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Abstract— Multi-link robots with elastic joints are receiving
a lot of interest because neglecting joint flexibility introduced
in industrial robots due to presence of transmission elements
results in poor control performances. Robots with elastic joints
also play a pivotal role in making human-robot interaction
more safe. In this paper, we discuss the problem of synthesizing
provably correct controller for motion control of such robot in
the presence of obstacles in the work space. For robots with
many links, such task is difficult because the configuration space
is high-dimensional. For example, for a robot with N links, the
dimension of the configuration space is 2N, and the dimension
of the state-space is 4N. To solve this problem, we built upon our
previous results on trajectory-based formal controller synthesis
for nonlinear systems. In this paper, we exploit the fact that
the dynamics of the robot is feedback linearizable. We can then
demonstrate that a provably correct controller for the robot can
be obtained by using finitely many samples of valid execution
trajectories. We demonstrate the validity of our results by
simulating it on a multi-link robot.

Keywords: robots with elastic joints, trajectory robustness,
feedback linearization.

I. INTRODUCTION

Multi-link robots with elastic joints are receiving a lot of
interest in the robotics community for a number of reasons.
First, arguably all joints have some flexibility. Therefore,
taking this aspect into account improves the accuracy of
a mathematical model of the robotic system [1], [2], [3].
Second, in advanced manufacturing, robots with flexible
joints are safer as co-robots, i.e. in deployment scenarios
where the robots have to have close interaction with humans
[4], [5]. In this paper, we discuss the notion of formal
controller synthesis for multi-link robots with elastic joints.
We formulate a motion control problem for such robot in
terms of a Reach/Avoid specification. This is relevant, for
example, in applications where the robots need to oper-
ate in the presence of obstacles in the workspace. Earlier
work in this area can be found in a comparative study
between different globally stable controller strategies using
backstepping and passivity based approaches, for tracking
a suitable trajectory for the reduced model of a N -link
robot arm with elastic joints [6]. A semi globally stable
tracking controller and an adaptive controller, both based
on implementing specific Lyapunov function candidates, for
the same reduced model were presented respectively in [7]
and [2]. An adaptive tracking control law based on singular
perturbation was established in [8]. Designing feedforward
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and feedback tracking control laws using feedback lineariza-
tion was explored in [9]. More recently, the focus has
shifted to designing controllers for the full model with added
model complexities like variable parameter values [10], [11].
However, none of this articles discuss about the generation of
the suitable trajectory to accomplish the specific tasks in the
Reach/Avoid situations. One might argue that path planning
algorithms such as gradient based methods [12], Rapidly-
exploring Random Tree (RRT) methods [13] or Probabilistic
Roadmap (PRM) [14], which have been successfully em-
ployed for path planning of rigid robot arms, can be used
for trajectory generation for the robots with elastic joints as
well. Sub-optimal trajectory planning and tracking based on
concatenating control primitives for rigid joint robots using
RRT is presented in [15]. However, such methods are yet
to be applied for robots with elastic joints, for which the
state-space dimension is twice that of the rigid robot arms,
thereby expanding the search space resulting in increasing
computational complexity. Moreover, one can approximate a
robot arm with flexible link as N link robot arm with elastic
joints, where N is some large finite value [16], [17]. Indeed,
increasing number of links will also add to the state-space
dimension, for which the above mentioned path planning
algorithms might not produce satisfactory results. It is to
be noted as well that the results presented in the above
mentioned articles are mostly limited to simulations of one
or two link robot arms.

In this paper, we present a formal way of determining such
trajectories and also guarantee a robust neighborhood around
the said trajectory in the sense that the same control law
can be applied for any initial state of the robot arm in the
robust neighborhood. Formal controller synthesis is a very
active area in the controls community. For an overview, we
refer the reader to the book [18], and the references therein.
The approach that we take for formal controller synthesis
in this paper follows the idea presented in [19]. In short,
we synthesize a provably correct controller given finitely
many correct execution trajectories of the system. The idea
is that these trajectories can be obtained, for example from
finitely many demonstrations by a human operator. The key
idea here is the assessment of safety/reachability based on
the execution trajectories of the system, or the simulations
thereof. To generalize the safety property of a simulated
execution trajectory to a compact neighborhood around it,
we use the concept of trajectory robustness [20], [21] or
incremental stability [22], [23]. Roughly speaking, these
properties can provide us with a bound on the divergence of
the trajectories (i.e. their relative distances in L∞). The main



conceptual tool that is used in this approach is the theory of
approximate bisimulation, which was developed by Girard
and Pappas [24].

II. REVIEW OF PRIOR RESULTS

In this section, we briefly review prior results that were
reported in [19]. Consider a multi-input multi-output dynam-
ical system

Σinp :
dx

dt
= f(x) + g(x)u,

= F(x, u), x ∈ Rn, u ∈ Rm, (1)
y = h(x), y ∈ Rm. (2)

Suppose that there is a given compact set of initial states
Init ⊂ Rn, where the state is initiated at t = 0, i.e. x(0) ∈
Init. Also, we assume that there is a set of goal outputs,
Goal⊂ Rm, and a set of unsafe outputs Unsafe⊂ Rm. A
state trajectory x(t) is deemed unsafe if its output trajectory,
y(t) = h(x(t)), enters the unsafe set. Suppose that we are
given the following control problem:

Problem 1: Design a feedback control law u = k(x, x0)
such that for any initial state x0 ∈ Init, the output trajectory
of the closed loop system enters Goal before time t = Tmax,
and remains safe until it enters Goal.

Hereafter, any (state or output) trajectory that satisfies the
conditions above is called a valid trajectory.

Definition 1: A continuously differentiable function ψ :
Rn × Rn → R+ is a control autobisimulation function of
(1)-(2) if for any x, x′ ∈ Rn,

ψ(x, x′) ≥ ‖h(x)− h(x′)‖ , (3)

and there exists a feedback function k : Rn×R→ Rm such
that

∇xψ(x, x′)F(x, k(x, t)) +∇x′ψ(x, x′)F(x′, k(x′, t)) ≤ 0.
(4)

If the dynamics in (1) is feedback linearizable, then we
can introduce a new control input w(t) ∈ Rm and design a
(nonlinear) feedback law

u = κ(x) + λ(x)w, (5)

such that the closed-loop system, with the new input w and
output y, is a linear system. This is denoted by the box in
Figure 1.
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Fig. 1: Control block diagram showing the linearizing feed-
back and linear feedback.

Denote a minimal representation of this system as

dξ

dt
= Aξ +Bw, y = Cξ. (6)

Note that there exists a (nonlinear) mapping from x to ξ. We
slightly abuse the notation and denote this mapping as ξ(x).
From here, we can use any linear feedback law

w = Kξ + v, (7)

where K is chosen such that (A+BK) is Hurwitz and v is
a new input signal. Note that such K can always be found
because (6) is a minimal representation. Moreover, let P be
a symmetric positive definite matrix that satisfies

(A+BK)TP+P (A+BK)�0, (8)
P�CTC. (9)

We can form the control bisimulation function ψ(x, x′) by
the quadratic expression

ψ(x, x′) ,
[
(ξ(x)− ξ(x′))TP (ξ(x)− ξ(x′))

] 1
2 . (10)

It follows that if we define

k(x, t) , κ(x) + λ(x) (Kξ(x) + v(t)) , (11)

then ψ(x, x′) is indeed a control autobisimulation function
(see Definition 1) for any choice of the control signal v(t).

Notation 1: We denote the solution trajectory of (1) under
the feedback u = k(x, t), with initial state x(0) = x0 as
x(t;x0, k). Observing that ψ defines a metric in Rn,and we
define the ball

Bψ(x, r) , {x′ | ψ(x, x′) ≤ r}. (12)
Since the CAF is non-increasing in time (by design), we

can directly deduce that for any x′0 ∈ Rn and any control
signal v(t),

x(t;x′0, k) ∈ Bψ(x(t;x0, k), ψ(x0, x
′
0)).

This is illustrated in Figure 2. The nominal solution trajectory

Goal

UNSAFEInit

x0

x(t;x0, k)

Fig. 2: Illustration of how the CAF is used in controller
synthesis.

x(t;x0, k) is designed such that the condition,

x(T ;x0, k) ∈ Goal, (13)



where, T < Tmax holds. Then we can find the robust
neighborhood Bψ(x0, δ) around this nominal trajectory as,

δ = min(δGoal, δUns), (14)
δGoal = sup

x′∈Goal
ψ(x(T ;x0, k), x′), (15)

δUns = inf
x′∈Unsafe

ψ(x(t;x0, k), x′). (16)

Therefore, if an appropriate reference input signal v(t) can
be obtained for the nominal initial state x0, it can also be
used for the ball of initial conditions Bψ(x0, δ) around x0.

In our approach, the reference input v(t) is obtained
from human demonstration. The overall idea is to obtain
multiple reference input signals v for multiple initial con-
ditions, such that the corresponding ”robust neighborhoods”
cover the set Init. This idea was first presented in [21] and
later generalized for nonlinear systems in [19]. The objective
of the current paper is to use this technique for formal
controller synthesis of multi-link robots with flexible joints.

III. PROBLEM FORMULATION

A. Dynamic Modeling of the System

Consider an open kinematic chain robot arm with N rigid
links, interconnected by N elastic revolute joints, each of
which is being actuated by an electrical motor drive. We
assume that the motors are located at a position preceding
the link being driven by the motor, as shown in Figure 3 for
a two-link model.
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Fig. 3: Model of a two-link robot arm with elastic joints [25]

Let q ∈ RN be the link positions, θm ∈ RN be the rotor
positions of the motors, and θ ∈ RN be the rotor positions
as reflected though the gear reduction ratios, given by θmi =
θiri, (i = 1, 2, · · · , N), with gear ratios ri.

Under the assumption that the ith joint deformation rep-
resented by (qi − θi) is small, we can model the elastic
properties of each joint to be same as that of a undamped
linear torsional spring [17]. We also assume that the rotors
of the motors are modeled as uniform bodies of rotation
having their center of mass on the rotation axis [26]. The

reduced 2N order dynamic model of the robot arm can then
be computed to be [17]

M(q)q̈ + C(q, q̇)q̇ + g(q) +Ke(q − θ) + Fq q̇ = 0, (17)

J θ̈ +Ke(θ − q) + Fθ θ̇ = u. (18)

In (17), M(q) represents the inertial properties of the rigid
links, and J is a constant diagonal inertia matrix of the
effective motor inertias, with the ith element being Ji =
Jmir

2
i , where Jmi is the inertial moment of the ith motor.

C(q, q̇) consists of the Christoffel symbols matrices corre-
sponding to the Coriolis and Centrifugal terms arising from
the Euler-Lagrangian dynamics. g(q), is the gravity force
corresponding to the potential energy of the rigid links due
to gravity, and Ke is a constant diagonal matrix, with the ith
element being the i joint stiffness Kei, which we assume to
be not varying. The frictional forces experienced by the links
and the motors, is modeled by constant symmetric positive
semidefinite matrices Fq and Fθ. u ∈ RN is the column
vector of the torque inputs provided by the motors defined
as,

u =
[
u1 u2 · · · uN

]T
. (19)

B. Feedback Linearization

We choose the link positions q as the system output. For
the state space representation we define

x1 = q, x2 = θ, x3 = q̇, x4 = θ̇

where, xi ∈ RN , i = (1, 2, 3, 4). From (17)-(18), by defin-
ing xT =

[
xT1 xT2 xT3 xT4

]
, we can write the system

dynamics as

ẋ =

[ x3
x4

−M−1(C+Fqx3+Ke(x1−x2))
−J−1(Fθx4+Ke(x2−x1))

]
+

[ 0
0
0
J−1

]
u, (20)

= f(x) + g(x)u, x ∈ Rn, u ∈ Rm, n = 4N,m = N, (21)
y = x1 = h(x), y ∈ Rm. (22)

Here, we omitted the dependence of the variables on
the system states due to space constraints in writing the
equations. Notice that,

y[4] = x
[4]
1 = −(M)−1((2Ṁ+ Fq)x

[3]
1 + M̈ẍ1 + η̈ +Ke(ẍ1 − ẍ2)),

where, η(q, q̇) = C(q, q̇)q̇ + g(q). Substituting, ẍ2 = ẋ4
from (20) in the above equation and defining

σ(x1, x2) = ((2Ṁ+ Fq)x
[3]
1 + (M̈+Ke)ẍ1 + η̈),

we can relate the output in terms of the input as,

y[4] =M−1(KeJ−1(u−Ke(x2−x1)−Fθx4)−σ). (23)

We thus conclude that the relative degree of the system is 4
and that the torque inputs given by

u = (JK−1
e M)w + (JK−1

e σ +Ke(x2 − x1) + Fθx4), (24)
= λ(x)w + κ(x), (25)

leads to the input-output feedback linearized system in the
form of a chain of integrators as

y[4] = w, w ∈ RN . (26)



Also observe that, the whole state space of the system can
be observed from the knowledge of the output y, since
relative order of the system is same as the order of the actual
nonlinear system, implying that the linearized system does
not have any zero dynamics.

We can then obtain a minimal representation of the whole
system as a set of N decoupled linear subsystems with each
subsystem describing the dynamics of each link-motor pair.
We denote the new state-space vector ξ in terms of a nonlin-
ear mapping from x to ξ as ξT =

[
xT1 xT3 ẋT3 ẍT3

]T
The

new state-space representation of the linearized subsystems
then becomes

dξi
dt

=

[
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

]
ξi +

[
0
0
0
1

]
wi, (27)

= Aξi +Bwi, A ∈ R4×4, B ∈ R4,

yi = qi = Cξi, C ∈ R1×4, (28)

where, i = (1, 2, · · · , N). We design the new input w in
such a way that the system follows a valid trajectory, i.e,
starting from any initial state in Init the end-effector of the
robot arm reaches the Goal set, with no parts of the robot
arm ever entering the Unsafe set.

C. Generating Valid Trajectory

The new input w is generated from the knowledge of
a valid trajectory obtained using a graphical user interface
provided using The Robotics Toolbox [27], that allows a
human to manipulate the link positions (q) of a robot arm.
The GUI provides the user with sliders, one for each link in
the robot arm to rotate the corresponding link about its joint
axis by sliding the slider left/right. This gives us a means
to generate the human inputs. We fit a spline of order 5
through the initial trajectory points generated by the user
and choose this new trajectory as our desired trajectory ξdes

to be followed by the robot arm, in order to generate the
valid nominal trajectory.

D. Controller Design

Note from Section (II), once the system is feedback
linearized, we proposed to construct a feedback law of the
form

wi = Kiξi + vi, Ki ∈ R1×4. (29)

Provided, Ki is chosen such that (A+BKi) is Hurwitz, we
are free to design the new input signal vi(t), such that the
trajectories of the closed loop system are steered from any
given initial condition in Init to be a valid trajectory.

We propose to generate vi(t) from the knowledge of the
desired trajectory ξdesi . Note that, in the generation procedure
of ξdesi we do not account for the dynamics of the robot arm
system, and hence ξdesi cannot be considered as the valid
nominal trajectory of the system itself. In order to generate
the valid nominal trajectory, we design a trajectory tracking
controller such that the output of the closed loop system
stabilizes at the desired trajectory, which requires stabilizing
ξi at ξdesi . This control problem can be solved by designing

a state feedback controller such that the output of each of
the subsystems

ė = Ae+Bve, e ∈ R4, (30)

goes to zero asymptotically, where,

e = ξi − ξdesi ,

ve = ξ
[4]
i − (ξdesi )[4] = wi − (ξdesi )[4]. (31)

We now propose the state feedback law of the form

ve = K ′e, K ′ ∈ R1×4, (32)

so that (A+BK ′) is Hurwitz. From the requirements of (29)
and (32), we can always choose K ′ = Ki. Combining (29),
(31) and (32), we see that,

vi = (ξdesi )[4] −Kiξ
des
i . (33)

It is to be taken into account at this point that, the feedback
control law designed this way should belong to the class of
admissible controller satisfying the control autobisimulation
function (CAF) ψ in order to guarantee robust neighborhoods
around the valid trajectories. For each subsystem, we assume
the CAF to be of the form

ψ(x, x′) =
[
(ξi(x)− ξi(x′)TPi(ξi(x)− ξi(x′))

] 1
2 , (34)

where, Pi ∈ R4×4 is a symmetric positive definite matrix.
We can then synthesize Pi and Ki by solving (8)-(9). For
the whole system, the P matrix is computed as P =
diag{P1, P2, · · · , PN}.

IV. EXAMPLE

A. Computing System Parameters

In order to evaluate the performance of the controller, we
consider the control problem related to motion control of a
5R planar robot with elastic joints such that starting from a
set of initial conditions defined by Init, the end-effector of
the arm reaches a set of desired states defined by Goal, while
avoiding some obstacles in the task space defined by Unsafe.
We provide a general outline of the process to obtain all the
necessary parameters below.

To determine the various system parameters, we follow,
a coordinate frame based approach, by rigidly attaching the
ith coordinate frame, defined as the pair (Ei,Oi), where Ei
consists of the unit vectors representing the ith coordinate
frame and Oi is the point where the ith coordinate frame is
being affixed, at the joint location i (see Figure 3).

The inertia matrix corresponding to the inertial properties
of rigid links, M is computed from the generalized inertia
matrices Mi,Mri of the ith link-motor pair as [28]

M(q) =

N∑
i=1

Ji(q)MiJi(q) +

N∑
i=2

Ji−1(q)MriJi−1(q). (35)

Ji(q) is the ith partial Jacobian represented in the (Ei,Oi)
frame, computed as

Ji(q) = (~Ji(q))i =
[
(~µ1)i (~µ2)i · · · (~µi)i 0 · · · 0

]
,



where,
(~µk)i =

[
Ri,k−1

~hk

(Ri,k−1
~hk)
×(~pk,i)i

]
.

The representation of the kth frame in ith frame, denoted by
Ri,k is given by

Ri,k = (Ri,i−1)(Ri−1,i−2) · · · (Rk+1,k),

where,

Rk,k+1 = I3 + sin(qk+1)(hk)×+ (1− cos(qk+1))((hk)×)2.

The (×) operation on a vector results in converting it to a
skew-symmetric matrix. The kth rotational axis is denoted by
three dimensional direction vector ~hk, all of which for this
example are coming out of the plane. (~pk,i)i is the geometric
position vector joining kth frame to ith frame represented in
ith frame as

(~pk,i)i = Ri,kpk,k+1+Ri,k+1pk+1,k+2+ · · ·+Ri,i−1pi−1,i.
where, pk,k+1 is a constant three dimensional column vector.

The ith generalized link inertia matrix is calculated as

Mi =
[

Ii mi(pic)
×

−mi(pic)× miI3

]
, (36)

where, Ii is the inertia of the ith rigid body represented in
the ith frame as Ii = Ici −mi(pic)

×(pic)
×, where pic is the

geometric position vector of the center of mass of the ith
rigid link with respect to Oi and Ici is the moment of inertia
of the ith link about its center of mass. The mass of the ith
link is denoted by mi. Similarly, the ith generalized motor
inertia matrix is calculated as

Mri =
[

Jmi mri(li−1)
×

−mri(li−1)
× mriI3

]
. (37)

li is the ith link length, mri represents the ith motor mass
and I3 is the third order identity matrix.

The term arising due to Coriolis and Centrifugal forces
can then be computed directly from the inertia matrixM(q)
as [28]

Ci,j(q, q̇) = 1
2

∑N
k=1

(
∂Mi,j
∂qk

+
∂Mi,k
∂qj

−
∂Mk,j
∂qi

)
. (38)

Since we considered a planar robot arm for this example the
gravity term g(q) is zero. All the above calculations were
performed in MATLAB using the Symbolic Math Toolbox.

B. Results

We simulated a 5 link robot arm to evaluate the perfor-
mance of our controller design. Figure 4 illustrates the valid
nominal trajectory obtained from human input for a given
initial state in Init as explained in Section (III-D). The figure
shows the motion of each of the 5 link tips to illustrate
that no part of the robot arm ever crosses into the Unsafe
and the end-effector reaches the Goal, validating that the
trajectory is indeed a valid nominal trajectory of the system.
Once we obtained the nominal trajectory we find the robust
neighborhood around it by using (14)-(16). Figure 5 and 6
show two instances of the optimization procedure for finding
the robust neighborhood around the nominal trajectory. In
the figures, the robot arm represented in black corresponds

Fig. 4: Valid Nominal Trajectory obtained from human input

Fig. 5: Robust neighborhood around the nominal trajectory
in terms of Unsafe

to the nominal trajectory, whereas, the arm in blue represents
the maximum deviation allowed from the nominal trajectory,
such that the resulting trajectory is still a valid one, giving
us a sense of the robust neighborhood around the nominal
trajectory. In the Figure 5, since the end-effector is yet to
reach the Goal region, the robust neighborhood is limited
by the location of the Unsafe region, however, for Figure
6 the robust neighborhood is limited by the Goal region
itself. A video of the whole experiment is uploaded at
http://tinyurl.com/EJrobots. An interesting thing to note in
the video is that, for the nominal trajectory the robot arm
displays somewhat oscillatory motion, as expected due to
presence of elastic joints, unlike the rigid-body like motion
of the robot arm in case of the initial trajectory generated
from human inputs using the GUI, where we do not take the
actual system dynamics into account.

V. DISCUSSION AND FUTURE DIRECTIONS

We synthesize a formal trajectory based safety controller
for multi-link robots with elastic joints, by utilizing our prior
theoretical results which allow us to extend the concept of
trajectory robustness property of linear systems to nonlinear
systems if the system is feedback linearizable. The key
concept presented here is to guarantee a robust neighborhood
around the valid nominal trajectory obtained utilizing human
intuition to solve the path planning problem regarding the
motion control of the robot arm in terms of a Reach/Avoid
specification. Finding such robust neighborhoods allow us to
design the safety controller for the whole Init set, in terms
of finitely many valid nominal trajectories.

http://tinyurl.com/EJrobots


Fig. 6: Robust neighborhood around the nominal trajectory
in terms of Goal

The results presented here, can be further improved by
optimizing the human generated trajectory based on some de-
sired cost function as presented in our other work [29]. Even
though, we present the formulation of a formal controller
utilizing the property of trajectory robustness for multi-link
robots with elastic joints, the same idea can be implemented
for a broader class of feedback linearizable or differentially
flot nonlinear systems [19]. One particular application in
this regard can be synthesizing controllers for multi-link
planar manipulators actuated with 1 or 2 drives, utilizing their
differential flatness property [30], [31]. A further extension
of this idea can be synthesizing such safety controllers for
under-actuated robot arms with elastic joints, which can then
be used to approximate the behavior of robot arms with
flexible links.
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