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Abstract— In this paper, we study an optimal control problem
for circadian rhythm regulation. The objective of the problem
is to find a lighting schedule that minimizes the time required
for a subject’s circadian rhythm to synchronize with a reference
circadian rhythm. We previously solved this problem with
a bang-off control algorithm. However, this existing solution
neglects the sleep dynamics and often results in an unreasonably
uncomfortable schedule (with excessive sleepiness). In this
paper, we use a hybrid system model that contains both the
circadian and sleep dynamics. Using variational analysis, we
show that the time-optimal control problem is still a bang-off
control algorithm, but from a class of algorithms that is richer
than the one previously reported.

I. INTRODUCTION

In humans, the circadian rhythm is heavily linked to
various physiological processes, including sleep, metabolism,
hormone secretion, and neurobehavioral processes. Disrup-
tion of the circadian rhythm is known to have negative im-
pacts on health, ranging from fatigue in travelers with jet lag
to an increased risk of cancer in rotating shift workers.The
sleep process in humans is very tightly connected to the
circadian rhythm. The sleep drive, for example, is known
to be modulated by the circadian rhythm [1]–[3].

In the literature, there are mathematical models that cap-
ture the dynamics of the circadian rhythm and how light
affects it. A variety of high-order biochemical models that
capture various chemical concentrations in the cells have
been reported in [4]–[6]. Empirical models, such as variants
of the well-known Kronauer model [7], [8], are simpler
and capture the essential behavior of the human core body
temperature (CBT) oscillation and the effect of light on the
phase and amplitude of this oscillation. As demonstrated in
[9], the Kronauer model may be considered as the asymptotic
case of the biochemical models in an average sense. In our
previous work, we have used a first order phase-reduced
model that directly describes the impact of light on the
circadian phase. We have shown that in solving time-optimal
circadian entrainment problem the phase-reduced model is
effectively a good approximation of the Kronauer model
[10], [11] (also see Fig. 1). There are also models that
describe how the dynamics of sleep and neurobehavioral
states are coupled to that of the circadian rhythm. The most
popular variant, the two-process model, links the dynamics
of sleep drive and alertness to the circadian phase [3], [12].
These models can provide quantitative predictions of these
processes.
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Fig. 1. From [10]. Bang-off solutions of the time-optimal circadian
entrainment for various jetlag cases. The top row are the solutions
obtained using the first-order phase reduced model. The second row
are the solutions obtained using the Kronauer model. The solid
and dashed curves represent the circadian phase of the subject and
the reference, respectively. Cyan bands represent when the optimal
control input (lighting) is on. Orange bands represent when the
natural daylight is on (assuming 12h/12h light dark pattern).

Regulation of circadian rhythms is typically expressed as
an optimal control problem of a system with nonlinear dy-
namics. The control inputs into the system are typically light
and chemicals such as melatonin. Some researchers have
proposed to use model predictive control to deal with the
nonlinear dynamics of the circadian rhythm [13]–[15]. Some
others consider the time-optimal control problem related to
circadian entrainment. Our prior work (c.f. [10], [11], [16],
[17]) that used the Pontryagin Minimum Principle approach
fall under this category. A related work reported in [18] also
posed the time-optimal control problem and solved it using
switching time (i.e., between light on and off) optimization.
Existing results in the optimal control of circadian rhythms
do not take into account the interplay between the sleep
process and the circadian process. This is apparent, e.g.
in the first column of Fig. 1. It shows a scenario where a
traveler flies from Paris to NYC and lands at 10 am EST
(NYC local time). The optimal lighting schedule dictates that
the subject receives (maximum) lighting until approximately
4 am EST the next day! In this paper, we address the time-
optimal circadian entrainment problem using the two process
model, which also captures the dynamics of sleepiness.
Our modeling approach represents the system as a hybrid
system with two modes (asleep and awake). We derive the
necessary condition for optimality for the light input for
this hybrid system based on variational analysis. We further
develop an algorithm to compute the optimal control input
and demonstrate it on a few representative cases.



II. MODELING APPROACH AND PROBLEM FORMULATION

A. Two-Process Model for Circadian and Sleep

The sleep homeostasis process S(t), which regulates the
sleepiness of the subject is modeled as

dS
dt

=

{
−S/τs, β (t) = 1,

(1−S)/τa, β (t) = 0. (1)

Here, the discrete mode β (t) = 1 means the subject is asleep,
and β (t) = 0 means the subject is awake. The parameters
τs = 18.2 h and τa = 4.2 h define the time scale of this
dynamics.

We choose to use an effective phase-reduced model [10],
[11] to describe the dynamics of the circadian rhythm

dθ

dt
= ω0 +(1−β (t)) f (θ)u(t), (2)

where θ is the circadian phase in rad. The parameter ω0 =
2π/24.2 rad/h is the so called free running frequency. The
variable u is the subject’s circadian light exposure, which
is our control input. The function f (θ) is called the phase
response function, given by

f (θ), a0 +
5

∑
k=1

akcos(kθ)+bksin(kθ),

with a0 = −0.1251, a1 = 0.02273, b1 = −0.2844, a2 =
−0.002434, b2 = 0.1059, a3 = 0.007844, b3 =
−0.02783, a4 = −0.001096, b4 = 0.006338, a5 = 0.008446,
and b5 =−0.003007.

Sleepiness, B(t), is jointly affected by sleep homeostasis
S(t) and the circadian phase θ(t) through

B(t) = S(t)−0.1333cosθ(t). (3)

Assumption 1: The switching of the mode β (t) is au-
tonomous, and completely characterized by the subject’s
sleepiness B(t). When B(t) reaches an upper threshold Hm =
0.67, the subject spontaneously falls asleep. When B(t)
reaches a lower threshold Lm = 0.17, the subject wakes up
spontaneously. These thresholds are set such that the length
of sleep is approximately 8 hours.

Hereafter, equations (1)-(2) and Assumption 1 are collec-
tively referred to as the system dynamics.

B. Periodic Solutions under Periodic Inputs: Entrainment

Under the system dynamics and a periodic light input u(t),
the state trajectory might also be periodic with the same
period. We call this phenomenon entrainment. Consider T -
periodic inputs that are defined in [0,T ) as:

uref(t) =
{

umax, t ∈ [0,αT ],
0, t ∈ [αT,T ), (4)

where α ∈ [0,1] is called the duty-cycle of the input. The
value umax =0.2392 corresponds to light exposure at 9500
lux.

Based on a numerical study, we found that the existence
of a stable entrainment orbit depends on umax, T , and α .
Fig. II-B recaps our findings about the existence of stable
entrainment orbits.

Fig. 2. Values of maximum light intensity, period (T ), and duty-
cycle (α) for which stable entrainment orbits exist.

In this paper, for circadian entrainment, we focus on a
reference trajectory generated using uref(t) with T = 24h
and α=0.5=50%. This corresponds to a daily routine where
light is present between 6 am - 6 pm (t = 0 refers to 6 am),
and the subject goes to sleep at 11:12 pm and wakes up at
7:18 am.
Notation: Hereafter, we denote the periodic solution of θ

and S for u(t) = uref(t) with T = 24h and α=50% as θref(t)
and Sref(t), respectively.

C. Problem Formulation

The time-optimal control problem that we consider in this
paper can be formulated as follows.

Problem 2 (Time-Optimal Circadian Entrainment):
Given θ(0) and S(0), find u(t) that minimizes the final
time Tf under the constraint of the system dynamics and
θ(Tf ) = θref(Tf ).

Note that this problem is different from the ones consid-
ered in our earlier work and others in that the sleep dynamics
is now a part of the system dynamics.

III. GREEDY STRATEGIES AND OPTIMALITY

We define two greedy (feedback) control strategies, where
u(t) is calculated based on θ(t) as follows:
Greedy Delaying Strategy:

u(t) =
{

umax, f (θ(t))< 0,
0, f (θ(t))≥ 0. (5)

Greedy Advancing Strategy:

u(t) =
{

umax, f (θ(t))≥ 0,
0, f (θ(t))< 0. (6)

We have shown in [11] that when the sleep dynamics is not
considered (i.e., β (t)≡ 0 for the entire entrainment period),
then the time-optimal entrainment is achieved using one of
the greedy strategies above.

To explain the importance of these two strategies in the
problem considered in the current paper, we introduce the
following term.



Sleep-wake day. One sleep-wake day is the time interval
between two consecutive moments of the subject (sponta-
neously) waking up.

We can then state the main result of this paper, which will
be derived in the next sections.

Main result: The optimal control input for Problem 2
is piecewise greedy. Within each sleep-wake day the
optimal control input follows the same greedy strat-
egy (i.e., delaying or advancing) with the possibility
of switching greedy strategy after each sleep-wake
day.

IV. OPTIMAL CONTROL FOR HYBRID SYSTEMS

Consider a hybrid system with N modes, whose dynamics
is given by

Mode i: ẋ = Fi(x)+Gi(x)u, i ∈ {1,2, · · · ,N}, (7)

x ∈ Rn and u ∈ R. We suppose that the system is initialized
in Mode 1 at x(0) = x0. The transition between Modes i
and i+ 1 occurs at time t = Ti when the state satisfies the
switching condition

Hi(x(Ti),Ti) = 0. (8)

The execution terminates at time t = TN when, in Mode N,
the state satisfies

HN(x(TN),TN) = 0. (9)

For convenience, we define T0 , 0. We assume that the
functions H1, · · · ,HN are smooth and map Rn×R to R. See
Fig. 3 for an illustration showing the first 3 modes.

Notation: We denote the control input signal while the
system is in Mode i as ui(t), x(Ti) as xi, Ti− Ti−1 as ∆i,
and the solution of the state equation (7) with initial state
x(0) = xi−1 under input signal ui(·) as ξi(t;xi−1,ui).
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Fig. 3. Illustration of the state trajectories of the hybrid system in
Sec. IV

We seek the control input u(·) that minimizes

J(u) = TN =
N

∑
i=1

∆i. (10)

We also assume that u(·) is constrained as

0≤ u(t)≤ umax,∀t. (11)

A. First Variation Analysis of ∆i

The constraint (8) can be written as

Hi (xi,Ti) = Hi (ξi(∆i;xi−1,ui),Ti) = 0.

Taking the total variation of this equation provides us with
the relationship between the variations in xi−1 and ui(·) and
the variation in ∆i.
Notation: We write ∂Hi

∂x and ∂Hi
∂T to represent the partial

derivatives of Hi with respect to its first and second argu-
ments, respectively.

We then have:

∂Hi (xi,Ti)

∂x

(
(Fi(xi)+Gi(xi)ui(∆i))d∆i +

∂xi

∂xi−1
dxi−1+

· · ·+ ∂xi

∂ui
dui

)
+

∂Hi (xi,Ti)

∂T
d∆i = 0. (12)

From (12), assuming that

∂Hi (xi,Ti)

∂x
(Fi(xi)+Gi(xi)ui(∆i))+

∂Hi (xi,Ti)

∂T
6= 0, (13)

we can obtain

d∆i =−
∂Hi(xi,Ti)

∂x

(
∂xi

∂xi−1
dxi−1 +

∂xi
∂ui

dui

)
∂Hi(xi,Ti)

∂x (Fi(xi)+Gi(xi)ui(∆i))+
∂Hi(xi,Ti)

∂T

. (14)

Note that (13) essentially means that the velocity vector ẋ
cannot be tangent to the (time-varying) manifold Hi(x,T )= 0
at time t = Ti, which is the standard transversality condition
in optimal control .

In the control theory literature (e.g. [19]), it is known that
∂xi

∂xi−1
and ∂xi

∂ui
can be calculated using the sensitivity function,

which we reformulate as the following lemma. Note that this
is a corollary of the results given in, e.g., [19], and therefore
is presented without proofs.

Lemma 3: We define the transition matrix Φi(∆i, t) ∈
Rn×n, t ∈ [0,∆i], as the solution of the time-varying ODE
system

dΦi(∆i, t)
dτ

=−Φi(∆i, t)
(

∂Fi

∂x
(ξi(t;xi−1,ui))+

+
∂Gi

∂x
(ξi(t;xi−1,ui))ui(t)

)
, (15)

Φi(∆i,∆i) = In×n. (16)

Then,

∂xi

∂xi−1
= Φi(∆i,0), (17)

∂xi

∂ui
(t) = Φi(∆i, t)Gi(ξi(t;xi−1,ui)). (18)

B. First Variation Analysis of J(u)

Because of (10), the first variation of J(u) with respect to
ui can be written as

∂J
∂ui

=
N

∑
k=1

∂∆k

∂ui
=

N

∑
k=i

∂∆k

∂ui
. (19)



The second equality in (19) is because ui only affects ∆k
for k ≥ i. The following lemma recaps how ∂∆k

∂ui
can be

calculated.
Lemma 4:

∂∆k

∂ui
(t) =Qk,iΦi(∆i, t)Gi(ξi(t;xi−1,ui), (20)

where for k > i,

Qk,i ,−
∂Hk(xk,Tk)

∂x Φk (∆k,0)Φk−1 (∆k−1,0) · · ·Φi+1(∆i+1,0)
∂Hk(xk,Tk)

∂x (Fk(xk)+Gk(xk)uk(∆k))+
∂Hk(xk,Tk)

∂T

,

(21)
and for k = i,

Qk,k ,−
∂Hk(xk,Tk)

∂x
∂Hk(xk,Tk)

∂x (Fk(xk)+Gk(xk)uk(∆k))+
∂Hk(xk,Tk)

∂T

.

(22)
Therefore, ∂J

∂ui
can be calculated by combining the use of

(19) and (20).

∂J
∂ui

(t) =

(
N

∑
k=i

Qk,i

)
Φi(∆i, t)Gi(ξi(t;xi−1,ui). (23)

Notation: For notational simplicity, hereafter we define the
1×n row vector

Ri(t),

(
N

∑
k=i

Qk,i

)
Φi(∆i, t). (24)

C. Local Optimality with Respect to Perturbations in ui(·)
The sufficient condition for stationarity of the objective

function J(u) with respect to any valid perturbation δui(·) is
obtained from (23):

Ri(t)Gi(ξi(t;xi−1,ui) ·δui(t)≥ 0. (25)

Because of the inequality contraints in (11), three
different cases emerge for (25) to be true. If
Ri(t)Gi(ξi(t;xi−1,ui) < 0, then the optimal input
u∗i (t) = umax. If Ri(t)Gi(ξi(t;xi−1,ui) > 0, then the optimal
input u∗i (t) = 0. The case when Ri(t)Gi(ξi(t;xi−1,ui) = 0,
implies that any perturbation in ui(t) does not have first
order effect on J(u) and (potentially) leads to a singular arc.

The procedure to calculate Ri(t) can be summarized in
the following lemma.

Lemma 5: The signal Ri(t) for i∈{1, · · ·N} and t ∈ [0,∆i]
satisfies the time-varying ODE

dRi(t)
dt

=−Ri(t)
(

∂Fi

∂x
(ξi(t;xi−1,ui))+

· · ·+ ∂Gi

∂x
(ξi(t;xi−1,ui))ui(t)

)
. (26)

Further, the discontinuity from Ri(∆i) to Ri+1(0) is given
by

Ri+1(0) =Ri(∆i)+Qi,i. (27)
Remark 1: Because of (22), Qi,i in (27) can be calculated

based on the instantaneous control input and state at the
transition time Ti (when the dynamics switched from Mode
i). This feature distinguishes our results from those of, e.g.

[20] (specifically Sec. 3.6) and [21] (specifically Eq. (9)).
The references above discussed the discontinuity in the co-
states at transition times, but did not present explicitly the
amount of the discontinuity as we do in (27).

V. OPTIMAL SOLUTIONS FOR THE TIME-OPTIMAL
CIRCADIAN ENTRAINMENT PROBLEM

We apply the results from the previous section to solve
Problem 2. The mode switches at T1, · · · ,TN−1 are the
transitions between sleep and awake, and TN is the time to
entrain. Although N cannot be determined a priori, we can
derive conditions for the optimal control input, as given in
the main result.

Without any loss of generality we can assume that the
first mode is an awake mode (β (0) = 0). Consequently, if
we define the states as x , [θ S]T , we have for i≤ N,

Fi

([
θ

S

])
=


[

ω0
(1−S)/τa

]
, i is odd,[

0
−S/τs

]
, i is even.

(28)

Gi

([
θ

S

])
=


[

f (θ)
0

]
, i is odd,[

0
0

]
, i is even.

(29)

Further, for i < N,

Hi(x) =
{

B−0.67 = S−0.1333cosθ −0.67, i is odd,
B−0.17 = S−0.1333cosθ −0.17, i is even.

(30)
The final switching function HN(x,T ) depends explicitly on
T as follows:

HN(x) = θ −θref(T ). (31)

When the subject is awake (in odd-numbered modes), we
use the results in Sec. IV-C to determine the optimal light
input. If we define the notation Ri(t) , [R1

i (t) R2
i (t)], we

have
u∗(t) =

{
umax, R1

i (t) f (θ)< 0,
0, R1

i (t) f (θ)> 0.
(32)

Using Lemma 5 (Eq. (26)), we can compute the ODE for
Ri(t) as follows:

d
dt

[
R1

i (t)
R2

i (t)

]
=

[
− d f (θ(Ti−1+t))

dθ
u(Ti−1 + t)R1

i (t)
1
τa
R2

i (t)

]
, (33)

for odd i, and

d
dt

[
R1

i (t)
R2

i (t)

]
=

[
0

1
τs
R2

i (t)

]
, (34)

for even i. We can observe that R1
i (t) does not change its

sign within each mode. This fact and (32) leads to our main
result, i.e., the optimal control strategy in each mode is one
of the two greedy strategies.

Since R1
i (t) is discontinuous at transition times, as given

in (27), its sign might change at those times. Hence, it is
possible that the optimal control strategy switches between
the two greedy strategies after each sleep-wake day. Thus,



in principle, we need to explore all 2N/2 possible switching
combinations. However, the amount of discontinuity of R1

i (t)
as given by (27) and (28) - (30) provides a guideline to
narrow the search space. Observe that by those equations,
we have

R1
i+1(0) =R1

i (∆i)−
0.1333sinθ(Ti)

Ḃ(Ti)
. (35)

Therefore, the sign of sinθ(Ti)
Ḃ(Ti)

indicates whether it is nec-
essary to consider switching greedy algorithm at transition
time Ti as detailed in the following lemma.

Lemma 6: If

sign
(
R1

i (∆i)
)
=−sign

(
sinθ(Ti)

Ḃ(Ti)

)
, (36)

then the optimal greedy strategy in Mode i+1 is the same
as that in Mode i.

Note that it is possible to further sharpen this result by
using interval analysis on R1

i (∆i) and R1
i+1(0). However,

because of space constraint, we do not present this result in
the current paper.

VI. NUMERICAL IMPLEMENTATION

To demonstrate the application of our results, we solve
Problem 2 for four cases of travelers with jet lag. In each
case, we assume that the (time-optimal) circadian entrain-
ment starts as soon as the traveler lands at the destination.
Case 1: A traveler flying from NYC to Paris (6 h advance),
landing at ∼9 pm local time (θ(0) = 0, θref(0) = π/2). Upon
arrival, the traveler is not sleepy (B(0) = 0.17).
Case 2: Same as Case 1, but the traveler is very sleepy upon
arrival (B(0) = 0.60).
Case 3: A traveler flying from Paris to NYC (6 h delay),
landing at ∼9 am local time (θ(0) = 0, θref(0) = 3π/2).
Upon arrival, the traveler is not sleepy (B(0) = 0.17).
Case 4: Same as Case 3, but the traveler is very sleepy upon
arrival (B(0) = 0.60).

The entrainment time of the time-optimal solutions for
these cases are 193 h, 220 h, 58 h, and 84 h, respectively.
In each case, we found that the greedy delaying strategy is
the optimal control strategy. We only show the trajectories
of the optimal solutions and the reference for Cases 1 and 2
in Fig. 4 because of space limitation.

There are a few points of observation to make based on
the results from these 4 cases:
1. It is easier to delay the circadian phase than to advance
it. In fact, we showed that it takes less time to achieve 6 h
advance by delaying for 18 h. This conclusion is consistent
with our previous work that did not consider the sleep
dynamics [10], [16], [17].
2. The entrainment times in all four cases are longer than
those reported in our earlier work that used the same cir-
cadian dynamics but did not consider sleep dynamics and
constraint [10] (see Fig. 5). However, if we do not consider
the sleep dynamics and constraint, the time-optimal control
algorithm results in persistent and excessive sleepiness in the
subject.
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Fig. 4. Time-optimal control solutions for Case 1 (top 3 panels)
and Case 2 (bottom 3 panels). The three panels show the circadian
phase (in 2π rad), sleepiness, and sleep state (β ) of the traveler
(black) and the reference (blue). Red pulses represent when the
optimal light input is umax.

3. Comparing Case 1 with Case 2, and Case 3 with Case
4, we can see that the initial sleepiness state of the subject
significantly influences the optimal solution. One may in-
tuitively guess that the differences in entrainment times in
Case 1 vs Case 2 and Case 3 vs Case 4 are approximately
the amount of time needed to sleep (∼ 8 h). However, it
turns out that the differences are actually 26-27 h.

Remark 2: Our model ignores some features found in
other papers, such as the Process L. The Process L happens
in the retinal photoreceptors and is a precursor to the cir-
cadian rhythm dynamics [7], [18]. Nevertheless, preliminary
observations suggest that the impact of the Process L in our
results is minimal, as shown in Fig. 6.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper studies the problem of time-optimal circadian
rhythm entrainment using light input. Our paper differs from
existing work in this area because we consider the sleep
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Fig. 5. Comparison of optimal entrainment time for Cases 1 - 4
and the ones without the sleep constraint.

Fig. 6. Comparison between the applications of the time-optimal
lighting schedule for Case 1 to the models with and without Process
L. The difference is negligible.

dynamics in the problem formulation, and constrain that (a)
light input can only be applied when the subject is awake,
and (b) the subject sleep-wake schedule is driven by his own
sleep dynamics. Our model consists of a hybrid system with
two continuous states (1 for the circadian phase, and 1 for
the sleep homeostasis), which is consistent with but simpler
than the widely accepted Achermann’s two-process model.
We used variational analysis to derive the main finding of
this paper. That is, the optimal control strategy is one of the
two greedy strategies that we derived in our earlier work, but
with the possibility of switching strategy after each sleep-
wake day. The latter was not observed in our previous work.

In the future, we wish to push our research in multiple
directions as follows. (1) More complex models: Our model
ignores aspects of the Kronauer model, such as the Process
L and the amplitude of the oscillation. In the future, we will
consider the time-optimal circadian entrainment problem for
richer models that have these features. (2) Sleep scheduling:
We currently do not use sleep scheduling as one of the
optimization variables. In the future, we can generalize this
problem by allowing sleep to be (optimally) scheduled, as
long as the schedule does not result in excessive sleepiness.
(3) Optimal feedback control: We currently solved the
time-optimal control problem in a feed-forward fashion. In
the future, we will derive optimal feedback control law, e.g.,
using dynamic programming. Such result will be easier to
implement, e.g., in portable smart devices, and potentially
more robust against uncertainty and disturbances.
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