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Abstract— The aim of the safety controller synthesis problem trajectory robustness [9], [10] or incremental stabilifyl],
is to synthesize a feedback controller that results in close  [12]. Roughly speaking, these properties can provide us wit
loop trajectories that meet certain criteria, namely, the sate or 5 pound on the divergence of the trajectories (i.e. their

output trajectories terminate in a Goal set without entering an lative dist i Th . tual tool that
Unsafe set. We propose a formal method for synthesizing such relative distances inCo.). € main conceptual tool tha

a controller using finitely many human generated trajectories. IS used in this approach, tfepproximate bisimulationwas
The main theoretical idea behind our results is the conceptfo developed by Girard and Pappas [13], and has been used

trajectory robustness, which is established using the they of  for trajectory based analysis of hybrid systems in [14]][15
approximate bisimulation. Approximate bisimulation has been [16].

used to establish robustness (in theC., sense) of execution . . .
trajectories of dynamical systems and hybrid systems, redting The approach in [11], [12] and our approach differ in the
in trajectory-based safety verification procedures. way trajectory robustness is used in controller synthésis.

The work reported in this paper builds on our earlier work  [11], [12], the notion of approximate bisimulation is used t
where the dynamics of the system is assumed to be affine linear establish a quantization of the continuous state spac&hwhi
We extend the existing results to special classes of nonlere can result in a countable transition system approximation

dynamical systems, feedback linearizable and differentily flat f th iqinal d - | h th I
systems. For both cases, we present some examples where i©1 the original dynamics. In our approach, the controller

is possible to synthesize the controller using human geneied IS Synthesized using finitely many valid human-generated
trajectories, which are obtained through interactive computer  trajectories [10]. Also, we do not require the open loop

programs with graphical interface (computer games). dynamics to have incremental stability property. Instead,
_ Keywords: controller synthesis, trajectory based, feedbek 5" hart of the controller synthesis procedure is devoted to
linearization, differential flatness. L . S -
establishing this property. In a similar spirit, a more rgce
l. INTRODUCTION work by Zamani and Tabuada [17] also drops the incremental

i . stability requirement and aims to recover it by using back-
The problem of safety controller synthesis for hyb”dstepping controller design.

systems has received a lot of attention from the controls | ° previous work [10], we assume that the under-

f | laws/algorithms f i i hat e R/ing dynamics of the hybrid system is affine linear. The
of control laws/algorithms for systems with Input that #esu ¢ niripytion of the current paper is in the extension of

idn sallfe %xecuggns. TE_ere hl;ve been s;avr:aral approacfgﬁé trajectory-based controller synthesis idea to a cldss o
eveloped to address this problem. Most o these approac linear dynamicsfeedback linearizabland differentially
are based on the concept of safety/reachability analyseis. flat systems [18], [19]

example, the optimal control method in [1], [2], [3] and
the simulation based method in [4] directly characterize th
influence of the control input in the reachability formula-
tion. The predicate abstraction technique for systems with
piecewise affine dynamics in polytope sets leads to a controlIn this section, we review the idea of using human
procedure based on the transversality of the vector fielgenerated trajectories in controller synthesis (see &@).[
on the facets of the polytopes [5], [6]. The technique fofonsider a dynamical system with input

discrete-time systems presented in [7] utilizes partitigrof d

the state space by polygonal approximation of the reachable Yinp : ar
set. For continuous dynamical systems, the theoreticaltses dt

presented in [8] discuss some sufficient conditions for thghere the functionf(x,«) is locally Lipschitz inz and
existence of a controlled system trajectory that enters @ntinuous inu. Suppose that there is a given compact set of
prescribed Goal set. initial statesInit C R”, where the state is initiated at= 0,

The results that are presented in this paper follows jee. 2(0) € Init. Also, we assume that there is a set of goal
different approach from the above mentioned, i.e. trajgeto states, Goat R™, and a set of unsafe states Unsafi”.
based approach. The key concept here is the assessmg&iisual, a trajectory is deemed unsafe if it enters the ensaf
of safety/reachability based on the execution trajectooe get,

the system, or the simulations thereof. To generalize the The safety control problem can be formulated as follows
safety property of a simulated execution trajectory to f1.0]:

compact neighborhood around it, we use the concept of pygplem 1 (State SafetyPesign a feedback control law

=k such that for any initial state: Init, the
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II. CONTROLLERSYNTHESIS USING HUMAN
GENERATED TRAJECTORIES

= f(z,u),z e R"u e d CR™. Q)



, e . feedback lincarizati
Hereafter, any trajectory that satisfies the conditionsabo P ceCoAct nennieon,

is called avalid trajectory. Notice that although the safety
control problem as defined above is not formulated for hybrid ™
systems, we have shown that a similar problem for hybrid
systems can be reduced to the above format (see [9], [10]).
We establish trajectory robustness through a Lyapunov like 1 ‘
function called control autobisimulation function (CAAX]]. ] AR =

Without repeating the presentation in [10], we can sumnaariz P
DK ‘
transf.

&= f(z) +g(x)u :,= h(-) >

CAF as follows. A CAF is a nonnegative functign: R™ x
R™ — R, such that there exists a feedback control law

_ Game
w= k(x) (2) Interface
that provides trajectory robustness to the closed looesyst =~ - _¢_ _?_ -
(1) - (2). That is, if we denote the solution trajectory of offline
(1) - (2) with initial conditionz(0) = x¢ asx(t; o), then Human
Y (1 (t; 20), 21 (t; ) is @ nonincreasing function of time, Player(s)

for any pairzg, z(, € R™. Any feedback law in the form of _ ] ]
(2) that satisfies the condition above is calledaaimissible Fig. 1: A block diagram illustrating the concept of conteoll
feedback law synthesis using human generated trajectories. The nanline
In [10], we have shown that for systems with linear affinglynamics is first transformed to a linear one via feedback
dynamics, the feedback law can assume the following fornin€arization. Then, results from [10] can be applied.

u(t) = Ka(t) + v(t), 3 before timet = T,.x, and remains safe until it enters
) . _ GoalOutput.
whereK' is a constant gain ane(t) can be any (integrable)  Thus, in this problem definition, the validity of an execu-

trajectory. The design procedure fér follows the classical tion trajectory is determined by the output trajectory, aot!
feedback control design for stabilization of linear system py state trajectory as in [10] (see Section II).

For any given initial condition, we use a computer game )
that simulates the system’s dynamics to obtait) that re- A. Design Procedure: Theory
sults in a valid execution trajectory. The trajectory rdbess Feedback linearization is a classical controller desigh-te
conferred by CAF enables us to to guarantee formally theique for nonlinear systems (see e.g. [20], [21]). A special
validity of the control law for a neighborhood around thatcase of feedback linearization that is applicable in thepQiut
initial condition. By repeating this procedure for a finitet s Safety problem above is tHaput-output linearizatior{20].
of initial conditions, we can cover a compact set of initialThe idea is to introduce a new control inpuft) and design
conditions. This approach can thus be regarded as a highdy(nonlinear) feedback law
parallelizable and lightweight (no quantization of stgtace m
is required) complement to the more formal approaches, such u(t) = k(z) + Mz)w(t), w(t) € R™, ®)

as [11], [12]. such that the new system, with inputt) and outputy(t),
is a linear system. The design procedure£¢r) and A(z)
is given in Nonlinear Control textbooks, such as [21].

We extend the idea of safety controller synthesis using By using the feedback law (5), we obtain a linear input-
human generated trajectories to systems with nonlinear dyutput system in the chain integrator form [20].

namics. Consider a dynamical system with input and output

IIl. FEEDBACK LINEARIZABLE SYSTEMS

drl
T Y1 wi (t)
io - y = h((E), ye R™. lin - ,\m: : )

We assume thaif(-) is Lipschitz andh(-) is a smooth _
function. Hereafter, we use the notatigi(-) and h;(-) to ~ Wherery, 7y, .-, are therelative degreef the system.
denote the i-th element of the vector valued functigifg ~ Furthermore, a state space realizatiofgf can be obtained
and h(-), respectively. For the matrix valued functigr-), ~through some state transformation fram _
we useg;(-) to denote its i-th row. SinceXy;, is linear, we can further apply our earlier results
We modify the State Safety control problem in SectioPn the controller synthesis technique for linear systems,
Il to introduce the Output Safety control problem. First, wavhich was reported in [10]. The overall block diagram is
define a set of goal outputs, GoalOutpuk™, and a set of Shown in Figure 1.
unsafe outputs UnsafeOutgufR™. An output trajectory is ~ Remark 1 (zero dynamics)n general, we will always
deemed unsafe if it enters UnsafeOutput. Then, the problegve that [21]
can be formulated as:
Problem 2 (Output Safety)Design a feedback control TLtT2 e T S0 (")
law v = k(x) such that for any initial state, € Init, the When this inequality is strict, there is a part of the dynamic
output trajectory of the closed loop system enters Goal@utpof X;, that is rendered unobservable by the linearizing
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Fig. 2: The rigid object with two jet thrusters. The circle osf GoalOutput
represents the object’s center of mass. The control inputs
are represented b¥; and F5. ok D
feedback. This is called theero dynamicof the system.
In this paper, we ignore the possibility of unstable zero . | i ‘ ‘ ‘ ‘
dynamics since it does not appear on the system output, and oS 0 0s ! 18 2 28

B. Example: Planar Manipulation of a Rigid Object manipulated object and all sets of mterest._
The sets of unsafe and goal outputs are given by

Consider the control problem related to manipulating a
rigid object on a plane using a pair of jet thrusters as contro ~ UnsafeOutput = {y € R? | ||y — [1,1]"| < 0.3},
inputs. The axis of the jet thrusts are off-centered (i.ey ttho 2 T
ncl)at pass through the onject’s center of mass). See(Fei!éune 2 fo GoalOutput = {y € R* | [l — [2,0]"| < 0.1}
an illustration. Therefore, the control inputs will indueth  Additionally, we also require that the control inputs are
translational and rotational motions on the object. Moezpv bounded in magnitude, i.e.
we also assume that the object is subject to an external
force field that essentially renders the dynamics unstable. H[ () Fo(t) }H <2 (14)

The system's dynamics is given by Equations (8) - (10). To solve this problem, we can define a linearizing input

transformation as follows:

X:—Flsin9—|—Fgcost9+1—x+O.1X, (8) |:w1(t):| A [—sinwg, COSIE,} |:F1(t):| (15)

. . . wa(t) | cosxs sinzs Fa(t) | -

Y = Ficosf+ Fyosinf+1—y+0.1Y, (9)

B a b Note that this formulation is a little bit different from

0= F1f - FQY. (10) the outlined procedure in the previous subsection. We can

. o . observe that the constraint in (14) is equivalent to

Here I denotes the object's moment of inertia. We define the
XY coordinate of the object’s center of mass as the system’s [[[ wi(t) wa(t) || < 2. (16)

output. In state space form, the dynamics is given by Using the linearization approach above, we transform the

3 3 0 0 nonlinear system into a linear affine one
d ig l—wlm-ﬁ;Olmg SIOHIS 60%15 Fl ) )
dt | x| T | o tes * BT AR d |z 1—140.132 wh
z6 o ¢ -% dt |3 |~ e | T o | (17)
N—— T4 1—23+0.124 w2
2f(x) & &
g [5]= (%] (18)
X . .
y=h(z) = { x; } : (12) We can then proceed to design a controller for the linear
system using the method explained in detail in our earlier
Observing that publication [10], which cannot be included here due to space
} eitod ) i constraint.
1 _ —x dx — sin x5 COS T3
[5;} - [1—m;+0.lwi} + [ cos x5 sinm;} [F;] ’ (13)

IV. DIFFERENTIALLY FLAT SYSTEMS
we conclude that the vector relative degree of the system pjgterential flatness is a major tool in nonlinear controlle
given by (11) - (12) is{2, 2}. design [18], [19]. The concept was first coined by Fliess

The safety control that we want to solve is a nonlineag; i in [22], and since then there have been thousands of
version of the example presented in [10]. It can formu""‘tegapers that use it in controller design. In this section, we

as follows. Suppose that we are to steer the system from tjgijine a controller synthesis technique for the OutpueSaf
initial set: control problem for differentially flat nonlinear systems.

T 0 Our development in this paper follows the work of van
o 6 zg | |1 Nieuwstadt and Murray [23], who used differential flatness
Init = § 2 € R* | |21] < 0.1, |5 < 0.1, x5 |~ ] O “for trajectory generation in motion planning for constesdn
Zg 0 mechanical systems.



A. Design Procedure: Theory Therefore, a valid flat trajectory for an initial statg €

Any nonlinear system Init is mapped by (19) to a valid trajectory @f;,, whose
states originate aty. Further, the control input:(¢) that
i=f(z)+g(x)u, z €R", ueR™, achieves this valid trajectory can be found by using (20).

These facts are crucial in our controller synthesis tealmiq

is said to bedifferentially flatif it has a set of flat outputs since they essentially allow us to design a feedback control

y = h(z,u,i,---,uP) yeR™, law that establishes output trajectory robustness Xay;
) and then translate the result ¥, via (20). SinceXg,; is
for some integep. The outputsy = (y1,...,ym) areflat 5 controllable linear system, establishing output trajgct

outputsif = andw can be written as functions of and its  rgpystness is straightforward, and for that we can userinea
time derivatives, feedback gain according to, for example, the results regort
=27, .., y(l)% (19) in [10]. The procedure ig fu_rther explained as foIIows.
B . (+1) Suppose that for an initial state, € Init we obtain a
u="(y 9y ), (20)  valid trajectory forY;,, which we denote by*(¢). This can
for some integef, and(y, 7, . .., y¥)) are not constrained to be obtained_, for example, fro_m a human playing a computer
satisfy a differential equation by themselves. In otherdgor 9ame that S'mUIatfgiO' We will demonstrate that by having
any sufficiently smooth trajectory is admissible. the knowleldge of/*(¢), we can find the appropriate control
The concept of differential flatness is tightly related td"Put “/(t_? ) that results in a valid trajectory for any initial
feedback linearization. In fact, we can show thatif, in ~ Statéz in the neighborhood ofy. _
(4) is feedback linearizable and it does not have any zerg First of all, we notice thay"(¢) is also an output trajectory

dynamics, then it is differentially flat and = (y1, .. ., ym) of Ygat, i-€. the one corresponding to the input signal
are flat outputs [18], [23]. dl+1
In the subsequent discussion, we assume Mgt is wi(t) = gy (0, (21)
differentially flat, with y as the flat outputs. Consider the o _ _
following m¢-th order linear system: and initial statesjo, which are given by
n n % . L% 14 *
i 019 =01 | 4 0 o =y"(0); no =7(0);-- 3 mg” =y (0).  (22)
d : — . . . . AAal L, .
Yiat = 4 At (4:71) Il IR (4:71) + | 1| % Further, observing thatd, B) is in the controller canonical
PN R I R 9 form, we infer the existence of:
mn

g=n (i) a feedback gaink € R™*™ such that(A + BK) is
_ . R _ Hurwitz, and

wheren € R™, w € R™ is the input, andj € R™ is the (i) a symmetric positive definite matri® € R™*"¢ that
output. _Observe that, by construction, any output trajgcto satisfies the Lyapunov equation
of Xqa¢ IS at least(¢+ 1) times differentiable. Therefore, any o o
§(t) that is an output trajectory dfq,: (regardless of the (A+ BK)TP+ P(A+ BK) <0. (23)
inputw(t)) is also an output trajectory &f;,, and vice versa. ) .
Furthermore, the corresponding state and input trajetari Ve then form alinear feedback loop aroungh. by defining
Yo can be computed from (19) - (20). — W+ K 24
For brevity, let us rewrite the state equationXf,; as w=w i (24)

dg - . The closed-loop system is then given by

— = Ag+ Bw, ¢ e R™, w e R™, L R

e Ya: (A+ BK)q+ Bw*. (25)

§g=Cq, g €R™.
Notation 3: We denote the state trajectory Bf, starting

_ Notation 1: We denote the output trajectory Bha: Start-  from the initial statey, by ¢(t; ¢0). The corresponding output
ing from an initial statey, € R™* under an input signab(t) trajectory is denoted by(t; go).

by 4(t; go, w). Proposition 2: Define the quadratic functiop : R™ x
~ Notation 2: Given thatq = [n" 7" —on@OTT ) we e _p>R+ as g »
introduce the following shorthand notation:
A T
_ _ . , = — P(qn — .
=(q) 22,5, 0O, o(q1,92) = (1 — q2)" P(e1 — q2)

Y(q,4) 2 Y(n, 0, ,n). Then, for any(qi, g2) € R™ x R™, ¢(q(t;q1), q(t; g2)) is
Definition 1 (valid flat trajectory):Consider the Output Monotonically nonincreasing with time.
Safety control problem as given in Section Ill. An output  Proof: This is straightforward from the fact thaf
trajectory of Saa, §(t;qo,w), is said to be a valid flat defines a quadratic Lyapunov function for the closed-loop

trajectory for an initial state:y € Init if systemX.;. Equivalently,¢ defines a control autobisimula-
(i) Z(q0) = z0, and tion function for the linear systerfig,; (see [10]). [ |

(i) the trajectory §(t;qo,w) enters GoalOutput before Eropo_sition 2 establishes trajectory robustness fo_rﬂtte st
time ¢ = T,.x, and remains safe (i.e. does not entefrajectories o Its consequence on the output trajectories

UnsafeOutput) until it enters GoalOutput. is given as follows.



Proposition 3: For any(q, ¢2) € R™ x R™,

(@t 1) — 9t 02))" CPCT (5t q1) — §(t q2)) < ¢(Q1(,2q62))-
Proof: Equation (26) can be rewritten as
(q(t;q1) — qlt;q2))" CTCPCTC (q(t;q1) — a(t; 2)) < (g1, g2)-
S

Because of the structure 6f, we have
cTepcTC < P, (27)
Therefore, using Proposition 2 we can derive

& < d(q(t; 1), q(t;g2)) < dq1, q2)-

Observing thatCPCT is a symmetric positive definite
matrix, we can define a norm iR™ as follows.

lyll,, £ \/yTCPCTy. (28)
Similarly, we define a norm iR as follows.
lally = V4" Pg. (29)

Human
Player(s)
Game
Interface

Al
. Y1 Valid flat
Cr— .
=1 | trajectory

T

1

1

1

, u* =T(q,q)

1

1

1

| s { o0 o] v
[ y = h(z) trajectory

Fig. 4: A block diagram of the controller. The dash line
connecting the game interface with;, indicates that the
game is a computer simulation &f,.

Thereforey(t; ¢¢) is a valid output trajectory. [ ]
The controller that confers trajectory robustnesgpand
therefore can be used in trajectory based controller sgigthe

is shown in Figure 4.

B. Example: 2D Control of a Quadrotor

In the following, we establish the trajectory robustness fo We consider the control problem related to the motion

Yio. Recall thaty*(t) is a valid output trajectory correspond-

ing to a state trajectory of;;, with initial stateszg € Init.

Theorem 4:Denote the output trajectory of;, starting
from an initial stater, € R™ under an input signak(t) by
y(t; zo, u). Suppose that there existsia> 0 such that any
output trajectoryy(t) satisfying

sup [ly(t) =y (Ol < 0 (30)

is also a valid output trajectory. Also, suppose that there
exists ad, > 0 such that the following two conditions are

satisfied.

(C1) Z(-) is continuously differentiable inB,(qo, d2),
i.e. the||-||, ball of radiusd, aroundg, as defined
in (22).
The Jacobiar‘% has full row rank (equals) in
B¢(Q07 52)

Then, there exists a neighborhood aroupd\ (z), such
that for any¢ € N (zo), the following are true:
(i) There exists a € R™ such that=(q¢) = £.

(C2)

of a quadrotor on a vertical plane. This two-dimensional
guadrotor is idealized as having two propellers, one on the
front of the body, the other on the rear. These propellers
are able to induce a positive force along the propeller axis,
which we shall choose as our first controller inpyt and a
rotational motion in the vertical plane, which we shall ckeo
as our second controller input. In this system gravity is
acting along the negativg-axis, and a force is induced by
a constant windv = [wx, wy|? with friction coefficient.

We denote the horizontal and vertical positions of the
qguadrotor withX andY’, respectively. Its orientation w.r.t.
the horizontal axis is represented by the arfgl&éhe system
dynamics are given by Equations (32) - (34).

X:u(wX—X)—Esinﬁ (32)
m

Y:u(wy—Y)—g—l-%cosG (33)

0 = us (34)

Here m denotes the object's mass. We define the XY

(i) y(# &, ug) is a valid output trajectory, with the input coordinate of the object's center of mass as the system’s

signalu; defined by

ug = Y(q(t; qe), q(t; ge))-
Proof: Define§ £ min(dy,d2). Then:

(31)

(i) According to the Implicit Function Theorem, conditions

output. This system is differentially flat with a set of flat
outputs given by

y=[m,m)’ =X, Y]".

Cl and C2 imply the existence of a neighborhood around |t can be verified that given a trajectory of clag$ in the

xo, N(z0), such that for any € N(zo), there is age €
By(qo,0) satisfying=(qge) = &.

(ii) By definition of differential flatness, applying the iap
signalug to ¥, with initial state¢ € N (z) yields the output

flat output space, a unique set of inputs can be determined
to generate the trajectory for a system with the same set of
initial conditions.

As in the feedback linearization case, a MATLAB graphi-

trajectory y(t; g¢). Further, from Proposition 3 we can seecg| user interface was created to obtain the nominal trajgct

that

ly(t;ae) —y* @I, = lly(t; q¢) — y(E qo)ll,,
< lge — qoll £ 6 < 01.

from a human. Figure 5 shows the simulated result of
this controller. The size of the robustess tube was chosen
such that it does not intersect with UnsafeOutput, and ends
entirely within GoalOutput.
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Fig. 5: Simulation of quadrotor system. All trajectories [4]
generated for a different initial position within the boumgl
circle will stay within the robustness tube.

V. CONCLUSION AND DISCUSSION

(5]

We present some theoretical results for trajectory baself’
safety controller synthesis for two classes of nonlinear dy
namical systems, i.e. feedback linearizable systems dnd dil’]
ferentially flat systems. These results are the generalizat
of our earlier results for affine linear systems, which is[g]
reported in [10]. We show that by using some appropriate
transformations, we can apply the results for affine Iinear[g]
systems to the nonlinear systems.

The key step in trajectory based safety controller synshes[ilo]
is achieving trajectory robustness, i.e. the ability toagatize
the validity of a nominal execution trajectory to other ¢@j
tories in its compact neighborhood. With this propertysit i [11]
possible to solve a safety controller synthesis problemgusi
the knowledge of finitely many valid execution trajectories[12]
In this paper, we demonstrate that we can obtain these valid
trajectories from humans, through a computer game that
simulates the dynamical system. Related to this approach,
two issues are noteworthy.

First, computer games are not the only possible source %f"]
valid trajectories. For example, techniques from moticamnpl
ning can be applicable, too. See, for example, the approalfi!
taken in [9]. In fact, motion planning has been extensively
used for controlling differentially flat systems [18].

Second, for controller synthesis, the use of human inpu%ﬁl
has been previously studied in the context of machine
learning. For examplegpprenticeship learnin@py Abbeel et
al. (see [24] and related references) builds a controller th(17]
learns about task specifications from human demonstrations
Our approach is fundamentally different from this apprgach
because (i) we formally guarantee safety, and (ii) in our aﬂl
proach, it is possible to terminate the "learning” process (|20
obtaining human inputs) once the valid trajectories a@hiev2i]
complete coverage of thinit set. Beyond this point, more [22]
human generated trajectories are not required, as far as the
safety control problem is concerned. Nevertheless, faréut [23]
work, we hypothesize that our approach can benefit from the
learning based approach. Machine learning can be appligd;
on the human generated trajectories to further generate mor
valid trajectories. This mechanism can potentially speed u

the coverage of thénit set.
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