
Safety Controller Synthesis using Human Generated Trajectories: Nonlinear
Dynamics with Feedback Linearization and Differential Flatness

A. Agung Julius and Andrew K. Winn

Abstract— The aim of the safety controller synthesis problem
is to synthesize a feedback controller that results in closed-
loop trajectories that meet certain criteria, namely, the state or
output trajectories terminate in a Goal set without entering an
Unsafe set. We propose a formal method for synthesizing such
a controller using finitely many human generated trajectories.
The main theoretical idea behind our results is the concept of
trajectory robustness, which is established using the theory of
approximate bisimulation. Approximate bisimulation has been
used to establish robustness (in theL∞ sense) of execution
trajectories of dynamical systems and hybrid systems, resulting
in trajectory-based safety verification procedures.

The work reported in this paper builds on our earlier work
where the dynamics of the system is assumed to be affine linear.
We extend the existing results to special classes of nonlinear
dynamical systems, feedback linearizable and differentially flat
systems. For both cases, we present some examples where it
is possible to synthesize the controller using human generated
trajectories, which are obtained through interactive computer
programs with graphical interface (computer games).

Keywords: controller synthesis, trajectory based, feedback
linearization, differential flatness.

I. I NTRODUCTION

The problem of safety controller synthesis for hybrid
systems has received a lot of attention from the controls
community. This problem is concerned with the construction
of control laws/algorithms for systems with input that result
in safe executions. There have been several approaches
developed to address this problem. Most of these approaches
are based on the concept of safety/reachability analysis. For
example, the optimal control method in [1], [2], [3] and
the simulation based method in [4] directly characterize the
influence of the control input in the reachability formula-
tion. The predicate abstraction technique for systems with
piecewise affine dynamics in polytope sets leads to a control
procedure based on the transversality of the vector field
on the facets of the polytopes [5], [6]. The technique for
discrete-time systems presented in [7] utilizes partitioning of
the state space by polygonal approximation of the reachable
set. For continuous dynamical systems, the theoretical results
presented in [8] discuss some sufficient conditions for the
existence of a controlled system trajectory that enters a
prescribed Goal set.

The results that are presented in this paper follows a
different approach from the above mentioned, i.e. trajectory-
based approach. The key concept here is the assessment
of safety/reachability based on the execution trajectories of
the system, or the simulations thereof. To generalize the
safety property of a simulated execution trajectory to a
compact neighborhood around it, we use the concept of

Agung Julius and Andrew Winn are with the Department of Electrical,
Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy,
NY 12180, Email:agung@ecse.rpi.edu,winna@rpi.edu.

trajectory robustness [9], [10] or incremental stability [11],
[12]. Roughly speaking, these properties can provide us with
a bound on the divergence of the trajectories (i.e. their
relative distances inL∞). The main conceptual tool that
is used in this approach, theapproximate bisimulation, was
developed by Girard and Pappas [13], and has been used
for trajectory based analysis of hybrid systems in [14], [15],
[16].

The approach in [11], [12] and our approach differ in the
way trajectory robustness is used in controller synthesis.In
[11], [12], the notion of approximate bisimulation is used to
establish a quantization of the continuous state space, which
can result in a countable transition system approximation
of the original dynamics. In our approach, the controller
is synthesized using finitely many valid human-generated
trajectories [10]. Also, we do not require the open loop
dynamics to have incremental stability property. Instead,
a part of the controller synthesis procedure is devoted to
establishing this property. In a similar spirit, a more recent
work by Zamani and Tabuada [17] also drops the incremental
stability requirement and aims to recover it by using back-
stepping controller design.

In our previous work [10], we assume that the under-
lying dynamics of the hybrid system is affine linear. The
contribution of the current paper is in the extension of
the trajectory-based controller synthesis idea to a class of
nonlinear dynamics,feedback linearizableand differentially
flat systems [18], [19].

II. CONTROLLER SYNTHESIS USING HUMAN

GENERATED TRAJECTORIES

In this section, we review the idea of using human
generated trajectories in controller synthesis (see e.g. [10]).
Consider a dynamical system with input

Σinp :
dx

dt
= f(x, u), x ∈ R

n, u ∈ U ⊂ R
m. (1)

where the functionf(x, u) is locally Lipschitz in x and
continuous inu. Suppose that there is a given compact set of
initial statesInit ⊂ R

n, where the state is initiated att = 0,
i.e. x(0) ∈ Init. Also, we assume that there is a set of goal
states, Goal⊂ R

n, and a set of unsafe states Unsafe⊂ R
n.

As usual, a trajectory is deemed unsafe if it enters the unsafe
set.

The safety control problem can be formulated as follows
[10]:

Problem 1 (State Safety):Design a feedback control law
u = k(x) such that for any initial statex0 ∈ Init, the
trajectory of the closed loop system enters Goal before time
t = Tmax, and remains safe until it enters Goal.

Hereafter, any trajectory that satisfies the conditions above
is called avalid trajectory. Notice that although the safety
control problem as defined above is not formulated for hybrid
systems, we have shown that a similar problem for hybrid
systems can be reduced to the above format (see [9], [10]).

We establish trajectory robustness through a Lyapunov like
function called control autobisimulation function (CAF) [10].
Without repeating the presentation in [10], we can summarize
CAF as follows. A CAF is a nonnegative functionψ : Rn ×
R

n → R+ such that there exists a feedback control law

u = k(x) (2)

that provides trajectory robustness to the closed loop system
(1) - (2). That is, if we denote the solution trajectory of
(1) - (2) with initial conditionx(0) = x0 asxk(t;x0), then
ψ (xk(t;x0), xk(t;x

′
0)) is a nonincreasing function of time,

for any pairx0, x′0 ∈ R
n. Any feedback law in the form of

(2) that satisfies the condition above is called anadmissible
feedback law.

In [10], we have shown that for systems with linear affine
dynamics, the feedback law can assume the following form:

u(t) = Kx(t) + v(t), (3)

whereK is a constant gain andv(t) can be any (integrable)
trajectory. The design procedure forK follows the classical
feedback control design for stabilization of linear systems.

For any given initial condition, we use a computer game
that simulates the system’s dynamics to obtainv(t) that re-
sults in a valid execution trajectory. The trajectory robustness
conferred by CAF enables us to to guarantee formally the
validity of the control law for a neighborhood around that
initial condition. By repeating this procedure for a finite set
of initial conditions, we can cover a compact set of initial
conditions. This approach can thus be regarded as a highly
parallelizable and lightweight (no quantization of state space
is required) complement to the more formal approaches, such
as [11], [12].

III. F EEDBACK L INEARIZABLE SYSTEMS

We extend the idea of safety controller synthesis using
human generated trajectories to systems with nonlinear dy-
namics. Consider a dynamical system with input and output

Σio :

{
dx
dt

= f(x) + g(x)u, x ∈ R
n, u ∈ R

m,
y = h(x), y ∈ R

m.
(4)

We assume thatf(·) is Lipschitz andh(·) is a smooth
function. Hereafter, we use the notationfi(·) and hi(·) to
denote the i-th element of the vector valued functionsf(·)
andh(·), respectively. For the matrix valued functiong(·),
we usegi(·) to denote its i-th row.

We modify the State Safety control problem in Section
II to introduce the Output Safety control problem. First, we
define a set of goal outputs, GoalOutput⊂ R

m, and a set of
unsafe outputs UnsafeOutput⊂ R

m. An output trajectory is
deemed unsafe if it enters UnsafeOutput. Then, the problem
can be formulated as:

Problem 2 (Output Safety):Design a feedback control
law u = k(x) such that for any initial statex0 ∈ Init, the
output trajectory of the closed loop system enters GoalOutput

xu
+

Game
Interface

Human
Player(s)

v
ẋ = f(x) + g(x)u h(·)

y

κ(·)

λ(x) · w

w

feedback linearization

state
transf.

x̂
K

+

offline

Fig. 1: A block diagram illustrating the concept of controller
synthesis using human generated trajectories. The nonlinear
dynamics is first transformed to a linear one via feedback
linearization. Then, results from [10] can be applied.

before time t = Tmax, and remains safe until it enters
GoalOutput.

Thus, in this problem definition, the validity of an execu-
tion trajectory is determined by the output trajectory, andnot
by state trajectory as in [10] (see Section II).

A. Design Procedure: Theory

Feedback linearization is a classical controller design tech-
nique for nonlinear systems (see e.g. [20], [21]). A special
case of feedback linearization that is applicable in the Output
Safety problem above is theinput-output linearization[20].
The idea is to introduce a new control inputw(t) and design
a (nonlinear) feedback law

u(t) = κ(x) + λ(x)w(t), w(t) ∈ R
m, (5)

such that the new system, with inputw(t) and outputy(t),
is a linear system. The design procedure forκ(x) andλ(x)
is given in Nonlinear Control textbooks, such as [21].

By using the feedback law (5), we obtain a linear input-
output system in the chain integrator form [20].

Σlin :






dr1

dtr1
y1

...
drm

dtrm
ym




 =






w1(t)
...

wm(t)




 , (6)

wherer1, r2, · · · , rm are therelative degreesof the system.
Furthermore, a state space realization ofΣlin can be obtained
through some state transformation fromx.

SinceΣlin is linear, we can further apply our earlier results
on the controller synthesis technique for linear systems,
which was reported in [10]. The overall block diagram is
shown in Figure 1.

Remark 1 (zero dynamics):In general, we will always
have that [21]

r1 + r2 + · · ·+ rm ≤ n. (7)

When this inequality is strict, there is a part of the dynamics
of Σio that is rendered unobservable by the linearizing

a

b

F1

−F1

F2

−F2

θ

X

Y

Fig. 2: The rigid object with two jet thrusters. The circle
represents the object’s center of mass. The control inputs
are represented byF1 andF2.

feedback. This is called thezero dynamicsof the system.
In this paper, we ignore the possibility of unstable zero
dynamics since it does not appear on the system output, and
hence is irrelevant to the safety control criteria.

B. Example: Planar Manipulation of a Rigid Object

Consider the control problem related to manipulating a
rigid object on a plane using a pair of jet thrusters as control
inputs. The axis of the jet thrusts are off-centered (i.e. they do
not pass through the object’s center of mass). See Figure 2 for
an illustration. Therefore, the control inputs will induceboth
translational and rotational motions on the object. Moreover,
we also assume that the object is subject to an external
force field that essentially renders the dynamics unstable.
The system’s dynamics is given by Equations (8) - (10).

Ẍ = −F1 sin θ + F2 cos θ + 1− x+ 0.1Ẋ, (8)

Ÿ = F1 cos θ + F2 sin θ + 1− y + 0.1Ẏ , (9)

θ̈ = F1
a

I
− F2

b

I
. (10)

HereI denotes the object’s moment of inertia. We define the
XY coordinate of the object’s center of mass as the system’s
output. In state space form, the dynamics is given by

d

dt





x1
x2
x3
x4
x5
x6



 =





x2
1−x1+0.1x2

x4
1−x3+0.1x4

x6
0





︸ ︷︷ ︸

,f(x)

+






0 0
− sin x5 cos x5

0 0
cosx5 sin x5

0 0
a

I
− b

I






︸ ︷︷ ︸

,g(x)

[
F1

F2

]
, (11)

y = h(x) ,

[
x1
x3

]

. (12)

Observing that
[
ÿ1

ÿ2

]

=
[
1−x1+0.1x2
1−x3+0.1x4

]
+
[
− sin x5 cosx5

cosx5 sin x5

] [
F1

F2

]
, (13)

we conclude that the vector relative degree of the system
given by (11) - (12) is{2, 2}.

The safety control that we want to solve is a nonlinear
version of the example presented in [10]. It can formulated
as follows. Suppose that we are to steer the system from the
initial set:

Init =







x ∈ R
6 | |x1| ≤ 0.1, |x3| ≤ 0.1,






x2
x4
x5
x6




 =






0
1
0
0












.

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5
TIME =4.29sec

Init

UnsafeOutput

GoalOutput

Output Trajectory

Fig. 3: Screen capture from a game play showing the
manipulated object and all sets of interest.
The sets of unsafe and goal outputs are given by

UnsafeOutput = {y ∈ R
2 |

∥
∥y − [1, 1]T

∥
∥ ≤ 0.3},

GoalOutput = {y ∈ R
2 |

∥
∥y − [2, 0]T

∥
∥ ≤ 0.1}.

Additionally, we also require that the control inputs are
bounded in magnitude, i.e.

∥
∥
[
F1(t) F2(t)

]∥
∥ ≤ 2. (14)

To solve this problem, we can define a linearizing input
transformation as follows:

[
w1(t)
w2(t)

]

,
[
− sin x5 cosx5

cosx5 sin x5

] [F1(t)
F2(t)

]

. (15)

Note that this formulation is a little bit different from
the outlined procedure in the previous subsection. We can
observe that the constraint in (14) is equivalent to

∥
∥
[
w1(t) w2(t)

]∥
∥ ≤ 2. (16)

Using the linearization approach above, we transform the
nonlinear system into a linear affine one

d

dt

[
x̂1

x̂2

x̂3

x̂4

]

=

[
x̂2

1−x̂1+0.1x̂2

x̂4

1−x̂3+0.1x̂4

]

+

[
0
w1
0
w2

]

, (17)

[y1
y2] =

[
x̂1

x̂3

]
. (18)

We can then proceed to design a controller for the linear
system using the method explained in detail in our earlier
publication [10], which cannot be included here due to space
constraint.

IV. D IFFERENTIALLY FLAT SYSTEMS

Differential flatness is a major tool in nonlinear controller
design [18], [19]. The concept was first coined by Fliess
et al. in [22], and since then there have been thousands of
papers that use it in controller design. In this section, we
outline a controller synthesis technique for the Output Safety
control problem for differentially flat nonlinear systems.
Our development in this paper follows the work of van
Nieuwstadt and Murray [23], who used differential flatness
for trajectory generation in motion planning for constrained
mechanical systems.

A. Design Procedure: Theory

Any nonlinear system

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

m,

is said to bedifferentially flat if it has a set of flat outputs

y = h(x, u, u̇, · · · , u(p)), y ∈ R
m,

for some integerp. The outputsy = (y1, . . . , ym) are flat
outputsif x andu can be written as functions ofy and its
time derivatives,

x = Ξ(y, ẏ, . . . , y(ℓ)), (19)

u = Υ(y, ẏ, . . . , y(ℓ+1)), (20)

for some integerℓ, and(y, ẏ, . . . , y(ℓ)) are not constrained to
satisfy a differential equation by themselves. In other words,
any sufficiently smooth trajectoryy is admissible.

The concept of differential flatness is tightly related to
feedback linearization. In fact, we can show that ifΣio in
(4) is feedback linearizable and it does not have any zero
dynamics, then it is differentially flat andy = (y1, . . . , ym)
are flat outputs [18], [23].

In the subsequent discussion, we assume thatΣio is
differentially flat, with y as the flat outputs. Consider the
following mℓ-th order linear system:

Σflat =







d
dt







η
η̇

...
η(ℓ−1)

η(ℓ)






=






0 I 0 ··· 0
0 0 I ··· 0
...

...
...

...
...

0 0 ··· 0 I
0 0 ··· 0 0












η
η̇

...
η(ℓ−1)

η(ℓ)






+





0
0
...
0
I



ω,

ŷ = η,

whereη ∈ R
m, ω ∈ R

m is the input, and̂y ∈ R
m is the

output. Observe that, by construction, any output trajectory
of Σflat is at least(ℓ+1) times differentiable. Therefore, any
ŷ(t) that is an output trajectory ofΣflat (regardless of the
inputω(t)) is also an output trajectory ofΣio, and vice versa.
Furthermore, the corresponding state and input trajectories of
Σio can be computed from (19) - (20).

For brevity, let us rewrite the state equation ofΣflat as

dq

dt
= Âq + B̂ω, q ∈ R

mℓ, ω ∈ R
m,

ŷ = Ĉq, ŷ ∈ R
m.

Notation 1: We denote the output trajectory ofΣflat start-
ing from an initial stateq0 ∈ R

mℓ under an input signalω(t)
by ŷ(t; q0, ω).

Notation 2: Given that q = [ηT η̇T · · · η(ℓ)T]T , we
introduce the following shorthand notation:

Ξ(q) , Ξ(η, η̇, · · · , η(ℓ)),

Υ(q, q̇) , Υ(η, η̇, · · · , η(ℓ+1)).
Definition 1 (valid flat trajectory):Consider the Output

Safety control problem as given in Section III. An output
trajectory of Σflat, ŷ(t; q0, ω), is said to be a valid flat
trajectory for an initial statex0 ∈ Init if
(i) Ξ(q0) = x0, and
(ii) the trajectory ŷ(t; q0, ω) enters GoalOutput before
time t = Tmax, and remains safe (i.e. does not enter
UnsafeOutput) until it enters GoalOutput.

Therefore, a valid flat trajectory for an initial statex0 ∈
Init is mapped by (19) to a valid trajectory ofΣio, whose
states originate atx0. Further, the control inputu(t) that
achieves this valid trajectory can be found by using (20).
These facts are crucial in our controller synthesis technique,
since they essentially allow us to design a feedback control
law that establishes output trajectory robustness forΣflat

and then translate the result toΣio via (20). SinceΣflat is
a controllable linear system, establishing output trajectory
robustness is straightforward, and for that we can use linear
feedback gain according to, for example, the results reported
in [10]. The procedure is further explained as follows.

Suppose that for an initial statex0 ∈ Init we obtain a
valid trajectory forΣio, which we denote byy∗(t). This can
be obtained, for example, from a human playing a computer
game that simulatesΣio. We will demonstrate that by having
the knowledge ofy∗(t), we can find the appropriate control
input u(t;x′0) that results in a valid trajectory for any initial
statex′0 in the neighborhood ofx0.

First of all, we notice thaty∗(t) is also an output trajectory
of Σflat, i.e. the one corresponding to the input signal

ω∗(t) =
dℓ+1

dtℓ+1
y∗(t), (21)

and initial statesq0, which are given by

η0 = y∗(0); η̇0 = ẏ∗(0); · · · ; η
(ℓ)
0 = y∗(ℓ)(0). (22)

Further, observing that(Â, B̂) is in the controller canonical
form, we infer the existence of:
(i) a feedback gainK̂ ∈ R

m×mℓ such that(Â + B̂K̂) is
Hurwitz, and
(ii) a symmetric positive definite matrixP ∈ R

mℓ×mℓ that
satisfies the Lyapunov equation

(Â+ B̂K̂)TP + P (Â+ B̂K̂) � 0. (23)

We then form a linear feedback loop aroundΣflat by defining

ω = ω∗ + K̂q. (24)

The closed-loop system is then given by

Σcl : (Â+ B̂K̂)q + B̂ω∗. (25)

Notation 3: We denote the state trajectory ofΣcl starting
from the initial stateq0 by q(t; q0). The corresponding output
trajectory is denoted bŷy(t; q0).

Proposition 2: Define the quadratic functionφ : Rmℓ ×
R

mℓ → R+ as

φ(q1, q2) , (q1 − q2)
TP (q1 − q2).

Then, for any(q1, q2) ∈ R
mℓ × R

mℓ, φ(q(t; q1), q(t; q2)) is
monotonically nonincreasing with time.

Proof: This is straightforward from the fact thatP
defines a quadratic Lyapunov function for the closed-loop
systemΣcl. Equivalently,φ defines a control autobisimula-
tion function for the linear systemΣflat (see [10]).

Proposition 2 establishes trajectory robustness for the state
trajectories ofΣcl. Its consequence on the output trajectories
is given as follows.

Proposition 3: For any(q1, q2) ∈ R
mℓ × R

mℓ,

(ŷ(t; q1)− ŷ(t; q2))
T
ĈP ĈT (ŷ(t; q1)− ŷ(t; q2)) ≤ φ(q1, q2).

(26)
Proof: Equation (26) can be rewritten as

(q(t; q1)− q(t; q2))
T
Ĉ

T
ĈP Ĉ

T
Ĉ (q(t; q1)− q(t; q2))

︸ ︷︷ ︸

♠

≤ φ(q1, q2).

Because of the structure of̂C, we have

ĈT ĈP ĈT Ĉ � P. (27)

Therefore, using Proposition 2 we can derive

♠ ≤ φ(q(t; q1), q(t; q2)) ≤ φ(q1, q2).

Observing thatĈP ĈT is a symmetric positive definite
matrix, we can define a norm inRm as follows.

‖y‖η ,

√

yT ĈP ĈT y. (28)

Similarly, we define a norm inRmℓ as follows.

‖q‖φ ,
√

qTPq. (29)

In the following, we establish the trajectory robustness for
Σio. Recall thaty∗(t) is a valid output trajectory correspond-
ing to a state trajectory ofΣio with initial statesx0 ∈ Init.

Theorem 4:Denote the output trajectory ofΣio starting
from an initial statex0 ∈ R

n under an input signalu(t) by
y(t;x0, u). Suppose that there exists aδ1 > 0 such that any
output trajectoryy(t) satisfying

sup
t

‖y(t)− y∗(t)‖η < δ1 (30)

is also a valid output trajectory. Also, suppose that there
exists aδ2 > 0 such that the following two conditions are
satisfied.

(C1) Ξ(·) is continuously differentiable inBφ(q0, δ2),
i.e. the‖·‖φ ball of radiusδ2 aroundq0 as defined
in (22).

(C2) The Jacobian∂Ξ
∂q

has full row rank (equalsn) in
Bφ(q0, δ2).

Then, there exists a neighborhood aroundx0, N (x0), such
that for anyξ ∈ N (x0), the following are true:
(i) There exists aqξ ∈ R

mℓ such thatΞ(qξ) = ξ.
(ii) y(t; ξ, u∗ξ) is a valid output trajectory, with the input
signalu∗ξ defined by

u∗ξ = Υ(q(t; qξ), q̇(t; qξ)). (31)
Proof: Defineδ , min(δ1, δ2). Then:

(i) According to the Implicit Function Theorem, conditions
C1 and C2 imply the existence of a neighborhood around
x0, N (x0), such that for anyξ ∈ N (x0), there is aqξ ∈
Bφ(q0, δ) satisfyingΞ(qξ) = ξ.
(ii) By definition of differential flatness, applying the input
signalu∗ξ toΣio with initial stateξ ∈ N (x0) yields the output
trajectoryy(t; qξ). Further, from Proposition 3 we can see
that

‖y(t; qξ)− y∗(t)‖
η
= ‖y(t; qξ)− y(t; q0)‖η ,

≤ ‖qξ − q0‖ ≤ δ ≤ δ1.

Game
Interface

Human
Player(s)

ω∗

dq

dt
= Âq + B̂ω

ω q

K̂

Ĉ
ŷ

Σflat

Valid flat
trajectory

u∗ y
Valid

trajectory
Σio :

{

dx
dt

= f(x) + g(x)u,

y = h(x).

u∗ = Υ(q, q̇)

Fig. 4: A block diagram of the controller. The dash line
connecting the game interface withΣio indicates that the
game is a computer simulation ofΣio.

Thereforey(t; qξ) is a valid output trajectory.
The controller that confers trajectory robustness toΣio and

therefore can be used in trajectory based controller synthesis
is shown in Figure 4.

B. Example: 2D Control of a Quadrotor

We consider the control problem related to the motion
of a quadrotor on a vertical plane. This two-dimensional
quadrotor is idealized as having two propellers, one on the
front of the body, the other on the rear. These propellers
are able to induce a positive force along the propeller axis,
which we shall choose as our first controller inputu1, and a
rotational motion in the vertical plane, which we shall choose
as our second controller inputu2. In this system gravity is
acting along the negativey-axis, and a force is induced by
a constant windw = [wX , wY]

T with friction coefficientµ.
We denote the horizontal and vertical positions of the

quadrotor withX and Y , respectively. Its orientation w.r.t.
the horizontal axis is represented by the angleθ. The system
dynamics are given by Equations (32) - (34).

Ẍ = µ(wX − Ẋ)−
u1

m
sin θ (32)

Ÿ = µ(wY − Ẏ)− g +
u1

m
cos θ (33)

θ̈ = u2 (34)

Here m denotes the object’s mass. We define the XY
coordinate of the object’s center of mass as the system’s
output. This system is differentially flat with a set of flat
outputs given by

y = [η1, η2]
T = [X,Y]T .

It can be verified that given a trajectory of classC4 in the
flat output space, a unique set of inputs can be determined
to generate the trajectory for a system with the same set of
initial conditions.

As in the feedback linearization case, a MATLAB graphi-
cal user interface was created to obtain the nominal trajectory
from a human. Figure 5 shows the simulated result of
this controller. The size of the robustess tube was chosen
such that it does not intersect with UnsafeOutput, and ends
entirely within GoalOutput.

Fig. 5: Simulation of quadrotor system. All trajectories
generated for a different initial position within the bounding
circle will stay within the robustness tube.

V. CONCLUSION AND DISCUSSION

We present some theoretical results for trajectory based
safety controller synthesis for two classes of nonlinear dy-
namical systems, i.e. feedback linearizable systems and dif-
ferentially flat systems. These results are the generalization
of our earlier results for affine linear systems, which is
reported in [10]. We show that by using some appropriate
transformations, we can apply the results for affine linear
systems to the nonlinear systems.

The key step in trajectory based safety controller synthesis
is achieving trajectory robustness, i.e. the ability to generalize
the validity of a nominal execution trajectory to other trajec-
tories in its compact neighborhood. With this property, it is
possible to solve a safety controller synthesis problem using
the knowledge of finitely many valid execution trajectories.
In this paper, we demonstrate that we can obtain these valid
trajectories from humans, through a computer game that
simulates the dynamical system. Related to this approach,
two issues are noteworthy.

First, computer games are not the only possible source of
valid trajectories. For example, techniques from motion plan-
ning can be applicable, too. See, for example, the approach
taken in [9]. In fact, motion planning has been extensively
used for controlling differentially flat systems [18].

Second, for controller synthesis, the use of human inputs
has been previously studied in the context of machine
learning. For example,apprenticeship learningby Abbeel et
al. (see [24] and related references) builds a controller that
learns about task specifications from human demonstrations.
Our approach is fundamentally different from this approach,
because (i) we formally guarantee safety, and (ii) in our ap-
proach, it is possible to terminate the ”learning” process (i.e.
obtaining human inputs) once the valid trajectories achieve
complete coverage of theInit set. Beyond this point, more
human generated trajectories are not required, as far as the
safety control problem is concerned. Nevertheless, for future
work, we hypothesize that our approach can benefit from the
learning based approach. Machine learning can be applied
on the human generated trajectories to further generate more
valid trajectories. This mechanism can potentially speed up

the coverage of theInit set.

ACKNOWLEDGEMENTS

The research reported in this paper is partially supported
by the NSF through grant CAREER CNS-0953976 and the
Department of Defense SMART Scholarship.

REFERENCES

[1] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,”IEEE Trans. Automatic Control, vol. 50, pp. 947 – 957, 2005.

[2] A. B. Kurzhanski, I. M. Mitchell, and P. Varaiya, “Optimization tech-
niques for state-constrained control and obstacle problems,” Journal of
Optimization Theory and Applications, vol. 128, no. 3, pp. 499–521,
2006.

[3] K. Margellos and J. Lygeros, “Hamilton-Jacobi formulation for reach-
avoid differential games,”IEEE Trans. Automatic Control, vol. 56,
no. 8, pp. 1849–1861, 2011.

[4] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg, “On systematic
simulation of open continuous systems,” inHybrid Systems: Computa-
tion and Control, ser. LNCS, vol. 2623. Springer, 2003, pp. 283–297.

[5] C. Belta and L. Habets, “Controlling a class of nonlinearsystems
on rectangles,”IEEE Trans. Automatic Control, vol. 51, no. 11, pp.
1749–1759, 2006.

[6] L. Habets, P. J. Collins, and J. H. van Schuppen, “Reachability and
control synthesis for piecewise-affine hybrid systems on simplices,”
IEEE Trans. Automatic Control, vol. 51, no. 6, pp. 938–948, 2006.

[7] G. Reissig, “Computation of discrete abstractions of arbitrary memory
span for nonlinear sampled systems,” inHybrid Systems: Computation
and Control, ser. LNCS, vol. 5469. Springer, 2009, pp. 306–320.

[8] F. Clarke and P. R. Wolenski, “Control of systems to sets and their
interiors,” Journal of Optimization Theory and Applications, vol. 88,
pp. 3–23, 1994.

[9] A. A. Julius, “Trajectory-based controller design for hybrid systems
with affine continuous dynamics,” inProc. IEEE Conf. Automation
Science and Engineering, Toronto, Canada, 2010, pp. 1007–1012.

[10] A. A. Julius and S. Afshari, “Using computer games for hybrid systems
controller synthesis,” inProc. 49th IEEE Conf. Decision and Control,
Atlanta, Georgia, 2010, pp. 5887–5892.

[11] P. Tabuada, “An approximate simulation approach to symbolic con-
trol,” IEEE Trans. Automatic Control, vol. 53, no. 6, pp. 1406–1418,
2008.

[12] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,”Automatica, vol. 44, no. 10, pp.
2508–2516, 2008.

[13] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,”IEEE Trans. Automatic Control, vol. 52, no. 5,
pp. 782–798, 2007.

[14] ——, “Verification using simulation,” inHybrid Systems: Computation
and Control, ser. LNCS, vol. 3927. Springer Verlag, 2006, pp. 272–
286.

[15] A. A. Julius, G. Fainekos, M. Anand, I. Lee, and G. J. Pappas, “Robust
test generation and coverage for hybrid systems,” inHybrid Systems:
Computation and Control, ser. LNCS, vol. 4416. Springer Verlag,
2007, pp. 329–342.

[16] F. Lerda, J. Kapinski, E. M. Clarke, and B. H. Krogh, “Verification
of supervisory control software using state proximity and merging,”
in Hybrid Systems: Computation and Control, ser. LNCS, vol. 4981,
2008, pp. 344–357.

[17] M. Zamani and P. Tabuada, “Towards backstepping designfor incre-
mental stability,”IEEE Trans. Automatic Control, vol. 56, no. 9, 2011.

[18] H. Sira-Ramirez and S. Agrawal,Differentially Flat Systems. Marcel
Dekker Inc., 2004.

[19] J. Levine, Analysis and Control of Nonlinear Systems: a Flatness
based approach. Springer, 2009.

[20] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[21] A. Isidori, Nonlinear Control Systems, 3rd ed. Springer, 1994.
[22] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and defect

of nonlinear systems: introductory theory and examples,”International
Journal of Control, vol. 61, pp. 1327–1361, 1995.

[23] M. J. van Nieuwstadt and R. M. Murray, “Real-time trajectory
generation for differentially flat systems,”Int. Journal of Robust and
Nonlinear Control, vol. 8, no. 11, pp. 995 – 1020, 1998.

[24] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,”International Journal of Robotics
Research, vol. 29, no. 13, pp. 1608 – 1639, 2010.

