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Light is a strong synchronizer for circadian rhythm — the 24-h biological oscillation in plants, insects, and
mammals. This paper considers the circadian entrainment problem for a popular circadian oscillation
model (the Kronauer model) by using light intensity as the control input. This problem is commonly
encountered by shift workers and international travelers — how to shift the phase of one’s circadian
rhythm by a specified amount, preferably as fast as possible? We consider three approaches: 1. Periodic
entrainment: use the light/dark cycle corresponding to the desired circadian rhythm as the light input.
2.0ptimal entrainment: use light input to shift the circadian rhythm to the desired state in minimum time.
3. Feedback entrainment: use circadian state feedback to adjust light input. For feedback entrainment, we
consider two cases: active lighting control which can inject artificial lighting on demand and subtractive
lighting control which only blocks the ambient lighting. For the periodic entrainment, which is used as
a baseline for comparison, we apply the harmonic balance method to assess the existence of a stable
periodic solution, and verify the result by simulation. For the minimum time entrainment, we present
an efficient solution to the two-point boundary value problem and show that active lighting control
significantly reduces the entrainment time from the baseline. The feedback algorithm augments the
periodic entrainment with a circadian state feedback to account for modeling error and noise. Results from

this study provide new insight and guideline to light intensity control for circadian rhythm regulation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Terrestrial species have adapted to the 24-h daily light/dark cy-
cle, called the circadian rhythm. For humans, circadian rhythms
are regulated by the suprachiasmatic nuclei (SCN) in the hypotha-
lamus in the brain. The SCN governs a wide range of biologi-
cal cycles, from cell division, hormone production, to behavior
(e.g., sleep-wake) (Refinetti, 2006; Russell & Kreitzman, 2005).
Light is a strong synchronizer of the circadian rhythm. It affects
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SCN through the intrinsically photosensitive Retinal Ganglion Cells
(ipRGC) in the retina. These cells are distinct from photorecep-
tors responsible for vision (rods and cones) and are most sen-
sitive to the blue portion of spectrum (centers around 460 nm)
versus the photopic spectrum which is centered around 550 nm.
Circadian rhythms manifest in humans through the sleep/wake cy-
cle, hormone production and levels of daytime/nighttime perfor-
mance and alertness. Lack of synchrony between the master clock
in SCN and the external environment, referred to as circadian mis-
alignment, could lead to serious health issues ranging from in-
creased sleepiness and decreased attention span, gastrointestinal
disorders, to increased risk for cancer, diabetes, obesity, and car-
diovascular disorders (Rea, Bierman, Figueiro, & Bullough, 2008).
The circadian disruption may be caused by, for example, irregu-
lar sleep patterns of soldiers in the battlefield, artificial depriva-
tion of light of submariners or mine workers, frequently shifted
sleep-wake cycles of night nurses, and shifted light-dark cycles for
travelers across multiple time zones.

Numerous mathematical models have been proposed to de-
scribe the interaction between light intensity and the circadian os-
cillation (Bechtel & Abrahamsen, 2010; Doyle, Gunawan, Bagheri,
Mirsky, & To, 2006). Empirical nonlinear oscillator model has been
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long proposed (Wever, 1972), with subsequent modification by
Richard Kronauer et al. (Jewett, Forger, & Kronauer, 1999; Kro-
nauer, Forger, & Jewett, 2000). The Kronauer model describes the
relationship between light intensity and the oscillation of human
core body temperature, which is an acceptable phase marker of
the circadian system. The model is a modified Van der Pol oscil-
lator with a period of 24.2 h. Alternative mechanistic biomolecu-
lar models based on protein interactions have been developed for
various organisms, including the 3-state Neurospora model (Mur-
ray, 1993), 10-state Drosophila model (Leloup & Goldbeter, 1998,
2003; Xie & Kulasiri, 2007), 19-state Drosophila model (Klarsfeld,
Leloup, & Rouyer, 2003; Leloup & Goldbeter, 2003) and 74-state
mammalian model (Forger & Peskin, 2003). As demonstrated in
Forger and Kronauer (2002), the empirical model may be consid-
ered as the asymptotic case of the biomolecular model, at least
for Drosophila, in an averaged sense. Reduced order modeling
approaches for biomolecular model have also been proposed in
Bamieh and Giarré (2007).

Artificial light has long been proposed as a means to entrain
the circadian rhythm. A commonly used tool is the phase response
curve (PRC) which plots the steady state phase shift as a function
of the time of the day at which a light pulse with a given amplitude
and duration is applied. The PRC may be generated experimentally
using test subjects, or numerically with a chosen simulation model.
An open loop circadian entrainment method has been proposed
based on the PRC constructed from the Kronauer model to design a
light-dark pattern for jet lag treatment (Dean, Forger, & Klerman,
2009). A 10-state circadian oscillation model of Drosophila was
used to construct the PRC and closed loop model predictive control
based on the phase measurement (Bagheri, Stelling, & Doyle, 2007).
The PRC approach has also been extended to the synchronization
of an oscillator network under a global driving cue such as sunlight
(Wang & Doyle, 2011). General circadian rhythm control methods
based on PRC have been proposed in Efimov (2011) and Zhang,
Wen, and Julius (2013). However, PRC only considers dynamics on
the periodic orbit which depends on the external input such as
light pulse amplitude and duration (Jewett et al., 1997). Relaxation
dynamics off the periodic solution is considered in Granada and
Herzel (2009) with the light input pulses optimized to achieve fast
convergence. If the initial circadian state starts on the open loop
entrained periodic orbit, the effect of amplitude deviation from
the orbit is small. In this case, we expect the PRC-based method
to produce similar results as the full phase plane method in this
paper. This is indeed the case and has been demonstrated in Zhang
et al. (2013). If there is a large deviation from the periodic orbit,
due to the initial condition or high light input amplitude, then the
full phase dynamics need to be taken into account as in this paper.

This paper focuses on light-based control for the Kronauer
model which includes the off-orbit behavior not contained in
the PRC models but avoids the high order dynamics in the
biomolecular models. The Kronauer model has been used to design
light-based control using model based methods such as model
predictive control (Mott, Mollicone, Van Wollen, & Huzmezan,
2003) and optimal control (Serkh & Forger, 2014). We formulate
the entrainment problem as a trajectory tracking problem with the
reference trajectory given by the desired circadian oscillation. We
consider three entrainment strategies:

(1) Periodic entrainment: The ambient periodic light/dark cycle of
the reference oscillation is used as the entrainment input.

(2) Optimal entrainment: The light input is solved from an optimal
control problem to align the circadian oscillation with the
reference trajectory in minimum time.

(3) Feedback entrainment: The periodic entrainment is modified
based on the circadian tracking error—through blockage when
ambient light is present or light injection when ambient light
is absent. We also consider the case when only blockage is
allowed—we call this the subtractive entrainment.

The periodic entrainment is the commonly used default
strategy in our daily living. For example, a traveler through
multiple time zones would rely on the local light/dark cycle to
combat jet lag. We will use it as a baseline comparison with other
entrainment methods. We apply the harmonic balance method
to analyze the existence and stability of the periodic solution.
Harmonic balance (Khalil, 2002; Vidyasagar, 1978) has long been
used in the analysis of nonlinear oscillators. Though it is an
approximate method, it tends to work well when the linear portion
of the system attenuates the effect of higher order harmonics.
This is indeed the case for the Kronauer model under the free
running (no light input) condition (Zhang, Wen, Julius, Bierman,
& Figueiro, 2011). The harmonic balance method has also been
applied in the systems biology context, e.g., chemical oscillations
in gene regulatory networks (Hori, Takada, & Hara, 2013). In this
paper, we extend harmonic analysis to light inputs under different
conditions, including input duty cycles (e.g., people living in higher
latitude locations), entrainment periods (submariners), and light
intensity (cloudy versus sunny days). The analytic prediction,
though approximate, matches well with the simulation result.

The optimal entrainment case is formulated as a time optimal
control problem which involves the solution of a two-point
boundary value problem (TPBVP). We present an efficient solution
strategy, involving a line search instead of the classical shooting
or collocation methods. It also avoids searching for switching
times as in Serkh and Forger (2014). The minimum time control
significantly reduces the baseline periodic entrainment time. For
example, for the most challenging case of 17 h delay (or 7 h
advance), the baseline entrainment of 10 days is reduced to 4
days under optimal control. This work follows closely our paper
in Zhang, Wen, and Julius (2012b). The feedback approach adjusts
the light input based on the circadian tracking error. It modifies the
baseline periodic input by adding artificial lighting when ambient
lighting is absent or removes light input by blocking the ambient
lighting. By using the stability analysis from the harmonic balance
approach, we show that this additional lighting feedback does not
affect the stability, but could speed up convergence. We show
that the entrainment time for moderate phase delay or advance
is close to the optimal cost. As a special case, we also consider
the blockage-only strategy. This removes the need of active light
control. Such controllable blockage of light in the circadian action
spectrum (blue light), may be achieved by using, e.g., custom
shaded glasses. We show that the entrainment time is near optimal
for moderate phase advance (e.g., traveling from west to east).
Implementation of circadian feedback requires the circadian state.
State estimation using the Kronauer model and biometric sensors
together with a particle filter has been proposed in Mott, Dumont,
Boivin, and Mollicone (2011). We have applied linear parameter
varying approach for state estimation in Zhang, Wen, and Julius
(2012a). Phase estimation in the PRC framework is used in Efimov
(2011) for feedback light-based phase control.

This paper presents new tools to analyze the Kronauer model
for circadian rhythm, including new stability analysis (using
harmonic balance) and new control methods (optimal control
and feedback control). The results provide guidance to efficient
entrainment for circadian phase shift.

2. Problem formulation
2.1. Model

We consider the Kronauer model (Kronauer, Forger, & Jewett,
1999) for the circadian rhythm dynamics. It consists of a
photoreceptor model, called the L-process, cascaded with a second
order nonlinear oscillator, called the P-process. The L-process
converts the light stimulus to a drive variable u, analogous to
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photopigments in retinal photoreceptor stimulated by incoming
photons. There is a bleaching, or saturation, effect, which prevents
further photon response until the photopigments are regenerated.
In the Kronauer model, a simple first order population model is
used to convert the light intensity I to the circadian drive u:

(i)
O = Qg T
0

n = 60[a(1 —n) — Bn]
u=Ga(l—n)

(1)

where g = 0.16 min~!, § = 0.013 min"!, G = 19.9,p = 0.6,
Ip = 9500 lux. For a fixed intensity light input I, n converges to
a/(a + B) with rate 60(x + B). As the dynamics of the L-process
is much faster than that of the P-process (convergence is less than
1 min), we focus on the dynamics of the P-process. As n converges
to a steady state, the corresponding circadian drive u converges to
GaB/(x + B), which is a monotonically increasing function in «.
We limit the maximum light intensity at I,,x = 9500 lux with
the corresponding maximum drive um,, = 0.2392. Light intensity
cannot be negative, so u > 0.

The circadian dynamics, the P-process, relates the drive input u
to the normalized core body temperature variation which is a good
phase marker of the circadian system. The model for the P-process
is given by (time unit is hour):

k= +hiou, x=[xx]
fo = Ax+ uBg(B'x)

P /3 1 g |1
T 12 | —(24/(0.997297,))* 0] ~ o 2)
) = = (ff - @g)
8= 1 3N T 105

fix) = % [1 qx +kX1]T(1 — 0.4x1)(1 — 0.4x;)

where u© = 0.13, k = 0.55, q = 0.33, 7, = 24.2 are constants
empirically chosen so the model output x; matches physiological
data (normalized core body temperature). The limit cycle in the
phase plane, (x1, x,), is approximately a unit circle (the describing
function method predicts the limit cycle to be exactly the unit
circle with period 24.13 h Zhang, Bierman, Wen, Julius, & Figueiro,
2010). The oscillator rotates in the clockwise direction, with the
45° direction (x; = x;) corresponding to the mid-day (12 pm). The
model is depicted in block diagram form in Fig. 1. Fig. 2shows the
input vector field, f;, superimposed on the limit cycle. Since the
light input is non-negative, the effect of light is mostly to add delay
to the oscillation, except for the upper quarter of the limit cycle.

Note that the feedback loop consists of a single odd nonlinearity
g, and the response of B' (jwl — A)~'B has a sharp bandpass
characteristics centered at w = 0.26 rad/s, or T = 24.1 h. These
two characteristics suggest the harmonic balance method (Khalil,
2002; Vidyasagar, 1978) as a good tool to analyze the existence and
stability of the limit cycle. The single nonlinearity is easily replaced
by its describing function approximation, and the sharp bandpass
characteristics imply that the harmonic balance is a reasonable
approximation.

2.2. Problem statement

The aim of this paper is to compare different light-based
entrainment strategies for the Kronauer model. A motivating
example is the travel through multiple time zones. The goal is to
use light input to shift the traveler’s circadian rhythm to that of
the local population. Denote the state of the traveler’s circadian
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Fig. 1. The Kronauer model shown in the block diagram form.
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Fig. 2. The input drive function, f;(x), shown as a vector field, superimposed on
the limit cycle. The circled portion at the top of the limit cycle indicates where light
input will speed up the oscillation (shorten the period). For the rest of the limit cycle,
light input will slow down the oscillation (lengthen the period). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

rhythm as x modeled by (2). Consider the local circadian rhythm
given by x, governed by (2) with input u,:

X = fo(xr) + f1(x-)u; (t) (3)

where u; is the local light cycle given by

mod (t, T) € [tg, tp]

umax
u(t) = {0 mod (t,T) € [0, T]\ [ta, tp] @

with t referring to the traveler’s time at the starting location where
tq, tp are the starting time of the light on and light off, respectively
in each period. If the starting location lighting is a 12-12 h pattern
with light onset at t; (e.g., 6 am), then the phase shift is (t; —
to) 27 /T (positive for delay, negative for advance). The duty cycle
(percentage of the time of one period in which the light on signal is
active.) of such on/off lighting is given by d = (t, — t;)/T - 100%. If
t, > T, then the range where the light input is uy,,x consists of two
pieces, [0, t, — T] and [t,, T]. The goal is to find the light pattern
u(t), 0 < u(t) =< upax to synchronize the traveler’s circadian
rhythm with the local circadian rhythm, i.e., choose u(t) to drive
x(t) = x.(t).

3. Entrainment strategies
3.1. Periodic entrainment
The most common entrainment strategy is to use the periodic

light/dark cycle, u,, as the input. In the case of traveling through
multiple time zones, the traveler just uses the natural daylight
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pattern of the local time zone for entrainment. In this case, the
dynamics of the circadian rhythm is given by:

X = fo(x) + fi(X)ur (5)

where u, is a period-T input. Our goal is to ascertain the
existence of a T-periodic solution, and if it exists, its local stability
property. The exact analysis is difficult even for these simple
nonlinear systems. The harmonic balance method is a popular
approximation approach to analyze the existence and stability of
periodic solutions in nonlinear systems (Vidyasagar, 1978). For
free-running system (u = 0), we have already shown in Zhang
et al. (2011) that the so-called single-input describing function
correctly predicts the existence of a periodic orbit close to a unit
circle. With a periodic light input, we may extend the harmonic
analysis to check for the existence of periodic solutions as well as
their stability. The idea is to approximate all signals in the system
by their constant and first order harmonics, i.e.,

X1 = ajsinwt + by cos wt + ¢4
fcg =0, sinAwt + by cos wt + ¢ (6)
g = 8o + & sinwt + g, cos wt

D = g + s sin wt + . cos wt

where g approximates g(;), v approximates v = f;(X)u, and
w = 2m/T is given. Substituting these approximations into

the system dynamics (2) and equating the coefficients of the
harmonic components results in six equations to solve for the six
unknown coefficients in (X1, X»). Using this approach, we predict
the existence of a periodic solution, and their approximate shape,
for a large range of parameters: the duty cycle, d, entrainment
period, T, and maximum light intensity, unax of u,. To determine
the local stability of a predicted solution, we linearize the dynamics
about the approximate solution:

afi (X(t))
0x

8% = (A+ Bg' (B'R(t))B" + u(t)) 8x 7)

2A(t)

where A(t) is T-periodic. The fundamental matrix over one period,

B (T) 2 el A0, (8)

may be numerically evaluated and its eigenvalues determine the
stability of the periodic orbit, and, if the orbit is stable, the
local convergence rate. The detailed approach is described in the
Appendix. We shall see in Section 3.4 that the prediction result
matches well with simulation.

3.2. Optimal entrainment

Optimal entrainment aims to establish a lower bound on how
fast light control can shift the circadian cycle by a specified
phase. We pose this as an optimal control problem. Given the
circadian dynamics (2) and the reference circadian trajectory (3)
with specified initial state, find u(t),0 < u < upax to minimize the
cost function

i
]:tf:/ 1dt, (9)
0

where t; is the entrainment time. The terminal state constraint is
both state and time dependent:

¥ (x(tr), tr) = x(t) — X, (t) = 0. (10)

The necessary condition for this minimum time control
problem may be readily stated using the Pontryagin Minimum
Principle (Bryson & Ho, 1975). The Hamiltonian of the system is

H=14+3(f) + fixu) (11)

where A is the co-state and satisfies

T
i _OH _ ~ (o) +fi(u) N (12)
0x 0x

2fa (x,u)

The optimal control u* minimizes H and is given by the following
“bang-off” control:

u'(x,2) = <2 (1= sgn [3Ti0]) (13)

Since t; is free, the terminal constraint (10) leads to the
transversality condition:

oY . .
H(ty) + )LT(tf)E =1+ )\.T(tf)(x(tf) — X (tr)) = 0. (14)
Substituting the optimal control into the state and co-state
equations, we obtain the following two-point boundary value
problem (TPBVP):

X = fo(®) + fLou*(x, A)

. (15)
A =f2(xs u*(xv )")))\'

where x(0) = xp and x(t;) = X (ty) are specified, and t; satisfies
the transversality condition (14).

There are multiple techniques to solve the TPBVP numerically.
One may regard the problem as having three unknowns, (A(0), tf),
and three algebraic equations, the terminal state constraint and
transversality condition (14). Standard nonlinear minimization
falls into local minima easily unless a good initial guess is available.
Standard boundary value problem solver runs into numerical
difficulty due to the unstable co-state equation propagation.
Another approach is to convert the free terminal time problem
to the fixed terminal time through the normalization t = t/t;.
This results in a 5th order TPBVP. Direct numerical solution
techniques such as the multiple shooting method (Liang, Chen,
Meng, & Fullmer, 2003) also requires a reasonably good initial
guess of the state trajectory, which is difficult to obtain in general.
Other approaches such as direct update of the switch times (Xu
& Antsakalis, 2004) and continuation method (starting from the
solution for a linear oscillator and then propagating along the
parameter to add in the nonlinear terms) have also been attempted
but with only limited success.

We propose an alternative approach. First observe that the
costate in the solution of the TPBVP (without the transversality
condition) may be arbitrarily scaled:

Proposition 1. If (x(t), A(t)) is a solution of (15), then so is
(x(t), ad(t)) for any positive constant «.

Proof. Let (x(t), A(t)) be a solution of (15). For any o > 0,

un;x (1-sgn[Afi)]) = ur;ax (1—sgnfar"fi®)]). (16)
Hence x also satisfies

X = o) + 10072 (1= sgn[ar [ (V)])

Now scale both sides of the co-state equation in (15) by «, we get

x(0) = xq.

ak=f (X’ ur;ax (1—sgn[ar'f; (X)])) ok

which is the same as the co-state equation in (15) with A replaced
by o). Hence (15) is satisfied by (x(t), aA(t)). ®
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This proposition states that if the initial co-state A(0) is scaled
by a positive constant «, the co-state trajectory A(t) will also be
scaled by «, but the state trajectory x(t) will not change. Suppose
(A(0), ty) is found to satisfy the terminal state condition. If the
transversality condition (14) is satisfied, then we have the optimal
solution. Otherwise, A(0) may be scaled by «,

1

M) T k() — Xe(tp))
to satisfy (14). Since ||A(0)|| may be found using the result above,
we may arbitrarily choose ||A(0)|| = 1 for the solution of TPBVP.

This leads to the following algorithm to solve the minimum
time control problem:

For ¢ € [0,27), set A(0) = [cos(¢) sin(¢)]". Find the
convergence time T, (¢) from

(17)

T.($) = min [arg min [[x(6) = %, (O] < €, Tax (18)

where € is the convergence criterion and T is the upperbound
for tf (which could be chosen as the baseline entrainment time).
The minimum entrainment time t; is then given by

t = ngn Te(9). (19)

The function T.(¢) is multi-modal. To compute its minimum,
we first coarsely discretize the 27 interval and sequentially
compute T.(¢) by forward simulation to bracket the minimum. A
unimodal line search is then applied to hone in on the solution.
To reduce computation time, T,.x may be lowered to the smallest
convergence time of prior ¢ values.

If I 2 ATfi(x) = 0 on a trajectory of positive length, the
optimal control is singular and cannot be determined from (13).
To evaluate the possible existence of a singular arc, we apply the
procedure from Liberzon (2011). By setting both I and its first
derivative to zero, we have

A0 o, il)] =0 (20)
—_—
AL(x)

where [fy, f1] denotes the Lie bracket operation. For a nontrivial
solution of X to exist, L(x) must be singular. The solution of ¢ (x) 2
det(L(x)) = 0 is a curve in the state space. To keep the state
trajectory on this curve, u must be chosen such that ¢(x(t)) = 0.
Substitute in the state equation (2), we solve the required u:

u® = —(Vipfo(0) / Vxp()f1 (%)) (1)
ad d

where Vyp = @ %% . The segment of the curve that can be
3X1 E)xz

traversed using a feasible input corresponds to u® € [0, Umax]. TO
numerically determine the optimality of these candidate singular
arc segments, we apply the following procedure:

1. For a given starting point x® on the segment, find A in the
null space of LT (x®). As discussed before, the magnitude of A does
not affect the optimal trajectory. However, there are two choices,
pointing in the opposite directions. To find the right A, we use
Kelley’s necessary condition for singular arc optimality (Bryson &
Ho, 1975; Kelley, 1964),

0 (& (HYY_ s <0 22
M((ﬂz(au))_ [LFy. fol. fil(6) < . (22)

Denote the co-state A that satisfies the above condition as A® (x®).

2. Integrate x® and A® (x®) backwards in time using (2), (12),
and (13) with either u = 0 or u = upax. One of them will depart
from the segment and the other immediately returning to the
segment. Continue integrating the departing trajectory backward

1.5 T T
From orbit to singular segment
-------- From singular segment to orbit
50% open loop entrained Orbit
=—#—Singular segment
1+ 4
0.5+
0 ot
05t 4
2 1 4
15 . . ‘ A
-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 3. A singular optimal control obtained by integrating backward and forward
from a point on the candidate singular arc. The intersection with the open loop
entrainment (50% duty cycle in this example) periodic solution gives the singular
trajectory (from the circle to the square). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

until the solution intersects with the open loop entrained orbit.
This is the initial condition that would reach the segment at the
point chosen at step 1.

3.From the entry point on the segment in step 1, integrate x and
A forward using (2) and (12) with u = u® from (21), until it is no
longer feasible to obey the input bounds.

4. From the point of exit, switch to the non-singular control (13)
and integrate forward until the solution intersects the open loop
entrained orbit again.

5. Let the point of intersection be the terminal point (i.e., the ac-
tual and reference trajectories coincide) and integrate backwards
using the reference equation (3) for the combined times from steps
2, 3, and 4, to locate the starting condition of the reference trajec-
tory.

6. From the initial state in step 2 and the initial reference
state in step 5, we can compute the optimal bang-off control
solution. Comparing the convergence times using the bang-off
control versus the singular control allows us to determine if a
singular optimal control exist.

It is difficult to make a general statement about the existence
of singular optimal control, but we may numerically evaluate the
possibility for specific scenarios. As an example, consider the case
of 50% duty cycle open loop entrainment reference trajectory and
Umax = 0.2392. For this case, there are two small candidate
singular arc segments, one inside the open loop periodic orbit
and one outside, shown in blue in Fig. 3. We then determine
A®) that satisfies the Kelley’s condition (22). For a number of
points on these segments, we integrate backwards as in step 2
above (U = upax causes departure from the segments). Only
the segment within the open loop periodic orbit intersects with
the orbit. Using the procedure described above, we found the
singular control generally produces the same convergence time as
(or slightly worse than) our bang-off optimal control. An example
case is shown in Fig. 3; the backward trajectory is in green dash and
forward trajectory is in black, connected by the candidate singular
arc. Fig. 4 shows the time plots of the state trajectories (for x; and
x;, only) and the light input trajectories for the singular input and
the bang-off input cases. The inputs differ on the singular arc, but
the state trajectories remain very close. Though we cannot state
this in general, based on our numerical simulation for these cases,
we have not encountered the situation where a singular control
outperforms the bang-off control.
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Fig.4. Comparison between a singular trajectory and a bang-off optimal trajectory starting with the same initial condition. The convergence performance is nearly identical.

3.3. Feedback entrainment

Compared with the open loop optimal control, feedback control
has the potential to reject environmental disturbances and tolerate
some level of modeling error. We pose the feedback entrainment
problem as a reference trajectory tracking problem with light
intensity as the input and the full circadian state x for feedback
(using the normalized core body temperature measurement) to
drive x(t) — x,(t) ast — oo. The human body temperature
and other biometric sensors provide the possibility of real time
estimation of the circadian state variables (Mott et al., 2011).

From Section 3.1, we know with u = u,, x converges to the
reference trajectory x, asymptotically. Therefore, we choose the
light input as

u=1u,+4éu (23)

with du € [—u;, Umax — U] to add a feedback term to speed up
convergence. This additional term can only add light, up to tmax,
when the ambient light is absent, and can block the ambient light
when it is on.

First consider u = u,. From the harmonic analysis, we know
the periodic orbit is stable, therefore & (T)"®(T) — I is negative
definite. Hence, the quadratic Lyapunov function

V=x—xI? (24)

is strictly decreasing in each period:
Vit +T) = V()
= (x(t) = %) (@(T)' D(T) — N(x(t) — X, (1))
< (x(t) — ()" QX() — x:(1)) (25)

where Q is negative definite. Adding in the du term and using the
same Lyapunov function, we have

V(E+T) = V(©) = &) — (D))" Qx(E) — x:(¢))

t+T
+ f (x(s) — x:()" f1(x(s))8u(s) ds.  (26)
t
Choose

Su = {umax — Ur ifflT(X)(X - xr) = 0

—u O —x) > 0 @7

then V(t) remains negative definite in each period and the
asymptotic convergence is not affected. However, the additional
opportunistic light injection (when f] (x)(x —x,) < 0) or reference
light blockage (when f]T (x)(x — x,) > 0) speeds up convergence
(i.e., making V more negative). Note that feedback control law
means that the input vector field, f; is in the opposite direction of
the error vector x —x;, i.e., if current circadian phase is ahead of the
reference phase and the input vector field delays the phase, then
use the maximum light input. Similarly, if the current circadian
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Fig. 5. Comparison between approximate periodic orbit and exact periodic orbit for different duty cycles and periods.

error is in the same direction of the input vector field, then use the
minimum amount of light. The phase response curve has been used
to implement lighting control in this manner (Bagheri et al., 2007).
If the phase needs to catch up and the light input causes phase
advance (according to the PRC), then maximum light input should
be used, otherwise, use the minimum light input. Conversely, if the
phase needs to be delayed and light input at that instant causes
delay, then maximum light is used, otherwise use the minimum
light input.

The above stability argument is local in nature, based on the
approximate harmonic analysis. The true closed loop stability may
be verified using the reachable set analysis from hybrid system
analysis (Donze, Krogh, & Rajhans, 2009). The numerical result of
this approach has been reported in Zhang et al. (2012b).

We can modify the feedback algorithm to allow only blockage
of the destination ambient light, i.e.,

su= |0 AE—Xx)<0
T lew i) —x) > 0.

The stability argument remains the same, and we expect slower
convergence. However, the advantage is that this scheme removes

(28)

the requirement of controllable artificial lighting, replacing with
just circadian-light blocking sunglasses at select times. We call this
the subtractive feedback entrainment. The circadian light blockage
may be achieved by selectively removing the short wavelength
component of daylight using optical filters, such as goggles and
shades, while the long wavelength component light can still be
used to enable vision.

3.4. Periodic entrainment

As described in Section 3.1, the harmonic balance analysis
is used to approximate the periodic solution when the input is
periodic. When the limit cycle is stable, the approximate periodic
orbit is close to the exact solution obtained via simulation as
illustrated in Fig. 5(a)-(c). For the unstable limit cycle case,
the harmonic balance equation has large residue error and the
approximation is no longer close as shown in Fig. 5(d). We can
predict the stability of the periodic solution based on the linearized
dynamics about the approximate solution. The result is shown
in Fig. 6(a), including the eigenvalues. The prediction is mostly
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Fig. 6. Stable periodic entrainment for specified period and duty cycle. Top row shows eigenvalues of @ (T), bottom row shows eigenvalues of @ (T)" & (T). The green
background indicates stability verified by simulation. The red background indicates stable & (T) but unstable in simulation. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Comparison of the circadian trajectories, x; vs. time (left) and in phase plane (right), under 50% and 70% periodic entrainment for T = 24 h.

verified by simulation except for two boundary cases, (T,d) =
(23, 10%) and (24, 70%) (d is the duty cycle) where the eigenvalues
of & (T) are stable but eigenvalues of @ (T)T & (T) are not. Note that
for T = 24, beyond 60% duty cycle (=15 h of light input in a day,
which is not usual for waking hours in modern life), the periodic
entrainment is no longer stable. The change in the oscillation is
dramatic, with the circadian state almost quenched to the origin in
the 70% case. Starting from the same initial condition x = [1, 0],
the trajectories under 50% versus 70% periodic entrainment are
dramatic, as shown in Fig. 7. This certainly needs to be verified in
human experiments, as it has potentially significant implications
(e.g., reducing blue spectrum of lighting at night).

The duty cycle also affects the entrainment convergence
rate. With convergence threshold set at |[x — x;|| < 0.1, the
entrainment times for T = 24 h and different duty cycle and
phase shifts are shown in Fig. 8. Not surprisingly, the higher duty
cycle results in faster convergence time, until the periodic solution
becomes unstable (at 70% and beyond). Note that the dominant
(slower) eigenvalue of the linearized return map in Fig. 6(a) also
becomes faster with increasing duty cycle.

As harmonic balance method is an approximation method,
it may generate wrong predictions in certain cases, e.g., at the
boundary of stability as in Fig. 6(a), and also for low intensity light

input. It is known that low intensity periodic light input may lead
to phase misalignment (CIBA, 2008). This means that a periodic
orbit with the driving period does not exist. However, the low input
magnitude means small fluctuation of the solution about some
average orbit, which may inadvertently be classified as a stable
periodic orbit by the harmonic balance method. As an example,
consider the 30% input duty cycle. The comparison between the
harmonic balance prediction versus the actual stability obtained
via simulation is shown in Fig. 6(b). Indeed, for 95 lux and below
(1% of our imposed saturation level of 9500 lux), harmonic balance
makes the wrong prediction.

3.5. Optimal entrainment

As described in Section 3.2, to solve the TPBVP associated with
the minimum time entrainment problem, we only need to search
for the initial co-state on the unit circle, i.e., parameterize it as
A(0) = [cos(¢) sin(¢)]T. For each ¢ € [0, 27), propagate the
state and co-state equations forward until tracking is achieved,
ie. x(t) = x,(t) for some t = t*(¢), or some upper limit is
reached, t = Tpax. The minimum time is then given by miny t*(¢).
The optimal trajectories and the light input for the 12-h time
shift are illustrated in Fig. 9. For the simulation comparison, both
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Fig. 9. Minimum time control and state trajectories for 12 h time shift.

x(0) and x,(0) are on the same periodic solution separated by the
specified phase difference (between the corresponding periodic
input light signal). The upper bound is set at T,.,x = 240 h or 10
days since we know periodic entrainment (with 50% duty cycle)
is no more than that in the worst case. For the 6-h phase lag
(going from east to west), the minimum entrainment time t; =
ming Tc(¢) is about 34 h and the corresponding ¢ is 0.67 rad.
The optimal light input, the corresponding state trajectories, and
the local light pattern for different specified phase delays are
shown in Fig. 9. Additional light input beyond the destination local
lighting is used to add phase delay (corresponding physically to the
suppression of the onset of Melatonin), though this strategy does
not take into account the need for sleep. Some blockage of ambient
lighting is also needed at times to allow for phase advance. Fig. 10
summarizes the entrainment times for different target phase shifts
and entrainment strategies under 50% duty cycle.

The optimal solution does vary somewhat with the start time,
as indicated in Table 2. However, the basic strategy remains
the same—the optimal strategy tries to emulate the destination
lighting pattern but the light period for the first few days are
extended to add delays.

The effect of light intensity is relatively small as shown in
Table 1. The maximum intensity that we are using now, 9500 lux,
nearly saturates the L process, so having strong intensity does
not significantly change the solution. If we reduce the maximum
light intensity to 5000 lux, the entrainment time is only increased
slightly.

50dutycycle]
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~ © - periodic

200
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100 -

[entrainmenttime]
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Fig. 10. Comparison of the time cost as a function of the specified phase shift under
12 h/12 h-light/dark periodic input (baseline), optimal entrainment, active feedback
entrainment and subtractive feedback entrainment.

Table 1
Effect of maximum light intensity on optimal entrainment time for 6 h, 12 h, 18 h
phase delay.

Imax 6h 12h 18 h

5000 lux 349h 66.5 h 98.7h

9500 lux 340h 64.9 h 97.1h

10000 lux 339h 642 h 97.1h
Table 2

Effect of starting time (at the origin for the traveler) on optimal entrainment time
for 6 h, 12 h, 18 h phase delay.

Start time 6h 12h 18 h
3pm 340h 649h 97.1h
6 am 319h 72.1h 105.1h
12 am 30.8h 61.3h 91.1h

3.6. Feedback entrainment

The feedback entrainment selectively inject or block ambient
light u, to speed up convergence. As expected, both the active light-
ing feedback entrainment and subtractive entrainment improve
the convergence rate over the periodic entrainment. Fig. 11 shows
the tracking error convergence comparison for 6 h delay, 12 h de-
lay, and 4 h advance. The active feedback is most advantageous for
the delay cases. For phase delay, subtractive feedback is not effec-
tive. In the phase advance case, subtractive feedback works equally
well, and active light injection is hardly used. This is due to the fact
that light input tends to delay, hence blockage of ambient light re-
sults in phase advance.

Fig. 12 shows the state trajectory and light input for the periodic
and feedback entrainment cases for the 12-h time shift under 50%
duty cycle. The feedback control reduces the circadian amplitude
to speed up convergence. The trajectories for the subtractive case
are shown in Fig. 13 for the 6-h phase advance (18-h delay).

The entrainment times comparison for periodic, feedback, and
subtractive entrainments for various duty cycles is summarized
in Fig. 14. The feedback case achieves same entrainment time
for all duty cycles, demonstrate its ability to adjust for different
conditions. The subtractive is most effective for higher duty cycle
as there is more opportunity to block off ambient light. Note
that for time shift of 18 h (6 h advance), the open loop periodic
entrainment under 30% and 40% duty cycle performs slightly
better than the feedback cases. This is due to the fact that the
analysis is approximate, and some discrepancy from the prediction
is expected.
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Fig. 11. Tracking error trajectories for periodic entrainment, feedback entrainment,
and subtractive entrainment under 50% input duty cycle.
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Overall, the feedback and subtractive feedback control are
stable and perform better than the periodic entrainment. These
feedback algorithms are also easy to implement in the sense that
if the model predicts that light input is helpful to reduce the phase
difference to the target (may also use PRC to make this prediction),
then apply the maximum active light input; conversely, if the light
input increases the phase difference, then block of the light input.

3.7. Discussion

Based on the entrainment time comparison shown in Fig. 10, we
make the following observations:

e Entrainment using active light input is most effective for phase
delay. This is built into the input vector field, f; in (2), as shown
in Fig. 2 superimposed onto the limit cycle. Since the light input
is non-negative, the effect of light is mostly to add delay to the
oscillation, except for about the upper quarter of the limit cycle.
This is not entirely surprising, since light (in the blue spectrum)
tends to suppress the secretion of melatonin.

e Active light input is less effective in phase advance. This is the
corollary of the observation above, due to the direction of the
input vector field f;. In this case, the subtractive strategy is more
effective. By blocking the ambient light at appropriate times,
the inherent delay due to the ambient light is reduced, leading
to phase advance. For small phase advance (up to 4 h), the
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Fig. 13. Comparison between periodic entrainment and subtractive feedback
entrainment: x; (left) and u (right).
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Fig. 14. Entrainment time comparison between periodic entrainment, feedback
entrainment, and subtractive feedback entrainment for 20%-60% duty cycle.

optimal entrainment time is almost identical to the subtractive
feedback case. The control strategies for both cases, optimal
and subtractive, are almost identical. Both strategies consist
of blocking the light input several hours before the onset of
darkness at destination.

e Active entrainment based on minimum time control or
feedback control is both effective in achieving phase delay
entrainment, significantly improving over the baseline. For
example, for the 12-h phase shift, the entrainment time is
reduced from about 8 days using the destination daylight to 2%
days using the optimal control. For the worst case 16-h phase
delay (or 8-h phase advance), the improvement is the largest:
10 days vs. 3 days. For small phase advance, the optimal control
just requires strategic blocking of the natural light.

e Subtractive feedback entrainment is optimal for small phase
advances (up to 4-6 h) but becomes ineffective for phase delays.
This is due to the fact that light blockage only has a small
window of opportunity in the circadian cycle to add delay:
when there is daylight and the input vector field advances the
phase (around late morning in traveler’s clock).

e The dynamics in the phototransduction stage (the L-process) is
much faster than that of the P-process and the saturation in
the L-process is already taken into account. Therefore, the effect
of the phototransduction stage is minimal. When our optimal
control based on P-process alone is applied to the full model
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that includes the L-process, the resulting trajectory is nearly
identical. In the feedback case, because of the higher initial light
drive, the convergence is actually faster, particularly for the
more challenging phase advance cases.

4. Conclusion

This paper analyzes light-based circadian entrainment using
the empirical nonlinear oscillator model of the human circadian
system proposed by Kronauer. The entrainment process is
formulated as a reference tracking problem, and the entrainment
time, or the convergence time to the reference trajectory, is used
as performance metric. Three types of entrainment strategies
are considered: periodic entrainment, optimal entrainment, and
feedback entrainment. The harmonic balance method is used
to estimate the periodic orbit under periodic entrainment and
to obtain the stability condition. The minimum time control
establishes the theoretical lower bound on the entrainment time.
We have developed a novel and efficient numerical solution
strategy for the associated two-point boundary value problem.
Feedback entrainment modifies the periodic entrainment by
adding light when it is absent and blocking light when it is present.
The Lyapunov function from the periodic entrainment is used to
establish stability of the feedback strategies. Two types of feedback
are considered, active light injection and blockage, and active light
blocking only.

The simulation result shows the known effect that phase shift is
not symmetrical in the phase lag versus phase advance directions.
Active lighting control is effective in introducing phase lag (for
going from east to west). Indeed, for the 12-h phase shift, the
minimum time solution is reduced from the baseline (using local
light/dark cycle) 8.5-2.5 h. The basic strategy is to use light control
beyond the local daylight period to introduce phase lag. For phase
advance, active light control is of little value since its effect is
mostly in phase lag. The entrainment time in active feedback
case is larger than the optimal control case (especially for phase
lags), but still improves significantly from the baseline. In the
subtractive feedback case, the performance is near optimal for
phase advances. Feedback strategy is attractive as it is robust
under disturbance and modeling error than the open loop method.
However, the full circadian state is needed for its implementation.
We are currently investigating circadian state estimation by using
output measurements.
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Appendix. Harmonic analysis under periodic light input

When u = 0, we use the first harmonic approximation of
x1(t) = asinwt. The first harmonic nonlinear approximation
of gasinwt) is § = —%. The harmonic balance is the
complex equation, a = uB' (jwl — A)~'Bg which solves fora = 1,
® = 27w /24.13 = 0.26. The ratio g/a is called the describing
function of g.

When u is a given periodic function of period T, w = 27 /T is
specified. In this case, we need to use the full state equation (2)
with the following first order approximation:

X1 = ap sinwt + by cos wt + ¢4 A1)
X, = ay sinwt + b, cos wt + . ’

o ra AT T
LetX = [X; X,] .The derivative x is

;c] = w(a; cos wt — by cos wt)
2 (A.2)
Xo = w(ay cos wt — by cos wt).

To extract the harmonics of the input, we project the input onto
the harmonic basis functions:

D = g + Us sinwt + . cos wt

N 17

Vo = */ fi&@)u(e) de
T Jo
2 T

Vs = ?f fix(®)u(t) dt sin wt
2T

Ve = ?f f1&x())u(t) dt cos wt.

0
The harmonic components of g(x;) may be similarly obtained:

g = 8o+ & sinwt + & cos wt

1 T
& = *f g(x: () dt
T Jo

2 T
g = f/ g(X1(t)) dt sin wt (A4)
0

. 2 (7.
g = f/ g(xq(t)) dt cos wt.
T Jo
The harmonic balance equation follows the state equation (2):

X=AX+Bg + 0. (A5)
The six component equations may be used to solve for the
six unknowns (ay, by, ¢y, az, by, c;) for the approximate periodic
solution k. Note that since the system is time invariant, if for a time-
shifted input u(t+t,), the state is also shifted x(t +t,) which means
that the periodic orbit remains the same in the state space.

To determine the stability of the periodic solution, we linearize
the state equation about the solution:

af1(X(t))
ox

8k = (A+ Bg'(B"x(t))B" + u(t)) 8x. (A.6)

2A(t)

Divide the period into N intervals, the time-varying system may be
approximated as a discrete time system:

Xg; = GA((i_l)T/N)Xdi_] (A7)

where x4, = x(iT /N). The stability of the period-T orbit is deter-
mined by the fundamental matrix @ (T) which may be approxi-
mated by

N .
&(T) ~ HGA((HUT/N).

i=1

(A8)

If all the eigenvalues of @ (T) are within the unit circle, the periodic
orbit is predicted to be stable. The eigenvectors of @ (T) typically
are in the tangential and normal directions of the orbit, with the
smaller (faster) eigenvalue corresponding to the tangential direc-
tion and the larger (slower) eigenvalue for the normal direction.
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