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SUMMARY

Accurate estimation of circadian phase is critical to the assessment and treatment of circadian disrup-
tion. Direct measurements of circadian rhythm markers such as dim light melatonin onset and core body
temperature are inconvenient and acquired at best at low rate. On the other hand, measurements of other
circadian rhythm-modulated signals such as actigraphy, heart rate, and body temperature are convenient but
are typically masked by many other factors.

In this paper, we present a new multi-input adaptive notch filter algorithm that can be used to extract the
periodic components from multiple circadian signals simultaneously. We also prove some stability properties
of the proposed filter. Once the periodic components are extracted, the next step is to relate their phases with
the circadian phase. For this, we propose a nonlinear observer, which is based on a model of the circadian
phase dynamics. The model takes the form of a first-order ODE, incorporating the concept of phase response
curve, which is widely used in the study of biological oscillators. We also prove the stability of the observer.
We evaluate our algorithms using simulation data generated from a circadian rhythm model for fruit flies
(Drosophila melanogaster). Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Circadian rhythms are biological processes found in all living organisms, from plants to insects
and mammals, which repeat with a period around 24 h. The 24-h patterns of light and dark are the
strongest synchronizer of circadian rhythms to the solar day. Disruption of the synchrony between
the solar day and human internal master clock that regulates and generates circadian rhythms has
been linked to a variety of maladies. Circadian disruption, as experienced by night-shift workers or
by those traveling across multiple time zones, can lead to low productivity, digestive problems, and
decreased sleep effectiveness. Long-term effects of circadian disruption has been linked to serious
health problems, such as increased risk of cancer, cardiovascular disease, diabetes, and obesity.

Various groups have investigated the possibility of regulating the circadian rhythm. Light, the
strongest known influence to the circadian rhythm, has been widely proposed as the control input
for circadian regulation [1–8] . There are also commercial products for self-administered light ther-
apy to address seasonal affective disorder [9, 10]. Circadian regulation using chemical intervention
(e.g., melatonin and modafinil) has also been studied [11, 12].

Most of the work on light-based circadian rhythm regulation is open loop in nature, based on
the phase response curve (PRC), the amount of the steady-state phase shift due to a specified light
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pulse input at different circadian phases [11, 13]. Optimal control has only been recently consid-
ered [8, 14, 15]. The available commercial lighting products for circadian regulation are of low cost
and convenient but only provide a rough guideline on their usage for circadian rhythm regulation.
Feedback control of the light therapy is attractive as it could accommodate variations between indi-
viduals and disturbances from the environment. Some closed-loop strategies have been suggested
and demonstrated in simulation [7, 16], but a reasonable estimation of the circadian phase based on
physiological sensor measurements is needed for deployment.

The circadian phase may be assessed by measuring biomarkers such as the concentration of pro-
teins that participate in the circadian rhythm regulation. For humans, certain hormones related to
circadian rhythm such as melatonin, cortisol, and alpha amyloid have also been used as circadian
phase markers. These types of direct measurements are intrusive in terms of collection (blood serum
and saliva), time-consuming, and expensive in terms of analysis. As a result, the sampling rate is
very low, at best several samples per hour, over a limited duration in experimental trials. As alterna-
tives, the use of indirect phase markers, such as body temperature, heart/pulse rate, and activity level,
is common. Locomotor activity, in particular, together with tools such as actogram (or actigraph)
devices, has long been used in Drosophila, rodent, and human studies [17–22].

Numerous techniques for circadian phase extraction have been proposed (see review in [23]).
Most rely on batch processing; that is, the circadian phase is extracted in the postprocessing of a
batch of circadian data. These techniques include manual inspection of actogram [24], statistical
method [25], Fourier analysis [23], cosinor [26], and activity onset [27]. A number of recursive
methods, where circadian phase estimate is updated upon the availability of new data in each recur-
sion, have also been proposed. There are two classes of algorithms, depending on whether an
underlying input/output model is assumed. Extended Kalman filter [28] and particle filter [29] are
model-based methods using the empirical nonlinear oscillator model (relating input light intensity
to the output core body temperature). Gliding cosinor is a model-free approach that works the same
as the cosinor but for a fixed window of the past data [30].

In this paper, we address two important questions related to circadian phase estimation from
biometric measurement signals. First, how do we extract the periodic components from multiple
biometric signals simultaneously? Second, if we are able to extract phase information from the
biometric signals, how can we relate that with the circadian phase?

The first question is motivated by the increasing availability of personal fitness tracker devices
that measure, for example, actigraphy, heart rate, body temperature, and perspiration. To address
the first question, we present a multi-input version of the adaptive notch filter (ANF) algorithm [31,
32]. Our algorithm can extract the periodic components from the multiple signals. We also prove
local stability properties of the proposed multi-input ANF algorithm and provide simulation results
to assess its performance. To address the second question, we assume that the circadian phase and
the biometric signal phases differ by constant phase lags. Then, we present an observer algorithm
that estimates the phase lags based on the circadian phase dynamics predicted by the PRC.

2. EXTRACTION OF PERIODIC COMPONENTS FROM BIOMETRIC SIGNALS

The circadian biometric data are approximately periodic signals. Their waveforms vary with the
species, individuals in the species, types of physiological measurement, and environment condition.
We assume that we have a family of N circadian signals:

yk.t/ D ak sin
�
!�t C �k

�
C dk; k 2 ¹1; � � � ; N º; (1)

where !� is the circadian angular frequency, �k is the phase offset of the kth signal, and dk is its
constant bias. Note that each circadian signal has different phase offsets. This represents the fact
that different biometric signals (e.g., body temperature and actigraphy) peak at different times of the
day. We define the phases of the different circadian signals as
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�k.t/ D !
�t C �k; k 2 ¹1; : : : ; N º: (2)

Problem
Given measurements of ¹yk.t/ºNkD1, determine !� and ¹�k.t/ºNkD1.

There are several algorithms for adaptive frequency estimation [33] with relative performance
trade-offs in terms of the rate of convergence, domain of convergence, robustness with respect to
noise and distortion, and so on. We will focus on the ANF approach in this paper because of its
stability property and superior convergence property under good initial guess of the period.

2.1. The original adaptive notch filter

The original ANF algorithm was proposed by Regalia as a discrete-time filter [34]. It was later
transposed to continuous time in [31]. A realization of the filter is shown in the following.

Px1 D x2; (3a)

Px2 D �!
2x1 C .y � Oy/; (3b)

P! D ��x1 .y � Oy/ ; (3c)

Oy D 2�!x2: (3d)

The input to this filter is a sinusoidal signal

y.t/ D a sin
�
!�t C �

�
; (4)

with unknown frequency !�. The ANF filter estimates this frequency with the state variable !.
The state variables x1 and x2 constitute a second-order damped oscillator that tracks the sinusoidal
signal y.t/ with Oy.t/. The parameters � and � represent the adaptation gain and the damping factor
of the oscillator, respectively. We can observe that a periodic solution of (3), which corresponds to
perfect tracking Oy.t/ D y.t/, is given by

N!.t/ D !�; (5)

Nx1.t/ D
�a

2�!�2
cos

�
!�t C �

�
; (6)

Nx2.t/ D
a

2�!�
sin
�
!�t C �

�
: (7)

In a later publication, Hsu et al. [32] proved the global convergence of a scaled version of this
frequency estimator, where the input term y is scaled by !2. Note that this ANF can only track
a single sinusoid with zero mean. An extension of the ANF idea to track signals with multiple
harmonics has been reported in [35], which includes a proof of local stability.

2.2. Proposed multi-input adaptive notch filter

Note that, in principle, to handle the problem posed in Section 2, we can use a bank of N ANFs
operating independently. However, we propose a solution that has the structure of interconnected N
ANFs. The kth ANF tracks yk.t/:

Px1;k D x2;k; (8a)
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Px2;k D �!
2x1;k C !

2.yk � Oyk/; (8b)

Px3;k D �d .yk � Oyk/; (8c)

Oyk D
2�x2;k

!
C x3;k : (8d)

The states .x1;k; x2;k/ track the sinusoidal component of yk by using the ANF algorithm of Hsu
et al. [32]. We add another state x3;k that tracks the constant bias of the signal. The ANFs are
interconnected through the common frequency variable !, which is updated according to

P! D ��!2
NX
kD1

x1;k .yk � Oyk/ : (9)

Under the input given in (1), the system has an equilibrium at

N! D !�; (10)

Nx1;k.t/ D �
ak

2�
cos

�
!�t C �k

�
; (11)

Nx2;k.t/ D Px1;k.t/ D
!�ak

2�
sin
�
!�t C �k

�
; (12)

Nx3;k.t/ D dk : (13)

Note that this equilibrium corresponds to perfect tracking by the ANFs, ! D !�, and yk D
Oyk; k 2 ¹1; � � � ; N º. In the following section, we will prove that this equilibrium is locally stable.

3. STABILITY PROPERTIES OF THE MULTI-INPUT ADAPTIVE NOTCH FILTER

For a system consisting of N ANFs, we have a .3N C 1/-dimensional nonlinear system. The states
of the nonlinear system can be written as�

xT !
�T

, where x ,
�
xT1 � � � x

T
N

�T
and

xk ,
�
x1;k x2;k x3;k

�T
:

We then have

d

dt

2
6664
x1
x2
:::

xN

3
7775 D

2
6664
A 0 � � � 0
0 A � � � 0
:::
:::
: : :

:::

0 0 � � � A

3
7775

„ ƒ‚ …
,A

2
6664
x1
x2
:::

xN

3
7775C

2
6664
B 0 � � � 0
0 B � � � 0
:::
:::
: : :

:::

0 0 � � � B

3
7775

„ ƒ‚ …
,B

Y.t/;
(14)

P! D ��!2
NX
kD1

x1;k

�
yk �

2�

!
x2;k � x3;k

�
; (15)

where
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Y.t/ ,
�
y1.t/ � � � yN .t/

�T
;

A ,

2
4 0 1 0

�!2 �2�! �!2

0 �2��d
!
��d

3
5 ; B ,

2
4 0

!2

�d

3
5 :

We can state the stability property of this multi-input ANF as follows.

Theorem 1
The multi-input ANF given by (14) and (15), under the input signal in (1), is (locally) stable at the
equilibrium given by (10)–(13) for a small enough � .

Proof
Our proof is based on the integral manifold of slow adaptation [36] , which was also used in the
stability proof of the first-order ANF [32]. The idea is to consider ! as a parameter whose dynamics
is much slower than the other states. This is indeed the case for the small enough � . We denote the
steady-state response of a linear time-invariant system (14), for a fixed ! under the input Y.t/ as
x�.t; !/. We proceed with showing that for any positive !, �d , and �; the following are true:

(a) A is Hurwitz.
(b) x�.t; !/ and @

@!
x�.t; !/ are bounded, and the latter is Lipschitz in !:

(c) The right-hand side of (15) is continuous and Lipschitz in ! and y.

(Proof of a) Because A is block diagonal, it is sufficient to show that each block, that is, A, is
Hurwitz. We show this by calculating the characteristic polynomial of A,

�.s/ D s3 C .2�! C �d / s
2 C !2s C �d!

2:

Performing a Routh–Hurwitz test on this polynomial shows that indeed A is Hurwitz.
(Proof of b) x�.t; !/ is bounded because the transfer function from Y.t/ to x�.t; !/ is a block

diagonal of stable rational transfer functions. Each of the block is given by

H.s/ , .sI � A/�1B D

2
66664

!2s
s3C.2�!C�d /s

2C!2sC�d!
2

!2s2

s3C.2�!C�d /s
2C!2sC�d!

2

�d s
2C�d!

2

s3C.2�!C�d /s
2C!2sC�d!

2

3
77775 : (16)

Observing that

H.j!�/ D

2
666664

j!2!�

j!�.!2�!�2/C�d .!2�!�2/�2�!!�2

�!2!�2

j!�.!2�!�2/C�d .!2�!�2/�2�!!�2

�d .!2�!�2/
j!�.!2�!�2/C�d .!2�!�2/�2�!!�2

3
777775 (17)

and that the coefficients of the transfer functions are all polynomials in !; @
@!
x�.t; !/ is bounded

and Lipschitz in !: Point (c) is straightforward from (15).
Using the preceding facts (a–c) and Theorems 3.1 and 5.1 from [36], we can infer the following:

(1) The existence of an integral manifold M� for a small enough � . For a � > 0; the integral
manifold M� � R3NC1 is a time-varying one-dimensional surface such that

.x .t0/ ; ! .t0// 2M� ) .x.t/; !.t// 2M� ;

for all t > t0. Note that, at the manifold, M� contains the equilibrium given by (10)–(13).
Further, as � ! 0, M� arbitrarily approaches M0.

(2) The integral manifold M� is locally attractive.
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To show that the ! adaptation dynamics is stable, we follow the same reasoning as in [32, 35].
First, notice that if � � 1; the dynamics of ! is very slow, and thus, we can approximate (15) with

P! D ��!2
NX
kD1

x�1;k

�
yk �

2�

!
x�2;k � x

�
3;k

�
: (18)

Now, we again use the fact that the oscillation of x� is much faster than the dynamics of ! and
define the averaged system

P!av D ��!
2
av

"
NX
kD1

x�1;k

�
yk �

2�

!av
x�2;k � x

�
3;k

�#
av

; (19)

D ��!2av

NX
kD1

�h
x�1;kyk

i
av
�
2�

!av

h
x�1;kx

�
2;k

i
av
�
h
x�1;kx

�
3;k

i
av

�
; (20)

where the operation Œx.t/�av denotes averaging

Œx.t/�av ,
1

T

Z T

0

x.t/ dt D
!�

2�

Z T

0

x.t/ dt: (21)

Using Lemma 2, we can establish

P!av D ��!
2
av

NX
kD1

!2av!
�2
�
!2av � !

�2
�
a2
k�

�d
�
!2av � !

�2
�
� 2�!av!�2

�2
C !�2

�
!2av � !

�2
�2 : (22)

Observe that the dynamics in (22) has an equilibrium at !av D !�. Further, by linearizing the
dynamics about this equilibrium, we can observe that it is (locally) stable. �

Lemma 2
The following relations are true:

h
x�1;kyk

i
av
D

!2!�2
�
!2 � !�2

�
a2
k

.�d .!2 � !�2/ � 2�!!�2/
2
C !�2 .!2 � !�2/

2
;h

x�1;kx
�
2;k

i
av
D 0;h

x�1;kx
�
3;k

i
av
D 0:

Proof
Let us define the shorthand notation

A†� , A sin
�
!�t C �

�
:

Hence, from (1), we have

yk D dk C ak†�k : (23)

From (17), we then have
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x�1;k D
!2!�akq

.�d .!2 � !�2/ � 2�!!�2/
2
C !�2 .!2 � !�2/

2

†

 
�k C

�

2
� tan�1

!�
�
!2 � !�2

�
�d .!2 � !�2/ � 2�!!�2

!
;

x�2;k D
!2!�2akq

.�d .!2 � !�2/ � 2�!!�2/
2
C !�2 .!2 � !�2/

2

†

 
�k C � � tan�1

!�
�
!2 � !�2

�
�d .!2 � !�2/ � 2�!!�2

!
:

Also, if ! > !�;

x�3;k D dk C
�d
�
!2 � !�2

�
akq

.�d .!2 � !�2/ � 2�!!�2/
2
C !�2 .!2 � !�2/

2

†

 
�k � tan�1

!�
�
!2 � !�2

�
�d .!2 � !�2/ � 2�!!�2

!
;

and if ! < !�;

x�3;k D dk C
��d

�
!2 � !�2

�
akq

.�d .!2 � !�2/ � 2�!!�2/
2
C !�2 .!2 � !�2/

2

†

 
�k C � � tan�1

!�
�
!2 � !�2

�
�d .!2 � !�2/ � 2�!!�2

!
:

We also have that

ŒA1†�1 � A2†�2�av D
A1A2

2
cos.�1 � �2/: (24)

It follows immediately that Œx�
1;k
x�
2;k
�av D 0 and Œx�

1;k
x�
3;k
�av D 0 because the phase difference

between the two components is �
2

. Further,

h
x�1;kyk

i
av
D

!2!�a2
kq

.�d .!2 � !�2/ � 2�!!�2/
2
C !�2 .!2 � !�2/

2

sin

 
tan�1

!�
�
!2 � !�2

�
�d .!2 � !�2/ � 2�!!�2

!
;

D
!2!�2

�
!2 � !�2

�
a2
k

.�d .!2 � !�2/ � 2�!!�2/
2
C !�2 .!2 � !�2/

2
:

(25)

�

We simulate the application of the proposed multi-input ANF, as shown in Figure 1. For this sim-
ulation, we use the parameter values � D 0:02, �d D 1, and � D 0:5. To evaluate the ability of the
filter to handle (slowly) varying frequency, we simulate input signals whose frequency periodically
switches between !� D 10 rad/s and !� D 20 rad/s, as shown in Figure 2. Finally, we artifi-
cially add (uncorrelated) white noise signals to each of the inputs. The results from the proposed
multi-input ANF algorithm are shown in Figure 3.
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Figure 1. A simulation of the multi-input adaptive notch filter (ANF) with three inputs. The top three panels
show that outputs of the ANF ( Oy1;2;3.t/) converge to the respective inputs (y1;2;3.t/). Note that all inputs
have the same frequency (!� = 10 rad/s), but different phases and direct-current components. The bottom

panel shows the frequency estimate !.t/ converging to !�.
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Figure 2. Simulation of the same algorithm as shown in Figure 1, using input signals with time-varying
frequency.

3.1. Weighted multi-input adaptive notch filter

In general, the multi-input ANF structure allows us to assign different weights to the contribution of
each ANF subsystem to the ! dynamics. This is carried out by replacing (15) with the following:

P! D ��!2
NX
kD1

Wk x1;k

�
yk �

2�

!
x2;k � x3;k

�
; (26)
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Figure 3. Simulation of the same algorithm as shown in Figure 2, using noisy input signals with time-varying
frequency.

where ¹Wkº
N
kD1 are the positive weights assigned to each of the N ANF subsystems. The stability

of this system can be stated as follows.

Lemma 3
The multi-input ANF given by (14) and (26), under the input signal in (1), is (locally) stable at the
equilibrium given by (10)–(13) for a small enough � .

Proof
The proof follows that of Theorem 1 up to (18). In this case, we replace this equation with

P! D ��!2
NX
kD1

Wk x
�
1;k

�
yk �

2�

!
x�2;k � x

�
3;k

�
; (27)

and the averaged dynamics is given by

P!av D ��!
2
av

NX
kD1

!2av!
�2
�
!2av � !

�2
�
a2
k
Wk�

�d
�
!2av � !

�2
�
� 2�!av!�2

�2
C !�2

�
!2av � !

�2
�2 ; (28)

which is still locally stable at !av D !
�. �

Note that the same reasoning for the stability property still holds if we let the weights ¹Wkº
N
kD1 be

slowly time varying. Adjusting the relative weights of the different input channels can be beneficial,
for example, in situations where some of the channels are (temporarily) not reliable because of
high-intensity measurement noise. To simulate this situation, we modify the simulation discussed
in the previous section. We inject artificial noise to one of the channels (channel 3), while the other
two channels are noise free. We run two simulations. In the first one, all channels are given equal
weights. In the second simulation, channel 3 is given zero weight, while the weights of the other
two channels are increased by 50%. Outputs from the two simulations can be seen in Figure 4. We
measure how well the multi-input ANF algorithm tracks the signal frequency by calculating the
integral square error from the two simulations. The results are shown in the same figure. We can
see, as expected, that decoupling the noisy channel improves the performance of the filter.
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Figure 4. Comparing the performance of the adaptive notch filter with and without a noisy input channel.
The performance measure is the integral square error (ISE) of ! versus !�.

4. ESTIMATION OF CIRCADIAN PHASE

In the previous sections, we presented an algorithm for extracting the periodic components from
multiple possibly noisy circadian signals simultaneously. Assuming that this is done, the next ques-
tion to address is how to determine the circadian phase from the circadian signal phases. We
formulate the problem as follows. Suppose that the circadian phase dynamics is given by

P� D !0 C f .�/u; (29)

where !0 is the so-called free-running frequency (nominally around 2�=24 rad/h) and f .�/ is the
phase response function, which is assumed to be known. The input u is the incoming circadian light
stimuli to the subject, which is assumed to be measured. Therefore, f .�/ describes how the light
input affects the dynamics of the circadian phase, and !0 describes the oscillation frequency in the
absence of light input (u.t/ � 0).

The circadian phase � is the variable that we want to estimate. We assume that, in addition to the
light input u.t/, we also have the measurements of the circadian signal phases (2)

�k.t/ D �.t/ �	k; k 2 ¹1; � � � ; N º: (30)

The phase lags ¹	iº
N
iD1 are constant but unknown.

Problem
Given measurements of u.t/ and ¹�k.t/ºNkD1, determine ¹	iº

N
iD1 and �.t/.

We approach this problem by using a nonlinear observer detailed in the following. First, we
assume the following is true about our system:

(A1) The light input and the phase dynamics are such that

Z 1
0

 
df

d�

ˇ̌̌
ˇ
�D�.t/

!2
u.t/ dt D1:

Essentially, this assumption means that the light input affects the phase dynamics in a significant
way persistently. In practice, this assumption is mild and is typically true. Most PRCs are not flat,
and for a typical natural periodic light–dark pattern,
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Z
period

 
df

d�

ˇ̌̌
ˇ
�D�.t/

!2
u.t/ dt > 0: (31)

Under the preceding assumption, we propose the following nonlinear observer:

d

dt
O	k D Lk �

df

d�

ˇ̌̌
ˇ
�D�kC O�k

�
P�k � !0 � f .�k C O	k/u.t/

	
; k 2 ¹1; � � � ; N º; (32)

where O	k is the estimated 	k . The term ¹Lkº
N
kD1 is the positive observer gains.

We can rewrite the dynamics of ek , O	k �	k as

d

dt
ek D Lk

df

d�

ˇ̌̌
ˇ
�D�kC�kCek

.f .�k C	k/ � f .�k C	k C ek// u.t/: (33)

Lemma 4
The time-varying dynamics in (33) is locally exponentially stable at ek D 0:

Proof
First of all, we observe that ek D 0 is an equilibrium of (33). Next, we linearize the right-hand side
around the equilibrium and obtain

d

dt
ek � �Lk

 
df

d�

ˇ̌̌
ˇ
�D�.t/

!2
u.t/ � ek : (34)

Based on Assumption A1, the linearized dynamics is exponentially stable, and hence, by Theorem
4.13 in [37], this lemma is proven. �

5. APPLICATION ON SIMULATED CIRCADIAN SIGNALS

We simulate a widely used model for circadian rhythm in fruit flies (Drosophila melanogaster) pub-
lished by Leloup and Goldbeter [38]. The model is a system of nonlinear ODEs with 10 states that
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Figure 5. Applying the multi-input adaptive notch (ANF) filter algorithm on simulated circadian signals
from the Drosophila circadian model. We simulate the concentrations of the proteins period (PER), timeless
(TIM), and PER–TIM with arbitrary units (a.u.). PERest, TIMest, and PER–TIMest are the outputs of the ANF.
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Figure 6. Estimation of the phases of the circadian signals shown in Figure 5.
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Figure 7. (left) The phase response of Drosophila f .�/. (right) The evolution of O	k for k D 1; 2; 3. The
actual 	k are 1, 2, and 3.

capture the circadian oscillations of the period (PER) and timeless (TIM) proteins in Drosophila.
The oscillation happens because the expressions of both the PER and TIM proteins are repressed
by the PER–TIM protein complex. The oscillation is essentially a product of a nonlinear negative
feedback in circadian gene expression regulation.

In our simulation, we assume that we can measure the concentration of the PER, TIM, and PER–
TIM proteins. We use these three signals as the inputs to our multi-input ANF. The simulation
results, obtained with parameter values � D 0:5; � D 0:06; and �d D 0:01, are shown in Figure 5.
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In Figure 6, we can also see the estimation of the phases of the circadian signals. Based on (8), the
phase of the kth ANF is defined by

O�k.t/ , tan�1
x2;k.t/

�! � x1;k.t/
: (35)

Next, we apply our nonlinear observer algorithm on the phase dynamics of the Drosophila circa-
dian model. The phase response function f .�/ of this model is shown in Figure 7 (left). The angular
velocity is !0 D 2�

24
rad/h. We simulate the dynamics given by (29) and (30) for 	1;2;3 D 1; 2; 3.

We choose L1;2;3 D 10 for the gains in the observer dynamics given in (32). The estimate O	1;2;3
can be seen in Figure 7 (right) to converge to the actual values.

6. CONCLUSIONS AND DISCUSSION

Motivated by the necessity for estimating the circadian phase in closed-loop circadian rhythm con-
trol, we present two algorithms in this paper. The first algorithm is a generalization of the ANF
algorithm, with which we can simultaneously extract the periodic components of multiple circadian
signals. The second algorithm is essentially a nonlinear observer for estimating the circadian phase
from the phases of the circadian signals. We also prove some stability properties for both algorithms.

With the proliferation of personal devices capable of collecting biometric data that can be used
as circadian signals, such as actigraphy, heart rate, and body temperature, the algorithms presented
here can enable personalized circadian rhythm estimation and control. Therefore, efficient imple-
mentation of these algorithms on mobile computing devices and further theoretical generalizations
such as multi-input multi-harmonics ANF are interesting future research directions.
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