states (`, x), where ` ∈ L
is the discrete state, and x ∈ X is the continuous state. Discrete
states are also called locations.

• A possibly infinite set L0 ×X0 of initial states.
• D associates with each location ` ∈ L the autonomous con-

tinuous time-invariant dynamics, D` : ẋ = D`(x). We assume
that this differential equation admits a unique global solution
ξ`(t, x

0
`), where ξ`(0, x0

`) = x0
` is the initial condition in `, and

the function ξ` satisfies ∂ξ`(t,x
0
` )

∂t
= D`(ξ`(t, x

0
`)).

• Inv : L → X associates with each location an invariant set
Inv(`) ⊂ X . Only if the continuous state satisfies x ∈ Inv(`),
can the discrete state be at the location `.

• E is a set of events. In each location `, the system state
evolves continuously according to D` until an event e :=
(`, `′, g, r), e ∈ E occurs. The event is guarded by g ⊂ Inv(`).
Namely, a necessary condition for the occurrence of e is x ∈ g.
After the event, the discrete state changes from the source
location ` to the target location `′, and the continuous state
is reset according to the reset map r : Inv(`) → Inv(`′). Let
(`, x) denote the system state that triggers e = (`, `′, g, r). Then
the reset state is (`′, r(x)).

Let G` denotes the set union of guards such that the associated
events all have ` as the source location. Let ∂Inv(`)out denote part of
the boundary ∂Inv(`) where the continuous state is evolving outward
Inv(`), i.e., given ξ`(τ, x0

`) ∈ ∂Inv(`)out, for any t > 0, there exists
t1 ∈ (0, t) such that ξ`(τ+t1, x

0
`) 6∈ Inv(`). We adopt the following

assumptions:

1) Non-deadlocking. For every location `, we require
∂Inv(`)out ⊂ G` to avoid deadlocking. Namely, whenever
the continuous state is evolving outside Inv(`), a jump must
be specified.

2) Non-determinism. When the continuous state reaches a guard,
an event may or may not occur (unless it is at ∂Inv(`)out,
where an event is forced to occur). Moreover, guards associated
with different events can overlap, where any of the events may
occur.

3) Well-posedness. The differential equation ẋ = D`(x) admits a
unique solution, namely, it satisfies the Lipschitz condition.

4) The system does not have Zeno behavior [25].
5) All the reset maps are continuous functions.
6) The initial set is compact.

When the hybrid system operates, a sequence of events can be
triggered. Some of the events are observable. while the rest are not.
We associate each observable event with an observable output symbol
ψ ∈ Ψo, and the unobservable events with the empty output symbol
ψ = ∅. The initial state is not a reset state of an event e ∈ E,
but it is assumed that we know when the system starts to operate,
i.e., when to start the timer in the fault diagnosis. For convenience,
we define an initialization event e0 6∈ E associated with the output
symbol ι (starting signal). Then a trajectory of the hybrid system can
be defined as a sequence:

Definition 2 (Trajectory). Given H = (L×X,L0×X0, D,E, Inv),
a trajectory of H is

ρ = (e0, `0, x0, τ0), (e1, `1, x1, τ1) · · · = {(ei, `i, xi, τ i)}Ni=0,

such that

• for all i ≥ 0, (`i, xi) ∈ L×X , and (`0, x0) ∈ L0 ×X0;
• for all i ≥ 0, τ i ∈ R≥0, and ξ`i(t, x

i) ∈ Inv(`i) for all
t ∈ [0, τ i];

• for all i ≥ 1, ei = (`i−1, `i, gi, ri) ∈ E, ξ`i−1(τ i−1, xi−1) ∈
gi, and xi = ri(ξ`i−1(τ i−1, xi−1)), i.e., (`i, xi) is the reset



0018-9286 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2015.2455111, IEEE Transactions on Automatic Control

3

state.
Suppose there is a trajectory ρ′ = {(e′i, `′i, x′i, τ ′i)}N

′
i=0 such that

N ′ ≤ N , (e′i, `′i, x′i, τ ′i) = (ei, `i, xi, τ i) for all i ∈ [0, N ′ − 1],
and (e′N

′
, `′N

′
, x′N

′
) = (eN

′
, `N

′
, xN

′
), τ ′N

′
≤ τN

′
, then we call

ρ′ a sub-trajectory of ρ.

Definition 3 (Timed Event Sequence). Given a trajectory ρ =
{(ei, `i, xi, τ i)}Ni=0, the timed event sequence produced by ρ is

p = (e0, τ0), (e1, τ1) · · · = {(ei, τ i)}Ni=0.

Definition 4 (Label Sequence). Given a trajectory ρ =
{(ei, `i, xi, τ i)}Ni=0, the sequence of timed output symbols produced
by ρ is

s = (∆0, ψ0), (∆1, ψ1) · · · = {(∆i, ψi)}Ni=0,

where (∆0, ψ0) = (0, ι), and for all i ≥ 1, ∆i = τ i−1, ψi ∈ Ψo ∪
{∅} is the output symbol associated with ei ∈ E. For convenience,
we define a set of labels Σ := R≥0 × (Ψo ∪ {∅, ι}), and refer to a
sequence of timed output symbols as a label sequence.

Clearly, each timed event sequence comprises of a time sequence
and an event sequence, and each label sequence comprises of a time
sequence and an output symbol sequence.

B. Timed Language

Over the set of events E, a set of timed event sequences is called
a timed language. Let χ(E) denote the set of all the timed event
sequences that can be generated over R≥0 × E. We define a metric
on χ(E) in such a way that the distance only depends on the time
sequences if the event sequences of two timed event sequences are
the same, and raised to infinity otherwise.

Definition 5 (Timed Event Sequence Metric). Given p1 =
{ei1, τ i1}N1

i=0, p2 = {ei2, τ i2}N2
i=0 ∈ χ(E),

dχ(p1, p2) ,


sup
i
dR(τ i1, τ

i
2) if N1 = N2,

and ∀i ∈ {0, 1, . . . , N1}, ei1 = ei2;

∞ otherwise.

Definition 6 (Relative Time Metric).

dR(t1, t2) ,

{
0 if t1 = t2 = 0,
|t1−t2|
t1+t2

otherwise.

Proposition 1. dR is a metric on R≥0. The ball B(t1, ε) :=
{t|dR(t1, t) ≤ ε} is given by the interval [t1

1−ε
1+ε

, t1
1+ε
1−ε ].

Proof: Obviously, dR(t1, t2) = dR(t2, t1), dR(t1, t2) ≥ 0, and
dR(t1, t2) = 0 if and only if t1 = t2. Assume t1 ≥ t2 ≥ t3. Then

dR(t1, t2) + dR(t2, t3)− dR(t1, t3)

=
t1 − t2
t1 + t2

+
t2 − t3
t2 + t3

− t1 − t3
t1 + t3

=
(t1 − t3)(t1 − t2)(t2 − t3)

(t1 + t2)(t2 + t3)(t1 + t3)
≥ 0.

Using similar arguments we can prove dR(t1, t2) + dR(t1, t3) ≥
dR(t2, t3) and dR(t1, t3) + dR(t2, t3) ≥ dR(t1, t2).

To compute the ball centered at t1 with radius ε:
If t2 ≥ t1, then dR(t1, t2) ≤ ε⇒ t2−t1

t1+t2
≤ ε⇒ t2 ≤ t1 1+ε

1−ε .
If t2 < t1, then dR(t1, t2) ≤ ε⇒ t1−t2

t1+t2
≤ ε⇒ t2 ≥ t1 1−ε

1+ε
.

This metric is relative in the sense that the distance depends on
not only the time difference but also the length of the elapsed time.
For example, a 1-second interval and a 2-second one has the same
distance as a 100-second interval and a 200-second one. We use

the relative metric instead of the more convenient Euclidean metric
|t1 − t2| because it turns out the latter does not work for the proof
of Proposition 5 (Section III-D).

Based on dχ, a distance measure for timed languages can be
defined as the directed or undirected Hausdorff distances:

Definition 7 (Timed Language Metric). Given P1, P2 ⊂ χ(E), define
respectively the directed and undirected Hausdorff distances

~h(P1, P2) , sup
p1∈P1

inf
p2∈P2

dχ(p1, p2),

h(P1, P2) , max{~h(P1, P2),~h(P2, P1)}.

Suppose ~h(P1, P2) ≤ ε for some ε ≥ 0. By the definition of
Hausdorff distances, for any s1 ∈ P1, there exists s2 ∈ P2 such
that dχ(s1, s2) ≤ ε. So we say P2 approximately includes P1 (with
the precision ε). Suppose h(P1, P2) ≤ ε, i.e., P1, P2 approximately
include each other, then we say P1, P2 are approximate equivalent
(with the precision ε).

C. Abstraction

In this section, we construct a system abstraction that is useful for
fault diagnosability analysis and diagnoser construction of H . The
abstraction consists of finitely many simulated trajectories. To that
end, we make extensive use of results reported in [26], [27], whose
details are not presented in this paper because of space limitation.

First, randomly take a point (ˆ̀0, x̂0) ∈ L0 × X0 and simulate a
trajectory ρ̂ = {(êi, ˆ̀i, x̂i, τ̂ i)}N̂i=0 for finite time horizon [0, tend] (or
for N̂ events triggered). Based on ρ̂, the algorithm in [26] computes
a robust neighborhood around (ˆ̀0, x̂0), denoted as Robust(ˆ̀0, x̂0).
The robust neighborhood computed with the parameter ε has the
following property [26]:

Proposition 2. For any (`0, x0) ∈ Robust(ˆ̀0, x̂0), for any trajectory
ρ′ = {(e′i, `′i, x′i, τ ′i)}N

′
i=0 initiated from (`0, x0), there exists a

trajectory ρ = {(ei, `i, xi, τ i)}Ni=0 such that ρ is a sub-trajectory of
ρ′ or ρ′ is a sub-trajectory of ρ, and ρ, ρ̂ satisfy

• N = N̂ , ei = êi, dR(τ i, τ̂ i) ≤ ε for all i ∈ [0, N ].

By Definition 2, when ρ is a sub-trajectory of ρ′, N ≤
N ′, (ei, `i, xi, τ i) = (e′i, `′i, x′i, τ ′i) for all i ∈ [0, N − 1],
(eN , `N , xN ) = (e′N , `′N , x′N ), τN ≤ τ ′N , and thus

∑N
i=0 τ

i <∑N′

i=0 τ
′i.

Note that if the trajectories initiated from (ˆ̀0, x̂0) trigger multi-
ple timed event sequences (see the non-determinism assumption in
Section II-A), such robust neighborhood might not exist. We thus
need to use the adapted approach presented in [27] to compute
robust neighborhoods (called safe neighborhoods in [27] because of
the application to system safety verification) around such an initial
state. Instead of a single trajectory ρ̂, a finite set of representa-
tive trajectories [ρ̂] are simulated from (ˆ̀0, x̂0) (triggering multiple
timed event sequences), and used to compute Robust(ˆ̀0, x̂0). As
a result, for any (`0, x0) ∈ Robust(ˆ̀0, x̂0), for any trajectory
ρ′ = {(e′i, `′i, x′i, τ ′i)}N

′
i=0 initiated from (`0, x0), there exists ρ̂ =

{(êi, ˆ̀i, x̂i, τ̂ i)}N̂i=0 ∈ [ρ̂], and a trajectory ρ = {(ei, `i, xi, τ i)}Ni=0,
such that the properties listed in Proposition 2 hold.

Next, we compute the robust neighborhoods around more simulated
initial states, and try to fully cover L0 × X0 with the union
of these neighborhoods. The robust neighborhoods computed with
the algorithm in [27] are not empty even for an initial state that
possesses non-deterministic timed event sequences. However, the
radii of {Robust(ˆ̀0, x̂0)|(ˆ̀0, x̂0) ∈ L0 × X0} are not bounded
from below by a positive number. Consequently, randomly generating
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robust neighborhoods and covering L0 × X0 may never terminate
with 100% coverage.

This problem is fixed by setting the threshold value dthr in [27]
to a positive number instead of 0. Then for each (ˆ̀0, x̂0) we obtain
[ρ̂]e, a finite set of representative (virtual) trajectories simulated from
(ˆ̀0, x̂0). In the process of simulating [ρ̂]e, an event can be triggered
even if the corresponding guard is not reached by the continuous
system state (but the system state should be within dthr distance
to the guard). Therefore, some trajectories non-existent according to
the original discrete dynamics are included in [ρ̂]e. These are called
virtual trajectories [27].

Definition 8 (Virtual Trajectory). Given H = (L × X,L0 ×
X0, D,E, Inv), a metric φ : X × X → R≥0, and dthr ≥ 0, a
virtual trajectory of H is

ρ = (e0, `0, x0, τ0), (e1, `1, x1, τ1) · · · = {(ei, `i, xi, τ i)}Ni=0,

such that
• for all i ≥ 0, (`i, xi) ∈ L×X , and (`0, x0) ∈ L0 ×X0;
• for all i ≥ 0, τ i ∈ R≥0, and ξ`i(t, x

i) ∈ Inv(`i) for all
t ∈ [0, τ i];

• for all i ≥ 1, ei = (`i−1, `i, gi, ri) ∈ E, (`i, xi) is the
reset state for ei, where xi = ri(yi) for some yi ∈ gi, and
φ(ξ`i−1(τ i−1, xi−1), yi) ≤ dthr .

Sub-trajectories can be defined in the same manner as Definition 2.

With [ρ̂]e simulated, the same algorithm in [27] can be used
to compute the so-called enlarged neighborhoods Robuste(ˆ̀0, x̂0).
As a result, for any (`0, x0) ∈ Robuste(ˆ̀0, x̂0), for any tra-
jectory ρ′ = {(e′i, `′i, x′i, τ ′i)}N

′
i=0 initiated from (`0, x0), there

exist ρ̂ = {(ê0, ˆ̀i, x̂i, τ̂ i)}N̂i=0 ∈ [ρ̂]e, and a trajectory ρ =
{(ei, `i, xi, τ i)}Ni=0, such that the properties listed in Prop. 2 hold.
Moreover, the radii of {Robuste(ˆ̀0, x̂0)|(ˆ̀0, x̂0) ∈ L0 × X0}
are bounded from below by a positive number [27]. Therefore,
L0 ×X0 can be fully covered by finitely many neighborhoods that
are randomly generated. We denote the simulated initial states as
L̂0 × X̂0 ⊂ L0 × X0, whose enlarged robust neighborhoods (or
robust neighborhoods if possible) cover L0 ×X0.

The system abstraction is constructed with the finitely many
(virtual) trajectories simulated in the construction of L̂0×X̂0. We use
Ĵ (H) to denote the set of sub-trajectories of these simulated (virtual)
trajectories such that the trajectory horizon does not exceed the
specified horizon. By definition, sub-trajectories include the trajectory
itself. Depending on the whether the horizon is specified by the total
dwell time t̂max or the number of events triggered N̂max, Ĵ (H) can
be ĴR(t̂max, H) or ĴN (N̂max, H).
• ĴR(t̂max, H) is defined to be the set of all the sub-trajectories
ρ̂ = {(êi, ˆ̀i, x̂i, τ̂ i)}N̂i=0 of the simulated (virtual) trajectories

such that
N̂∑
i=0

τ̂ i ≤ t̂max;

• ĴN (N̂max, H) is defined to be the set of all the sub-trajectories
ρ̂ = {(êi, ˆ̀i, x̂i, τ̂ i)}N̂i=0 of the simulated (virtual) trajectories
such that N̂ ≤ N̂max.

In what follows, we use J (H) to denote the trajectories of H
that are of interest in the finite-horizon fault diagnosis. J (H) can be
specified as JR(tmax, H) or JN (Nmax, H):
• JR(tmax, H) is defined to be the set of all the trajectories ρ =

{(ei, `i, xi, τ i)}Ni=0 of H such that
N∑
i=0

τ i ≤ tmax;

• JN (Nmax, H) is defined to be the set of all the trajectories
ρ = {(ei, `i, xi, τ i)}Ni=0 of H such that N ≤ Nmax.

Let PR(tmax, H),PN (Nmax, H), P̂R(t̂max, H), P̂N (N̂max, H)
be respectively the set of timed event sequences produced by

JR(tmax, H),JN (Nmax, H), ĴR(t̂max, H), ĴN (N̂max, H). Then
the following proposition holds:

Proposition 3. Given the simulation horizon [0, tend] (or N̂ ) in the
construction of L̂0 × X̂0,

1) if L̂0× X̂0 is constructed from robust neighborhoods, then we
have

~h(PR(tend
1− ε
1 + ε

,H), P̂R(tend, H)) ≤ ε, (1)

~h(PN (N̂ − 1, H), P̂N (N̂ − 1, H)) ≤ ε, (2)
~h(P̂R(tend, H),PR(tend, H)) = 0, (3)

~h(P̂N (N̂ − 1, H),PN (N̂ − 1, H)) = 0; (4)

2) if L̂0×X̂0 is constructed from enlarged robust neighborhoods,
then we have Eq. (1)(2).

Proof: Suppose the simulation horizon for L̂0 × X̂0 is spec-
ified by the total dwell time tend. For any timed event sequence
p′ ∈ PR(tend

1−ε
1+ε

, H), by definition, there is a trajectory ρ′ =

{(e′i, `′i, x′i, τ ′i)}N
′

i=0 initiated from (`0, x0) ∈ L0 × X0 that pro-
duces p′ and satisfies

∑N′

i=0 τ
′i ≤ tend 1−ε

1+ε
. Let (ˆ̀0, x̂0) ∈ L̂0× X̂0

be a simulated initial state whose (enlarged) robust neighborhood
covers (`0, x0). By the property of (enlarged) robust neighborhood,
there exist ρ̂ = {(êi, ˆ̀i, x̂i, τ̂ i)}N̂i=0 and ρ = {(ei, `i, xi, τ i)}Ni=0

such that N = N̂ , ei = êi, dR(τ i, τ̂ i) ≤ ε for all i ∈ [0, N ], where
ρ̂ is simulated from (ˆ̀0, x̂0) for the specified horizon, and ρ is a
sub-trajectory of ρ′ or the other way around.

By Proposition 1, τ i ∈ [τ̂ i 1−ε
1+ε

, τ̂ i 1+ε
1−ε ] for all i ∈ [0, N ], which

implies

ΣNi=0τ
i ∈ [ΣNi=0τ̂

i 1− ε
1 + ε

,ΣNi=0τ̂
i 1 + ε

1− ε ] = [tend
1− ε
1 + ε

, tend
1 + ε

1− ε ].

It follows from
∑N′

i=0 τ
′i ≤ tend

1−ε
1+ε

that
∑N
i=0 τ

i ≥
∑N′

i=0 τ
′i.

Thus, ρ′ is a sub-trajectory of ρ. In specific, N ′ ≤ N ,
(ei, `i, xi, τ i) = (e′i, `′i, x′i, τ ′i) for all i ∈ [0, N ′ − 1],
(eN

′
, `N

′
, xN

′
) = (e′N

′
, `′N

′
, x′N

′
), τN

′
≥ τ ′N

′
. Since

dR(τN
′
, τ̂N

′
) ≤ ε, τN

′
≥ τ ′N

′
, there exists τ1 ∈ [0, τ̂N

′
] such

that dR(τ ′N
′
, τ1) ≤ ε. It follows that ρ̂ has a sub-trajectory ρ̂′ =

{(ê′i, ˆ̀′i, x̂′i, τ̂ ′i)}N̂
′

i=0, such that N̂ ′ = N ′, ê′i = e′i, dR(τ̂ ′i, τ ′) ≤ ε
for all i ∈ [0, N ′]. Therefore, the timed event sequences p̂′, p′

respectively produced by ρ̂′, ρ′ satisfy that dχ(p̂′, p′) ≤ ε. Since
p̂′ ∈ P̂R(tend, H), which follows from p̂ ∈ P̂R(tend, H), we have
~h(PR(tend

1−ε
1+ε

, H), P̂R(tend, H)) ≤ ε.
If L̂0×X̂0 is constructed from robust neighborhoods, then for any

timed event sequence p̂ ∈ P̂R(tend, H), clearly p̂ ∈ PR(tend, H)
holds. Thus, ~h(P̂R(tend, H),PR(tend, H)) = 0.

Suppose the simulation horizon for L̂0 × X̂0 is specified by
the number of triggered events N̂ . By using similar argument as
before, for any p′ = {(e′i, τ ′i)}N

′
i=0 ∈ PN (N̂ − 1, H), there exists

p̂′ = {(ê′i, τ̂ ′i)}N̂
′

i=0 ∈ P̂N (N̂ − 1, H), such that N ′ = N̂ ′

and e′i = ê′i, dR(τ̂ ′i, τ ′i) ≤ ε for all i ∈ [0, N ′]. Therefore,
~h(PN (N̂ − 1, H), P̂N (N̂ − 1, H)) ≤ ε.

If L̂0 × X̂0 is constructed from robust neighborhoods, then for
any p̂ ∈ P̂N (N̂ − 1, H), clearly p̂ ∈ PN (N̂ − 1, H) holds. Thus,
~h(P̂N (N̂ − 1, H),PN (N̂ − 1, H)) = 0.

If L̂0 × X̂0 is constructed from enlarged robust neighborhoods,
then we cannot prove Eq. (3)(4). Due to the virtual trajectories in
[ρ̂]e simulated from L̂0 × X̂0, we only obtain approximate timed
language inclusion in one direction, i.e., the timed language of the
original system is approximately included by that of the abstraction,
but not the other way around. Suppose the following condition is
satisfied:
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• for all (ˆ̀0, x̂0) ∈ L̂0 × X̂0, for all ρ̂ ∈ [ρ̂]e, H has a trajectory
ρ such that dχ(p̂, p) ≤ ε.

Then instead of Eq. (3)(4), the following holds:

~h(P̂R(tend, H),PR(tend
1 + ε

1− ε ,H)) ≤ ε, (5)

~h(P̂N (N̂ − 1, H),PN (N̂ − 1, H)) ≤ ε. (6)

In this case, we still obtain approximate timed language equivalence.
It can be proved that when the positive threshold value dthr in the
algorithm of [27] is sufficiently small, such condition can be satisfied;
but for the present work to be focused, we do not discuss the proof.

The abstraction has finitely many trajectories that extend to the end
of the simulation horizon. Its diagnosability can be easily analyzed
and used to derive the diagnosability of H . We see this in the next
section.

III. DIAGNOSABILITY WITH MEASUREMENT UNCERTAINTY

A. Projected Label Sequences

In Section III, we investigate the problem of diagnosing faults for
hybrid automata without directly observing the trajectories.

During the system operation, one can only observe a sequence
of labels, which is a sequence of timed output symbols; but due
to the unobservable events, this observed label sequence may be
different from the original one produced by the trajectory. For
example, listening to different sounds with time intervals generated
by a machine would provide the information for fault diagnosis; but
not every sound is audible, and sometimes an unobservable output
symbol ∅ occurs. With this setting, we introduce the definition of
projected label sequences in this section.

Definition 9 (Projected Label Sequence). Let Σ∗ denote the set of all
the label sequences generated over Σ. Let s = {(∆i, ψi)}Ni=0 ∈ Σ∗

be a label sequence, and Π : Σ∗ → Σ∗ be a single-valued projection
map. Then π := Π(s) is called the projected label sequence of s
through the map Π.

We define the projection map Π that absorbs all the labels with
the unobservable output symbol ∅ into the first observable label
that follows, while leaves the rest of labels unchanged. That is, Π
projects s to π in the sense that every unobservable output symbol
∅ is erased, whose dwell time gets added into the dwell time of
the next label that has an observable output symbol. For instance,
(∆0, ψ0), (∆1, ∅), (∆2, ψ2) is projected to (∆0, ψ0), (∆1+∆2, ψ2).
If a trajectory has consecutive unobservable output symbols at its
end, then the unobservable end is abandoned in the projected label
sequence. Projected label sequences are the only accessible informa-
tion for system diagnosis. They contain two aspects of information
as below, where (∆i, ψi) are the labels after projection:

1) Before the starting signal ψ0 = ι, the system operation is clear
of faults.

2) Each observable symbol ψi, i ≥ 1 should be output ∆i

time units later than the preceding one; in the meantime, no
observable symbol can be output.

In what follows, a metric on Σ∗ is defined in such a way that the
distance only depends on the time sequences if the output symbol
sequences of two label sequences are the same, and raised to infinity
otherwise. This is motivated by the application of diagnosing faults
by observing the projected label sequences. Unlike dwell time, which
may be measured with uncertainty, different output symbols are
assumed to be readily differentiable from each other.

Definition 10 (Label Sequence Metric). Given s1 =
{∆i

1, ψ
i
1}N1
i=0, s2 = {∆i

2, ψ
i
2}N2
i=0 ∈ Σ∗,

dΣ∗(s1, s2) ,


sup
i
dR(∆i

1,∆
i
2) if N1 = N2,

and ∀i ∈ [0, N1], ψi1 = ψi2;

∞ otherwise;

where dR is the relative time metric defined in Section II-B.

B. Definition of (δd, δm)-Diagnosability

In fault diagnosis two main tasks are fault detection and isolation.
Detecting a fault requires its manifestation being discriminable from
that of normal system behaviors, while isolating requires further
discriminability from symptoms of other faults. To investigate the
diagnosability we start from defining the discriminability of a fault
from normal behaviors and other faults based on the system model.

Consider a hybrid automaton H = (L×X,L0×X0, D,E, Inv),
and the projection map Π defined in Section III-A. Let Lf ⊂ L be the
set of locations that model a failure: Lf is called the faulty set, whose

elements can be partitioned into M disjoint subsets
M⋃
j=1

Lfj = Lf .

Each faulty subset Lfj corresponds to a type of fault Fj ∈ F :=
{F1, . . . , FM}. The discriminability of a fault Fj is proposed below,
which takes into account the delay in discriminating a fault since it
first occurs, as well as the measurement uncertainty of time intervals.

Definition 11 (Fjδ-Faulty Trajectory). A trajectory ρ =
{(ei, `i, xi, τ i)}Ni=0 is Fjδ-faulty if and only if there exists a finite
index if ∈ [0, N ] such that:

1) ∀i < if , `i 6∈ Lfj ;
2) `i

f

∈ Lfj ;

3)
N∑
i=if

τ i ≥ δ.

In the special case where δ = 0, i.e., only the occurrence of Fj is
required, the term Fj-faulty is used. If a trajectory is free of any
fault, then it is called normal.

Definition 12 ((δd, δm)-Discriminability). Let J be a set of trajec-
tories, ρ1, ρ2 be two arbitrary trajectories in J , which produce the
label sequences s1, s2, and π1 = Π(s1), π2 = Π(s2).

1) Fj is called (δd, δm)-discriminable from normal (with respect
to J) if and only if the following is satisfied: if ρ1 is a Fjδd-
faulty trajectory, then either ρ2 is not normal or dΣ∗(π1, π2) >
δm.

2) Given Fi ∈ F = {F1, · · · , FM}, Fj is called (δd, δm)-
discriminable from Fi (with respect to J) if and only if the
following is satisfied: if ρ1 is a Fjδd-faulty trajectory, then
either ρ2 is not Fi-faulty or dΣ∗(π1, π2) > δm.

In what follows, we define the diagnosability based on the
(δd, δm)-discriminability of faults. We want to perform finite-horizon
diagnosability analysis of H . To that end, we need to consider
the discriminability of faults with respect to J (H). As mentioned
before, J (H) can be specified specified as JR(tmax, H) (or
JN (Nmax, H)), i.e., the set of all the possible trajectories of H
such that the trajectory horizon does not exceed tmax (or Nmax).
We also need to consider the discriminability of faults with respect to
ĴR(t̂max, H) (or ĴN (N̂max, H)), since the diagnosability analysis
of the original system has to be performed indirectly from the system
abstraction.

Essentially, dΣ∗(π1, π2) > δm requires that a pair of pro-
jected label sequences coming from a Fjδd-faulty trajectory and a
normal/Fi-faulty trajectory can be distinguished from each other,
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given the measurement uncertainty δm for time intervals. Thus,
(δd, δm)-discriminability from normal amounts to the detectability
of Fj with the delay δd and measurement uncertainty δm. As
for isolability, things are more complicated, since Fj has to be
(δd, δm)-discriminable from all other faults, namely all Fi ∈ F =
{F1, · · · , FM} such that Fi 6= Fj . The semantics of isolating Fj
from Fi is to exclude the occurrence of Fi as a cause to alarm,
relying on the possibly delayed symptoms of Fj .

Another remark about the (δd, δm)-discriminability of Fj from
Fi is on asymmetry. To see this, suppose ρ1, ρ2 are too close to
discriminate in the sense that dΣ∗(π1, π2) ≤ δm. If ρ1 is Fjδd-
faulty and ρ2 is Fiδ′d-faulty with δ′d < δd, then Fj is not (δd, δm)-
discriminable from Fi, but Fi can still be (δd, δm)-discriminable from
Fj .

Definition 13 ((δd, δm)-Diagnosability). Given a set of trajectories
J and a faulty set Lf = {Lf1 , · · · , L

f
M}, we have the following

definitions with respect to J:
• Fj ∈ F = {F1, · · · , FM} is (δd, δm)-detectable if and only if

it is (δd, δm)-discriminable from normal;
• Fj is (δd, δm)-isolable if and only if it is (δd, δm)-discriminable

from all other faults Fi ∈ F, Fi 6= Fj;
• Fj is (δd, δm)-diagnosable if and only if it is (δd, δm)-detectable

and isolable.
The set of trajectories J is said to be (δd, δm)-diagnosable if and
only if all the faults in F are (δd, δm)-diagnosable with respect to J .
In particular, if J (H) is (δd, δm)-diagnosable, we also say that the
system H is (δd, δm)-diagnosable (for the considered horizon).

In discussions above the discriminability of faults under consid-
eration is confined to single fault. This can be easily extended to
multiple-fault cases, since the discriminablity is defined based on
the Fjδ-faulty trajectory definition, which is readily modifiable by
using and operators. For example, given F = {F1, F2, F3} and
a combination of faults f = {F1, F3} ∈ 2F, define fδ-faulty
trajectories as both F1δ-faulty and F3δ-faulty, i.e., the intersection of
the sets of F1δ-faulty and F3δ-faulty trajectories forms the set of fδ-
faulty trajectories. Then multiple-fault diagnosability can be defined
and analyzed. For simplicity we consider the single-fault case.

Proposition 4. Given H and Lf , the following statements hold:
1) If H is (δd, δm)-diagnosable, then it is (δ∗d , δm)-diagnosable

for all δ∗d ≥ δd.
2) If H is not (δd, δm)-diagnosable, then it is not (δ∗d , δm)-

diagnosable for all δ∗d ≤ δd.
3) If H is (δd, δm)-diagnosable, then it is (δd, δ

∗
m)-diagnosable

for all δ∗m ≤ δm.
4) If H is not (δd, δm)-diagnosable, then it is not (δ∗d , δm)-

diagnosable for all δ∗m ≥ δm.
Proof: Straightforward by Definition 13.

C. Comparison of Diagnosability Notions

The classical DES diagnosability notion [10] relies on event
sequences. Extended to a multiple-fault version in [28], it states
that the DES is diagnosable if and only if for all faults Fj ∈ F,
all Fj-faulty trajectories can be determined via the projections of
prefixes whose length are uniformly bounded, that is, discriminated
from trajectories that are not Fj-faulty. This uniform bound on event
numbers gives the maximum delay for diagnosing Fj since it first
occurs, but the number is not prescribed explicitly in the definition.

The diagnosability definition for timed automata proposed by [12]
is different from the DES diagnosability in some ways: Dense time
instead of discrete time (counting events) is considered. The Fj-faulty

and non-Fj-faulty trajectories (which refer to trajectories that are not
Fj-faulty) are also required to be discriminable within a maximum
delay by projections; but the maximum delay is explicitly prescribed
in the notion of ∆-diagnosability. So the fault Fj has to be determined
at most ∆ (integral) time units later than its first occurrence. If the
system is ∆-diagnosable for some natural number ∆, then it is called
diagnosable.

Similar to the ∆-diagnosability for timed automata, the (δd, δm)-
diagnosability for hybrid automata prescribes a maximum delay δd in
(real) time units as the diagnosis time window. So the delays ∆ and
δd are basically the same. The (δd, δm)-diagnosability additionally
conveys the uncertainty δm in symptom measurements. In specific,
a metric dΣ∗ has been defined to compute the distance between the
projected label sequences, and a distance greater than the measure-
ment uncertainty δm ensures the discriminability. By contrast, direct
discrimination of different projected label sequences as in the DES
and timed automata diagnosability corresponds to the case δm = 0.

Moreover, the (δd, δm)-diagnosability differs in that it requires the
discriminability of Fjδd-faulty trajectories from normal trajectories
and other faulty trajectories rather than from non-Fj-faulty trajecto-
ries. Note that discriminability from non-Fj-faulty trajectories does
not exclude other faults as the causes to alarms (for instance, a trajec-
tory is both Fj-faulty and Fi-faulty), although it implicitly excludes
normality. As for the (δd, δm)-diagnosability, both detectability and
isolability are involved.

D. Bridging The Timed Language to (δd, δm)-Diagnosability

The projected label sequences are the information available for
fault diagnosis, while properties of the timed languages are what we
can get from system abstraction. Thus a relation should be established
between the metrics for projected label sequences and timed event
sequences.

Proposition 5. Given s1, s2 ∈ Σ∗ as the label sequences produced
by the timed event sequences p1, p2 ∈ χ(E), and π1 = Π(s1), π2 =
Π(s2), we have dΣ∗(π1, π2) ≤ dχ(p1, p2).

Proof: If dχ(p1, p2) is finite, then clearly dΣ∗(s1, s2) =
dχ(p1, p2), and s1, s2 have the same output symbol se-
quence. According to the definition of Π, π1, π2 must also
have the same output symbol sequence. Moreover, for any
∆1

1,∆
1
2,∆

2
1,∆

2
2, > 0, |∆

1
1+∆2

1−∆1
2−∆2

2|
∆1

1+∆2
1+∆1

2+∆2
2
≤ |∆1

1−∆1
2|+|∆

2
1−∆2

2|
∆1

1+∆2
1+∆1

2+∆2
2
≤

max{ |∆
1
1−∆1

2|
∆1

1+∆1
2
,
|∆2

1−∆2
2|

∆2
1+∆2

2
}. Therefore, by combining some labels’

dwell time distance after the projection, the supremum of dwell time
distance over all the labels has become smaller. Thus, we obtain
dΣ∗(π1, π2) ≤ dΣ∗(s1, s2).

For two sets of trajectories J (H), Ĵ (H) satisfying
~h(P(H), P̂(H)) ≤ ε, we now show there is a relation between their
(δd, δm)-diagnosability.

Lemma 1. Given a faulty set Lf , and J (H), Ĵ (H) that satisfy
~h(P(H), P̂(H)) ≤ ε, if J (H) is not (δd, δm)-diagnosable, then
Ĵ (H) is not (δd

1−ε
1+ε

, δm + 2ε)-diagnosable.
Proof: For convenience, let Fj(H) ⊂ J (H), F̂j(H) ⊂

Ĵ (H) denote the set of Fj-faulty trajectories, and Fδj (H) ⊂
Fj(H), F̂δj (H) ⊂ F̂j(H) denote the set of Fjδ-faulty trajectories.

Suppose J (H) is not (δd, δm)-diagnosable. This implies, by
Definition 12 and 13, the existence of a fault Fj and two trajectories
ρ1, ρ2 ∈ J (H),

ρ1 = (e0
1, `

0
1, x

0
1, τ

0
1 ), . . . , (ei

f

1 , `
if

1 , x
if

1 , τ
if

1 ),

. . . , (eN1
1 , `N1

1 , xN1
1 , τN1

1 ),

ρ2 = (e0
2, `

0
2, x

0
2, τ

0
2 ), . . . , (eN2

2 , `N2
2 , xN2

2 , τN2
2 ),
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such that ρ1 ∈ Fδdj (H), ρ2 is either normal or contained in Fi(H)
for some fault Fi 6= Fj , and their projected label sequences satisfy
dΣ∗(π1, π2) ≤ δm.
The timed event sequences produced by ρ1, ρ2 are in P(H) by
definition. Denote them as p1 = {(ei1, τ i1)}N1

i=0, p2 = {(ei2, τ i2)}N2
i=0

respectively. Since ρ1 ∈ Fδdj (H), then
N1∑
i=if

τ i1 ≥ δd.

Since ~h(P(H), P̂(H)) ≤ ε, there exist two trajectories ρ̂1, ρ̂2 ∈
Ĵ (H),

ρ̂1 = (ê0
1, ˆ̀0

1, x̂
0
1, τ̂

0
1 ), . . . , (êi

f

1 , ˆ̀if
1 , x̂

if

1 , τ̂
if

1 ),

. . . , (êN̂1
1 , ˆ̀N̂1

1 , x̂N̂1
1 , τ̂ N̂1

1 ),

ρ̂2 = (ê0
2, ˆ̀0

2, x̂
0
2, τ̂

0
2 ), . . . , (êN̂2

2 , ˆ̀N̂2
2 , x̂N̂2

2 , τ̂ N̂2
2 ),

such that their timed event sequences p̂1 = {(êi1, τ̂ i1)}N̂1
i=0, p̂2 =

{(êi2, τ̂ i2)}N̂2
i=0 satisfy

dχ(p1, p̂1) ≤ ε, dχ(p2, p̂2) ≤ ε. (7)

Clearly, p1 and p̂1 have the same event sequence, p2 and p̂2 have
the same event sequence. It follows that ρ̂1 ∈ F̂j(H), ρ̂2 is either
normal or contained in F̂i(H).

Let π1, π2, π̂1, π̂2 be the projected label sequences of
ρ1, ρ2, ρ̂1, ρ̂2. By the triangle inequality, Prop. 5 and Eq. (7),
the following holds:

dΣ∗(π̂1, π̂2) ≤ dΣ∗(π1, π̂1) + dΣ∗(π1, π2) + dΣ∗(π2, π̂2)

≤ δm + 2ε.

From Eq. (7) we have that for all i ∈ [0, N1], dR(τ i1, τ̂
i
1) ≤ ε, namely,

τ i1
1−ε
1+ε
≤ τ̂ i1 ≤ τ i1 1+ε

1−ε . It follows that

N̂1∑
i=if

τ̂ i1 ≥
N1∑
i=if

τ i1
1− ε
1 + ε

≥ δd
1− ε
1 + ε

. (8)

By definition, ρ̂1 ∈ F̂δj (H) with δ = δd
1−ε
1+ε

, and thus Ĵ (H) is not
(δd

1−ε
1+ε

, δm + 2ε)-diagnosable.

Lemma 2. Given a faulty set Lf , and J (H), Ĵ (H) that satisfy
~h(P(H), P̂(H)) ≤ ε, if Ĵ (H) is (δd, δm)-diagnosable, and δm ≥
2ε, then J (H) is (δd

1+ε
1−ε , δm − 2ε)-diagnosable.

Proof: Directly follow from Lemma 1.

Theorem 1. Given a faulty set Lf , and J (H), Ĵ (H) that satisfy
h(P(H), P̂(H)) ≤ ε, if Ĵ (H) is not (δd, δm)-diagnosable, then
J (H) is not (δd

1−ε
1+ε

, δm + 2ε)-diagnosable; if Ĵ (H) is (δd, δm)-
diagnosable, and δm ≥ 2ε, then J (H) is (δd

1+ε
1−ε , δm − 2ε)-

diagnosable.
Proof: Directly follow from Lemma 1 and 2.

E. Diagnosability Analysis Algorithm

To analyze whether H is (δ∗d , δ
∗
m)-diagnosable, the following steps

can be used:
1) Randomly simulate initial states for the horizon [0, tend] (or

N̂ ) and compute the enlarged robust neighborhoods (or robust
neighborhoods if possible) around them to fully cover L0×X0;
then construct the system abstraction (see Section II-C).

2) It is guaranteed that ~h(P(H), P̂(H)) ≤ ε, where P(H) =
PR(tend

1−ε
1+ε

, H) and P̂(H) = P̂R(tend, H) (or P(H) =

PN (N̂ − 1, H) and P̂(H) = P̂N (N̂ − 1, H)). So we can
use Algorithm 1 to verify the (δ∗d , δ

∗
m)-diagnosability of H for

finite horizon.
3) If ~h(P̂(H),P(H)) ≤ ε holds as well, where P(H) =
PR(tend

1+ε
1−ε , H) and P̂(H) = P̂R(tend, H) (or P(H) =

PN (N̂ − 1, H) and P̂(H) = P̂N (N̂ − 1, H)), then we can
use an algorithm slightly different from Algorithm 1 to falsify
the (δ∗d , δ

∗
m)-diagnosability of H:

• Line 2 is changed to: compute δ̂d ← δ∗d
1+ε
1−ε , δ̂m ← δ∗m −

2ε.
• Lines 16-18 are changed to: if δ̂m ≥ δ̄m, then Ĵ (H) is not

(δ̂d, δ̂m)-diagnosable, J (H) is not (δ∗d , δ
∗
m)-diagnosable.

4) It is possible that the (δ∗d , δ
∗
m)-diagnosability of J (H) can

neither be verified nor falsified by analyzing the fault diagnos-
ability of Ĵ (H). This means the precision of the abstraction
cannot provide enough information to conclude whether H is
(δ̂d, δ̂m)-diagnosable. Then we can set the parameters ε, dthr
of the algorithm in [27] to smaller values, in order to construct
a system abstraction with higher precision.

Algorithm 1 Given Lf and Ĵ (H), verify if J (H) is (δ∗d , δ
∗
m)-

diagnosable.
1: procedure VERIFICATION(δ∗d , δ

∗
m, ε)

2: compute δ̂d ← δ∗d
1−ε
1+ε

, δ̂m ← δ∗m + 2ε
3: for j ← 1 to M do
4: compute F̂j(H), the set of Fj-faulty trajectories
5: compute F̂ δ̂dj (H), the set of Fj δ̂d-faulty trajectories
6: end for
7: compute F̂0(H), the set of normal trajectories
8: for j ← 1 to M do
9: for i← 0 to M do

10: if i 6= j then
11: compute δ̄i,jm ← inf

ρ̂1∈F̂
δ̂d
j (H)

inf
ρ̂2∈F̂i(H)

dΣ∗(π̂1, π̂2)

. π̂1, π̂2 are the projected label sequences corresponding to
ρ̂1, ρ̂2.

12: end if
13: end for
14: end for
15: compute δ̄m ← inf

1≤j≤M
inf

0≤i≤M
δ̄i,jm

16: if δ̂m < δ̄m then
17: Ĵ (H) is (δ̂d, δ̂m)-diagnosable, J (H) is (δ∗d , δ

∗
m)-

diagnosable
18: end if
19: end procedure

F. Diagnosers

The system abstraction constructed in Section II-C allows us to
build a diagnoser for the system. The proposed approach to system
abstraction and diagnoser construction is trajectory-based, which is
disparate from other approaches in the literature. For instance, the
work [29] proposed to construct a durational graph as an abstraction
of the original system in order to analyze the diagnosability, which is
fast but conservative, and the constructed durational graph requires
further analysis of the timed language. In contrast, the trajectory-
based abstraction in the present work can be arbitrarily precise, and
the constructed diagnoser works in the following transparent way: It
stores a finite list of candidate trajectories whose location sequences
can be reached by H , and keeps narrowing down the list by observing
the timed event sequences of H till a decision is made.

We construct the diagnoser as a hybrid automaton Hd = (Ld ×
Xd, L

0
d ×X0

d , Dd, Ed, Invd):
• Let {ρ̂k}Kk=1 ⊂ Ĵ (H) denote the set of (virtual) trajectories

that extend to the end of the time horizon, where ρ̂k =

{(êik, ˆ̀i
k, x̂

i
k, τ̂

i
k)}N̂ki=0. The state space of the diagnoser is defined

as Ld := 2{1,...,K} × {0, 1, 2, . . .}, Xd := R.
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Example. A location `d ∈ Ld can be ({1, 6}, 2). The diagnoser
being at `d means that the location sequence reached by the
running trajectory of H matches that of ρ̂1 or ρ̂6, and currently
2 observable events have been triggered after the starting signal.

• Let ŝk = {(∆̂i
k, ψ̂

i
k)}N̂ki=0 be the label sequence produced by ρ̂k,

which possesses the sequence of starting signal and observable
output symbols {ψ̂ik,nk }Nkn=0 ⊂ Ψo ∪ {ι}, Nk ≤ N̂k. Then the
projected label sequence Π(ŝk) is π̂k = {(∆n

k , ψ
n
k )}Nkn=0, where

ψnk = ψ̂
ik,n
k , ∆0

k = 0, and ∆n
k = Σ

ik,n
i=ik,n−1+1∆̂i

k for all n ≥ 1.
For clarity, we denote the index ik,n as indk(n).

• Define the fault labels W := 2F, where F := {F1, . . . , FM}
are the modeled M types of faults. Each pair (k, n), n ∈
{0, 1, . . . , Nk} possesses a fault label w(k,n) ∈ W as the
collection of all faults made by the sequence {ˆ̀ik}

indk(n)
i=0 . Given

a location `d = ([k], n) ∈ 2{1,...,K} × {0, 1, 2, . . .} such that
n ≤ Nk for all k ∈ [k], the set {w(k,n)|k ∈ [k]} is referred to
as [w]`d .

Example. When `d = ({1, 6}, 2), [w]`d can be {{}, {F1}},
meaning that as far as the second observable event is triggered
after the starting signal, ρ̂1 is normal while ρ̂6 makes the fault
F1.

• L0
d ×X0

d := ({1, . . . ,K}, 0)× {0}.
• Dd : ẋ = 1 for all the locations `d ∈ Ld.
• Given a location `d = ([k], n), the observable output symbols
{ψn+1

k |k ∈ [k], Nk ≥ n+ 1} (recall that π̂k = {(∆n
k , ψ

n
k )}Nkn=0

is the projected label sequence produced by ρ̂k) can be classified
into q distinct symbols {ψ(1), . . . , ψ(q)}. Assume {ψn+1

k |k ∈
[k], Nk ≥ n+1} is not empty, i.e., q ≥ 1, then we model events
for each ψ ∈ {ψ(1), . . . , ψ(q)} as follows:
Consider the observable output symbol ψ(1). Define the set of
accumulated dwell time

[∆]1 := {∆n+1
k |k ∈ [k], Nk ≥ n+ 1, ψn+1

k = ψ(1)},

and I1 :=
⋃

∆∈[∆]1
B(∆, 1

2
δ̂m), where δ̂m is the measurement

uncertainty under which Ĵ (H) is diagnosable, B(∆, 1
2
δ̂m) is

the relative time metric ball cantered at ∆ with the radius 1
2
δ̂m.

Let z1 be the number of subsets of [∆]1. For all [∆]1,j ∈
2[∆]1 , j ≤ z1, define

I1,j :=
⋂

∆∈[∆]1,j

B(∆,
1

2
δ̂m) \

⋃
∆∈[∆]1\[∆]1,j

B(∆,
1

2
δ̂m).

It can be easily proved that {I1,j}z1j=1 are disjoint, and⋃z1
j=1 I1,j = I1. Also, by definition the following properties

hold:

1) for all ∆̄ ∈ I1,j ,∆ ∈ [∆]1,j , it is satisfied ∆̄ ∈
B(∆, 1

2
δ̂m);

2) for all ∆̄ ∈ I1,j ,∆ ∈ [∆]1 \ [∆]1,j , it is satisfied ∆̄ 6∈
B(∆, 1

2
δ̂m).

Example. Given `d = ({1, 6}, 2), if ψ3
1 = ψ3

6 = ψ(1),
then [∆]1 = {∆3

1,∆
3
6}. Assume [∆]1 = {50, 70}. Then

[∆]1,1 = {50, 70}, [∆]1,2 = {50}, [∆]1,3 = {70}; and
I1 = B(50, 1

2
δ̂m) ∪ B(70, 1

2
δ̂m), which can be partitioned

to I1,1 = B(50, 1
2
δ̂m) ∩ B(70, 1

2
δ̂m), I1,2 = B(50, 1

2
δ̂m) \

B(70, 1
2
δ̂m) = B(50, 1

2
δ̂m) \ I1,1 and I1,3 = B(70, 1

2
δ̂m) \

B(50, 1
2
δ̂m) = B(70, 1

2
δ̂m) \ I1,1.

For convenience, we also define

[k′]1,j := {k ∈ [k]|Nk ≥ n+ 1,

ψn+1
k = ψ(1),∆

n+1
k ∈ [∆]1,j},

`′d1,j := ([k′]1,j , n+ 1).

Then we can model events ed1,j = (`d, `
′
d1,j , I1,j , r) for all

j ≤ z1 and I1,j not empty, where r(x) = 0 for any x ∈ R.
By using the same way, events in Ed can be modeled for other
ψ ∈ {ψ(1), . . . , ψ(q)}, and for other locations `d ∈ Ld.

• Invd(`d) := R for all `d ∈ Ld.
• If and only if Hd reaches a location `d such that w(k,n) = {Fj}

for all w(k,n) ∈ [w]`d , the diagnoser raises an alarm for the fault
Fj , which means Fj is detected and isolated.

The diagnoser Hd starts operating at the same time as H . The
continuous system state xd is the time. The discrete system state `d
updates according to the triggered events ed ∈ Ed. An event ed is
triggered if and only if an output symbol ψ with accumulated dwell
time ∆̄ (since the preceding observed output symbol) is observed
from H , such that ψ is identical to the symbol that models ed, and
also ∆̄ satisfies the guard condition of ed.

We assume the abstraction Ĵ (H) is (δ̂d, δ̂m)-diagnosable,
~h(P(H), P̂(H)) ≤ ε, and δ̂m ≥ 2ε. By Theorem 1, H is
(δ̂d

1+ε
1−ε , δ̂m−2ε)-diagnosable. We thus assume that the measurement

uncertainty of time intervals for H is at most (δ̂m−2ε). Specifically,
any measured time interval must lie inside a ball of radius ( 1

2
δ̂m−ε)

centered at the true value.

Proposition 6. If the trajectory of H , ρ ∈ J (H), is Fjδ∗d-faulty,
where δ∗d = δ̂d

1+ε
1−ε , then the Fj fault alarm is already raised by the

diagnoser Hd.
Proof: For any ρ ∈ J (H), there exists ρ̂ ∈ Ĵ (H) such

that the produced timed event sequences satisfy dχ(p, p̂) ≤ ε.
Hence, ρ is Fjδ

∗
d-faulty implies that ρ̂ is Fj δ̂d-faulty. By Prop.

5, we have dΣ∗(π, π̂) ≤ ε, where π, π̂ are the projected label
sequences produced by ρ, ρ̂. Let π̄ be the measurement of π. Then
dΣ∗(π̄, π̂) ≤ dΣ∗(π, π̂) + dΣ∗(π̄, π) ≤ 1

2
δ̂m.

Since Ĵ (H) is (δ̂d, δ̂m)-diagnosable, for any ρ̂′ that is normal
or Fi-faulty (Fi 6= Fj), the projected label sequences produced by
ρ̂, ρ̂′ must satisfy dΣ(π̂, π̂′) > δ̂m. Thus, dΣ(π̄, π̂′) > 1

2
δ̂m. Namely,

the measurement of the projected label sequence of ρ must be at
least 1

2
δ̂m away from the projected label sequence of any normal or

Fi-faulty trajectory.
Suppose w(k,n) 6= {Fj} for some (k, n) ∈ `d, where `d = ([k], n)

is the last discrete state of the diagnoser updated according to π̄.
By the construction of Hd, there must exist ρ̂′ as a sub-trajectory of
ρ̂k, such that ρ̂′ is normal or Fi-faulty (Fi 6= Fj), and its projected
label sequence satisfies dΣ∗(π̄, π̂

′) ≤ 1
2
δ̂m.

By contradiction, the fault alarm for Fj should be raised no later
than the last discrete state reached by the diagnoser according to π̄.

Proposition 7. If the Fj fault alarm is raised by the diagnoser for
the trajectory ρ ∈ J (H), then ρ must be Fj-faulty.

Proof: For any ρ ∈ J (H), there exists ρ̂ ∈ Ĵ (H) such that the
produced timed event sequences satisfy dχ(p, p̂) ≤ ε. Let ρ̂k ∈ Ĵ (H)
be a (virtual) trajectory extending to the end of the time horizon such
that ρ̂ is a sub-trajectory of ρ̂k. The label sequence produced by ρ̂k
is ŝk = {(∆̂i

k, ψ̂
i
k}
N̂k
i=0. The diagnoser operates according to the

measurement π̄ of the projected label sequence π produced by ρ.
By the construction of Hd, clearly (k, 0) ∈ `0d, where `id (i ≥ 0)
denotes the (i + 1)th location reached by Hd during its operation.
Let êi1k be the first observable event in E triggered by ρ̂k after the
starting signal, whose associated output symbol is ψ̂i1k ∈ Ψo, and the
accumulated dwell time since the initialization is ∆ :=

∑i1
i=1 ∆̂i

k.
Write the projected label sequence π̂ produced by ρ̂ as a sequence

(0, ι), (∆, ψ), · · · , and the measurement π̄ of π as (0, ι), (∆̄, ψ), · · · ,
then ψ = ψ̂i1k , and ∆̄ is on the guard of the first event triggered
by the diagnoser. We write this event as ed1,j = (`d, `

′
d1,j , I1,j , r)
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ẋ = A1x ẋ = A2x ẋ = A1x

ẋ = A1x ẋ = A1x ẋ = A3x

ẋ = A1x ẋ = A1x ẋ = A4x

`1 `4 `7

`2 `5 `8

`3 `6 `9

A1 =



−0.6 0

0 −0.6


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0 1 2 3

1

2

3

x1

x2

A2 =



−0.6 0

0.3 0




A3 =



0.6 0

0 −2


A4 =



−0.1 0

0 −0.1




Fig. 2. The invariant sets and dynamics of the hybrid automaton.

like in the construction of Ed. Accordingly, ψ̂i1k corresponds to ψ(1)

in the construction of ed1,j , and `d = `0d, `′d1,j = `1d, ∆̄ ∈ I1,j .
According to the second property of guards in the construction of
ed1,j , if ∆ ∈ [∆]1 \ [∆]1,j , then ∆̄ 6∈ B(∆, 1

2
δ̂m). We already

have ∆ =
∑i1
i=1 ∆̂i

k ∈ [∆1] by definition. Moreover, it follows from
dΣ∗(π̄, π̂) ≤ 1

2
δ̂m (see the proof of Prop. 6) that ∆̄ ∈ B(∆, 1

2
δ̂m).

Therefore, ∆ ∈ [∆]1,j , (k, 1) ∈ `′d1,j = `1d. With similar argument,
it can be proved that for any (∆, ψ) output by the nth observable
event of ρ̂k triggered after the starting signal, the updated location
of the diagnoser must contain (k, n). If Hd reaches a location whose
fault labels are all {Fj}, which implies w(k,n) = {Fj}, then clearly
ρ̂ is Fj-faulty, and thus ρ is Fj-faulty.

G. Numerical Example of Diagnosability Verification

Consider a 2-dimensional hybrid automaton H with 9 locations.
The invariant sets and dynamics are visualized in Figure 2. Guards
are boundaries of the invariant sets. Reset map for continuous
state is the identity matrix. Some trajectories initiated from the set
{(x1, x2)|2.2 ≤ x1 ≤ 2.3, 2.2 ≤ x2 ≤ 2.3} are simulated for the
time horizon [0, 1.5] as shown in Figure 3. All the events in E has
the unified output symbol α. The location `8 is designated as faulty.
The initial set leads to both normal and faulty trajectories.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x1

x 2

 

 

Guard

Initial Set

Normal Trajectory

Faulty Trajectory

Fig. 3. Normal or faulty trajectories of the hybrid automaton.

We construct the system abstraction as in Section II-C by covering

the initial set with the enlarged robust neighborhoods computed for
11 simulated initial states, where the parameter ε in relative time
metric is set to 0.1 (see Figure 4).

Fig. 4. The initial set is covered by enlarged robust neighborhoods.

Since Ĵ (H) contains a finite number of simulated trajectories, it
is easy to verify that 5 trajectories are normal (reaching `7, `4, `1),
while 6 trajectories are faulty (reaching `7, `8, `9).

There are two simulated trajectories

ρ1 = (e0, 7, [2.2062, 2.2166]′, 0.1635),

(e1, 4, [2, 2.0095]′, 1.1552), (e2, 1, [1, 2.5095]′, 0.1813),

ρ2 = (e0, 7, [2, 2964, 2.2062]′, 0.1635),

(e1, 8, [2.0818, 2]′, 0.3466), (e2, 9, [2.5630, 1]′, 0.9899),

respectively corresponding to the projected label
sequences π1 = (0, ι), (0.1635, α), (1.1552, α) and
π2 = (0, ι), (0.1635, α), (0.3466, α). Hence, although ρ2 goes
faulty to `8, it is not possible to tell it immediately apart from the
normal ρ1 by monitoring only the first two output symbols and
the associated time intervals. Instead, we need to wait longer. With
Algorithm 1 it can be verified that Ĵ (H) is (0.3466, 0.5384)-
diagnosable, and J (H) is (0.4236, 0.3384)-diagnosable. Therefore,
by observing the output symbols and measuring the time intervals in
between with the measurement uncertainty 0.3384 in relative time
metric, any trajectory of H that enters `8 as the second location
at the time instant tf can be diagnosed before the time window
[tf , tf + 0.4236] runs out.

IV. CONCLUSION

In this paper, we propose a diagnosability notion for hybrid
automata that conveys the maximum delay in detecting and isolating
faults under given measurement uncertainty in time intervals. We
prove a quantitative relation on such (δd, δm)-diagnosability of a
hybrid automaton and its system abstraction, whose timed language
approximately includes or is approximately equivalent to that of
the original system. By analyzing the (δd, δm)-diagnosability of
the system abstraction especially when it has only finitely many
trajectories extending to the time horizon of interest, diagnosability
analysis and diagnoser construction of the original system can be
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simplified to a great extent. We present a method to construct such
system abstractions by using the robust test generation and coverage
idea, which can be implemented automatically with the Matlab
toolbox STRONG [30] for linear systems. An example is illustrated,
reducing the finite-horizon diagnosability analysis of a system with
infinitely many trajectories to finite.

LIST OF SYMBOLS
H hybrid automaton
L×X state space
D dynamics
L0 ×X0 initial set
E events
Inv invariant sets
` location (discrete state)
x continuous state
e event
r reset map
g guard
G` guards (in ` ∈ L)
ξ`(t, x

0
`) dynamical system solution

ρ trajectory
J a set of trajectories
p timed event sequence
P timed language
∆ dwell time
ψ output symbol
R real numbers
Ψo observable output symbols
∅ unobservable output symbol
ι starting signal
Σ labels
s label sequence
J trajectories of interest
P timed language produced by J
Π projection map
π projected label sequence
Lf faulty set
Fj a type of fault
δd delay parameter
δm measurement uncertainty
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