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a b s t r a c t

Gene regulatory networks capture the interactions between genes and other cell substances, resulting
from the fundamental biological process of transcription and translation. In some applications, the
topology of the regulatory network is not known, and has to be inferred from experimental data.
The experimental data consist of expression levels of the genes, which are typically measured as
mRNA concentrations in micro-array experiments. In a so-called genetic perturbation experiment, small
perturbations are applied to equilibrium states and the resulting changes in expression activity are
measured. This paper develops novel algorithms that identify a sparse and stable genetic network that
explains data obtained from noisy genetic perturbation experiments. Our identification algorithm is
based on convex relaxations of the sparsity and stability constraints and can also incorporate a variety of
prior knowledge of the network structure. Such knowledge can be either qualitative, specifying positive,
negative or no interactions between genes, or quantitative, specifying a range of interaction strengths. Our
approach is applied to both synthetic and experimental data, obtained for the SOS pathway in Escherichia
coli, and the results show that the stability specification not only ensures consistency with the steady-
state assumptions, but also significantly increases the identification performance. Since the method is
based on convex optimization, it can be efficiently applied to large scale networks.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in systems biology have given rise to the
need for a more systemic understanding of large scale quantitative
experimental data. In particular, the use of RNA micro-arrays
that enables gene expression measurements for large scale
biological networks, has provided researchers with valuable data
that can be used to identify gene interactions in large genetic
networks. Besides promoting biological knowledge, identification
of such networks is also important in drug discovery, where a
systems-wide understanding of regulatory networks is crucial for
identifying the targeted pathways (Schreiber, 2000).

Due to the significance of its potential applications, genetic net-
work identification has recently received considerable attention.

✩ The material in this paper was partially presented at the 2008 American
Control Conference, June 11–13, 2008, Seattle, Washington, USA. This paper was
recommended for publication in revised form by Associate Editor Graziano Chesi
under the direction of Editor Francis J. Doyle III. A preliminary version of this work
can be found in Zavlanos, Julius, Boyd, and Pappas (2008).
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Depending on whether identification aims at relating the expres-
sion of a gene to the sequencemotifs found in its promoter or to the
expression of other genes in the cell, approaches can be character-
ized as gene-to-sequence or gene-to-gene, respectively (Bansal, Bel-
castro, Ambesi-Impiombato, & di Bernardo, 2007; Gardner & Faith,
2005). The ensemble of both classes form the so-called genetic net-
work identification problem. Solution techniques can either ignore
or explicitly consider the underlying gene dynamics.

Members of the former class are clustering algorithms (Am-
ato et al., 2006; Eisen, Spellman, Brown, & Botstein, 1998) that
group genes with similar expressions, due to the high probabil-
ity that they are functionally, but not necessarily directly, re-
lated to each other. Alternatively, grouping of co-expressed genes
may be achieved using information-theoretic methods (Steuer,
Kurths, Daub, Weise, & Selbig, 2002). Both approaches, however,
are restricted to identifying undirected networks and hence, lack
causality. Causality may be recovered using Bayesian networks
(Pe’er, Nachman, Linial, & Friedman, 2000), which can handle di-
rected graphs. But Bayesian networks typically do not accom-
modate cycles and hence, cannot handle feedback motifs that
are common in genetic regulatory networks. Both causality and
feedback motifs are no longer an issue when the network is mod-
eled as a set of differential equations (Amato, Cosentino, Cura-
tola, & di Bernardo, 2007; August & Papachristodoulou, 2009;
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Bansal, Gatta, & di Bernardo, 2006; Cinquemani, Porreca, Lygeros,
& Ferrari-Trecate, 2009; Gardner, di Bernardo, Lorenz, & Collins,
2003; Julius, Zavlanos, Boyd, & Pappas, 2009; Papachristodoulou &
Recht, 2007; Porreca, Drulhe, de Jong, & Ferrari-Trecate, 2008; Son-
tag, Kiyatkin, & Kholodenko, 2004; Srividhy, Crampin, McSharry,
& Schnell, 2007; Tegner, Yeung, Hasty, & Collins, 2003). Identi-
fication is then typically optimization based, while approaches
depend on whether the data is obtained from steady-state mea-
surements (Gardner et al., 2003; Julius et al., 2009; Tegner et al.,
2003) or dynamic time-series (Amato et al., 2007; August & Pa-
pachristodoulou, 2009; Bansal et al., 2006; Cinquemani et al., 2009;
Papachristodoulou&Recht, 2007; Porreca et al., 2008; Sontag et al.,
2004; Srividhy et al., 2007). Although time-series data includes
more information about the systemdynamics, identification in this
case is more difficult due to the high computational effort that is
typically required.

The approach proposed in this paper falls under the latter class
of networks modeled as differential equations and aims at obtain-
ing a minimal model that explains given genetic perturbation data
at steady-state. The minimality specification is due to the obser-
vation that biological networks exhibit loose connectivity (Arnone
& Davidson, 1997; Thieffry, Huerta, Pérez-Rueda, & Collado-Vides,
1998) and in the present framework, it was first addressed in Gard-
ner et al. (2003) in the form of a priori combinations of constraints
on the connectivity of the network. On the other hand, the steady-
state nature of the data implies stability of the underlying genetic
networks, and to the best of our knowledge, this is a first attempt
to formally address this specification.

To avoid the combinatorially hard nature of the problem, we
employ a weighted ℓ1 relaxation of the minimality constraint
(Boyd, 0000; Candes, Wakin, & Boyd, 2008; Han, Yoon, & Cho,
2007; Hassibi, How, & Boyd, 1999; Julius et al., 2009; Tropp,
2006), which leads to much more scalable linear constraints.
The convex optimization formulation in our approach is also
preserved by the stability specification,whichwe capture by either
linear or semidefinite constraints that arise from Geršgorin’s and
Lyapunov’s theorems, respectively. Finally, we employ additional
linear constraints so that our model best fits the given genetic
perturbation data as well as satisfies a priori knowledge on the
network structure. We show that in the absence of the stability
specification, our approach performswell for sufficiently large data
sets with low noise, while smaller and noisy data sets hinder its
performance, partly due to identification of unstable networks.
However, introducing the stability specification greatly improves
the identification performance, and not only validates our model
but also makes it promising for future research.

The rest of this paper is organized as follows. In Section 2
we describe the genetic network identification problem, while in
Section 3 we develop the proposed ℓ1 relaxation and discuss the
aforementioned stability issues that could hinder its identification
performance. In Section 4 we extend our algorithm to account for
stability of the identified solutions. Finally, in Sections 5 and 6, we
illustrate efficiency of our approach on artificial noisy data sets as
well as on experimental data for the SOS pathway in Escherichia
coli.

2. Genetic network identification

Genetic regulatory networks consisting of n genes can be
modeled as n-dimensional dynamical systems (Gardner et al.,
2003). In general, such models assume the form

˙̂x = f (x̂, u), (1)

where x̂(t) ∈ Rn and u(t) ∈ Rp. Here x̂i(t) ∈ R denotes the
transcription activity (typically measured as mRNA concentration)
of gene i in the network, and ui is the so called transcription
perturbation.1 Nonlinear genetic networks as in (1) can have
multiple stable equilibria, each one typically corresponding to
a phenotypical state of the system. Then, the dynamics in a
neighborhood of any given equilibrium xeq can be approximated
by the set of linear differential equations
˙̃x = Ax̃ + Bu, (2)
where x̃ , x̂ − xeq (Sontag et al., 2004). The matrix A ∈ Rn×n

encodes pairwise interactions between the individual genes in
the network at the given equilibrium or phenotypical state, while
the matrix B ∈ Rn×p indicates which genes are affected by the
transcriptional perturbations. Assuming the equilibrium x̃ = 0 is
stable and the perturbation u is sufficiently small and constant, the
system (2) will restabilize at a new equilibrium x̃, at which

Ax̃ + Bu = 0. (3)
Let m be the number of available transcription perturbations2

and define the matrices U = [u1 · · · um] ∈ Rp×m and X̃ =

[x̃1 · · · x̃m] ∈ Rn×m containing the transcription perturbations
of all m experiments and their associated steady-state mRNA
concentrations, respectively. Then, collecting allm experiments at
steady-state, system (3) can be written as

AX̃ + BU = 0. (4)
Because of nonlinearity and measurement noise, the measured

deviation of the mRNA concentrations can be different from the
ones predicted by the linear model. If we denote these measured
quantities as X , we can then write X = X̃ + 1X . We then have the
following relation

AX + BU = (AX̃ + BU) + A1X . (5)
Here,η , A1X is the residual of the linearmodel. Finding the linear
model that best fits the experimental data amounts to making η as
small as possible (in some norm). Then, the network identification
problem can be stated as follows.

Problem 1 (Genetic Network Identification). Given steady-state
transcription perturbation and mRNA concentration data U and X ,
determine the sparsest stable matrix A that results in sufficiently
small residual η, while incorporating any a priori biological
knowledge regarding the presence, absence, or nature of specific
gene interactions.

The requirement that A is sparse is due to biological networks
being sparse in nature (Arnone & Davidson, 1997; Thieffry et al.,
1998), while the stability condition is necessary for the steady-
state to be observed. Finally, accordance with a priori biological
knowledge is both desired and naturally expected to result in
improved identification performance.

Remark 2. Ultimately, the effect of the transcription perturbation
in themodel is characterized by BU,where thematrices B andU are
typically unknown. However, if we assume controllable networks,
i.e., networks where we can perturb each individual gene, then U
can be chosen so that BU is a diagonal matrix, subject to scaling.

3. Linear programming formulation

Given any genetic network described by (2), the problem of
identifying the sparsest matrix A that approximately satisfies

1 In a transcription perturbation experiment, individual genes are over-
expressed using an episomal expression plasmid. Then U can be quantified using
a second strain with a reporter gene in place of the over-expressed gene on the
plasmid. After the perturbation, cells grow under constant physiological conditions
to the steady-state and the change inmRNA concentration, compared to cells in the
same physiological conditions but unperturbed, is measured (DiBernardo, Gardner,
& Collins, 2004). For large scale networks, we may assume that not all genes are
affected by a given perturbation, resulting in p ≤ n.
2 Typically, each transcription perturbation corresponds to a specific experiment.
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Fig. 1. Plot of the weights wij as a function of the entries |aij|, for different values
of the parameter δ > 0.

constraints (4), can be formulated as the following optimization
problem

minimize tcard(A) + (1 − t)ϵ
subject to ‖AX + BU‖1 ≤ ϵ, ϵ > 0 (6)

where card(A) denotes the number of nonzero entries in matrix
A, and ‖A‖1 =

∑n
i,j=1 |aij| denotes the (elementwise) ℓ1 norm of

a matrix A. Variables in problem (6) are the matrix A and fitting
error ϵ, while the problem data are the matrices X, B,U and the
parameter 0 ≤ t ≤ 1, which is used to control the trade-off
between sparsity, i.e., card(A), and best fit, i.e., ϵ. Note that any
other norm could be used in the constraints here; we use the ℓ1
norm since it handles outliers well.

When a priori knowledge about the network is also available,
it is typically in the form of a partial sign pattern S = (sij) ∈

{0, +, −, ?}n×n, which encodes known positive interactions (+),
negative interactions (−), no interactions (0), or no a priori
knowledge regarding interactions (?) between any two genes in
the network. Such knowledge can be included in (6) by means of
the set of linear constraints

A ∈ S ⇔


aij ≥ 0, if sij = +

aij ≤ 0, if sij = −

aij = 0, if sij = 0
aij ∈ R, if sij = ?

(7)

resulting in the problem

minimize t card(A) + (1 − t)ϵ
subject to ‖AX + BU‖1 ≤ ϵ, A ∈ S, ϵ > 0. (8)

From a computational point of view, formulation (8) poses a
significant challenge. Although both constraints are convex in the
matrix A (Boyd & Vandenberghe, 2004), the cost function card(A)
is not convex. Solving this problem globally can be done, for
instance by branch-and-boundmethods or directly by considering
all possible 2n2 sparsity patterns forA. Nevertheless, thesemethods
are typically very slow, and cannot scale to networks with more
than a handful of genes.

To obtain amethod that can scale to large networks,we propose
a convex relaxation of the cardinality cost function. In particular,
we replace the card(A) objective with the weighted ℓ1-norm∑n

i,j=1 wij|aij|, resulting in the following convex program

minimize t
n−

i,j=1

wij|aij| + (1 − t)ϵ

subject to ‖AX + BU‖1 ≤ ϵ, A ∈ S, ϵ > 0,
(9)
where the weights wij are chosen such that (Fig. 1)

wij =
δ

δ + |aij|
, for all i, j = 1, . . . , n (10)

for sufficiently small δ > 0 (Boyd, 0000). Themain idea behind the
proposed heuristic is to uniformly initialize all weights by wij = 1
(this corresponds to the standard ℓ1 relaxation of the cost function)
and repeatedly solve problem (9), each time updating the weights
using (10) (Algorithm 1). Then, large weights are always assigned
to small matrix entries |aij| and small weights to large entries
|aij|, which can eliminate any weak genetic interactions in the
final identified matrix A. In practice, Algorithm 1 requires no more
than J = 10 iterations, regardless of the problem’s size. We refer
the reader to our earlier publication on this subject (Julius et al.,
2009). Furthermore, recent theoretical results (Candes, Romberg,
& Tao, 2006) show that, in some cases (not including the present
application),minimizing theweighted ℓ1 normof amatrixA, in fact
does minimizes card(A) with high probability.

Algorithm 1 Network ID (Ignoring Stability)
Require: Sign pattern S, experimental data X and U , and control

parameter 0 ≤ t ≤ 1,
1: Initialize weights wij = 1 for all i, j = 1, . . . , n,
2: for it = 1 to J do
3: Solve the linear program (9) for A and ϵ,
4: Update the weights wij using (10),
5: end for

4. Incorporating stability

In Section 3 we developed an iterative procedure, based on
the solution of linear programs, able to identify a sparse matrix
that best fits possibly noisy network data, while satisfying a priori
knowledge about the network. In this section, we propose two
different ways of incorporating stability in Algorithm 1, both
preserving its convex nature and hence, having the associated
scalability and global optimality properties. Furthermore, we
show that these modified approaches significantly increase the
performance of our identification algorithm.

4.1. Linear approximation

Incorporating stability of the identified matrix A as a linear
constraint in Algorithm 1 relies on the following theorem by
Geršgorin.

Theorem 3 (Horn & Johnson, 1985). Let A = (aij) ∈ Rn×n and
for all i = 1, . . . , n define the deleted absolute row sums of A by
Ri(A) ,

∑
j≠i |aij|. Then, all eigenvalues of A are located in the union

of n discs

G(A) ,

n
i=1

{z ∈ C | |z − aii| ≤ Ri(A)}.

Furthermore, if a union of k of these n discs forms a connected region
that is disjoint fromall the remaining n−k discs, then there are exactly
k eigenvalues of A in this region.

The region G(A) is often called the Geršgorin region (for the
rows) ofA, the individual discs inG(A) are called theGeršgorin discs,
while the boundaries of these discs are called the Geršgorin circles.
Since A and AT have the same eigenvalues, one can also obtain a
similar Geršgorin disc theorem for the columns of A. Clearly, if

aii ≤ −

−
j≠i

|aij|, for all i = 1, . . . , n (11)
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Algorithm 2 Network ID (Geršgorin Stability)
Require: Sign pattern S, experimental data X and U , and control

parameter 0 ≤ t ≤ 1,
1: Initialize weights wij = 1 for all i, j = 1, . . . , n,
2: for it = 1 to J do
3: Solve the linear program (13) for A and ϵ,
4: Update the weights wij using (10),
5: Update the weights vi using (14),
6: end for

Fig. 2. Plot of the weights vi as a function of the entries |aii| − Ri(A), for average
β = 0 and different values of the parameter δ > 0.

then all discs {z ∈ C | |z − aii| ≤ Ri(A)} are in the left half
plane C− and Theorem 3 ensures that all eigenvalues of A are also
in C−, which implies that A is stable. What is appealing about
constraints (11) is that they are convex in the entries of A, and
can be expressed as a set of linear inequalities; hence, they can
be directly incorporated in the linear program (9) in Algorithm 1,
rendering a stable matrix. However, constraints (11) also impose
strict structural constraints on the entries of A. In particular, they
restrict all diagonal entries of A to be non-positive and matrix A to
be diagonally dominant, namely

|aii| ≥

−
j≠i

|aij|, for all i = 1, . . . , n.

This later constraint can be relaxed by applying a similarity
transformation on A. In particular, since V−1AV and A share
the same eigenvalues for any invertible matrix V , we can apply
Geršgorin’s theorem to V−1AV and for a smart choice of V we
can obtain sharper bounds on the eigenvalues. A particularly
convenient choice is V , diag(v1, . . . , vn), with vi > 0 for all
i = 1, . . . , n. Then, V−1AV = (vjaij/vi) and Geršgorin’s theorem
states that all eigenvalues of A lie in the region

G(V−1AV ) ,

n
i=1


z ∈ C | |z − aii| ≤

1
vi

−
j≠i

vj|aij|


.

Clearly, if we require that

aii ≤ −
1
vi

−
j≠i

vj|aij|, i = 1, . . . , n, (12)

then G(V−1AV ) ⊂ C−, which implies that matrix A is stable,
but not necessarily diagonally dominant. Constraints (12) are still
linear in the entries of A and hence, can be directly incorporated in
(9) resulting in the linear program
Algorithm 3 Network ID (Lyapunov Stability)
Require: Sign pattern S, experimental data X and U , and control

parameter 0 ≤ t ≤ 1,
1: Apply Algorithm 1 for matrix A,
2: if matrix A is unstable then
3: Solve (17) for a Lyapunov matrix P ,
4: Initialize weights wij = 1 for all i, j = 1, . . . , n,
5: for it = 1 to J do
6: Solve the semidefinite program (18) for A and ϵ,
7: Update the weights wij using (10),
8: end for
9: end if

minimize t
n−

i,j=1

wij|aij| + (1 − t)ϵ

subject to ‖AX + BU‖1 ≤ ϵ, A ∈ S, ϵ > 0

aii ≤ −
1
vi

−
j≠i

vj|aij|, i = 1, . . . , n.

(13)

The identification procedure is then described in Algorithm 2.
Intuitively, the weights vi, should penalize Geršgorin discs far in
the left half plane and assign the remaining slack to discs close
to (or intersecting) the imaginary axis, breaking in this way the
diagonal dominance in the associated row. In particular, for β ,
1
n

∑n
i=1(|aii| − Ri(A)) we choose the weights vi by (Fig. 2)

vi ,


1 +

|aii| − Ri(A) − β

δ + (|aii| − Ri(A) − β)
, if |aii| − Ri(A) > β

δ

δ − (|aii| − Ri(A) − β)
, if |aii| − Ri(A) ≤ β,

(14)

where Ri(A) denotes the deleted absolute sum for row i, as in
Theorem 3, and the quantity |aii| − Ri(A) > 0 indicates how far
in the left half plane the associated Geršgorin disc is located.
Convergence of Algorithm 2 is slower than that of Algorithm 1
and for certain ill-conditioned problem instances it may result in
periodic solutions.

4.2. Semidefinite approximation

Let A be thematrix identified by Algorithm1which can possibly
be unstable. The goal in this section is to characterize ‘‘small’’
perturbations to A that render it stable, while satisfying the desired
sign pattern and maintaining its sparsity structure. For this, let
D ∈ Rn×n be the sought perturbation matrix and define the matrix
A′ , A + D. A necessary and sufficient condition for stability of A′

is the existence of a symmetric positive definite Lyapunov matrix
P such that

(A + D)TP + P(A + D) ≺ 0. (15)
Letting L , PD, Eq. (15) becomes

ATP + LT + PA + L ≺ 0, (16)
which is a linear matrix inequality in both P and L and can
be efficiently solved using semidefinite programming (Boyd
& Vandenberghe, 2004). In particular, solving the following
semidefinite program

minimize ‖LX‖2

subject to ATP + LT + PA + L ≺ 0, P ≽ I, (17)

gives D = P−1L and the desired stable matrix A′ becomes A′
=

A + P−1L. This program formulation can be motivated by noticing
that
‖(A′X + BU) − (AX + BU)‖2 = ‖P−1LX‖2,

≤
‖LX‖2

‖P‖2
≤ ‖LX‖2,
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since ‖P‖2 ≥ 1. Therefore, minimizing the objective ‖LX‖2 means
minimizing an upper bound of the difference between AX + BU
and A′X + BU . Clearly, the matrix A′ may no longer satisfy the
desired sign pattern or sparsity specifications. Therefore, we need
to further perturb A′ to obtain a new matrix A (in a neighborhood
of A′) that is also stable. For this, we use the Lyapunov matrix P
associated with A′ and compute A by modifying problem (9) as

minimize t
n−

i,j=1

wij|aij| + (1 − t)ϵ

subject to ‖AX + BU‖1 ≤ ϵ, ϵ > 0
ATP + PA ≺ 0, A ∈ S.

(18)

We iterate until convergence, as in Algorithm 1. This procedure is
described in Algorithm 3.

Remark 4 (Connection to Linear Systems Theory). Assume that the
left kernelC of the datamatrix X is nontrivial, i.e., c , dim(C) > 0,
and define a basismatrix C ∈ Rc×n ofC, such that rank(C) = c and

v ∈ C ⇔ ∃k ∈ R1×c s.t. v = kC .

Then, for anymatrix K ∈ Rn×c , let A′ , A+KC , where K ∈ Rn×c .
Notice that (A + KC)X + BU = AX + BU , due to the fact that
CX = 0. Thematrix C parameterizes all models A′ that result in the
same residual as A. Obtaining a matrix K that renders A′ stable is
equivalent to the observer design problem in linear systems theory
(Rugh, 1996). A well-known condition for the existence of such a
K is the detectability of the pair (A, C). In particular, the pair (A, C)
is called detectable if

rank
[
λI − A

C

]
= n,

for all λ ∈ C+ (the closed right half plane). Then, K can be obtained
by the solution of the Lyapunov equation (A + KC)TP + P(A +

KC) ≺ 0, where P is a symmetric positive definite Lyapunov
matrix. Setting L , PK we get a linear matrix inequality in P and L,
similar to the one in (16).

5. Synthetic data and discussion

5.1. Sensitivity to parameter selection

In this section we study how the parameter 0 ≤ t ≤ 1 that
regulates the tradeoff between sparsity and best fit in problems
(9), (13) and (18) affects the performance of our identification
methods. As the measure of performance, we use the Receiver
Operating Characteristic (ROC) curve. The ROC curve, plots the
sensitivity of the prediction results against (1-specificity). These
quantities are given by the formula (De Muth, 2006)

Sensitivity =
TP

TP + FN
and Specificity =

TN
TN + FP

,

where T = True, F = False, P = Positives, and N = Negatives. Since,
the parameter t regulates theweight put on sparsity, i.e., number of
zeros, vs. best fit, the terms ‘‘Positives’’ and ‘‘Negatives’’ here refer
to non-zero and zero interactions between genes, respectively.3
The best possible prediction, will give a point in the upper left
corner of the plot, representing 100% sensitivity, i.e., no false
zero identifications, and 100% specificity, i.e., no false non-zero

3 ‘‘Precision’’ and ‘‘Recall’’ are metrics that are often also used to measure
performance. ‘‘Recall’’ is defined by the ratio TP/(TP + FN) and is, therefore, the
same as ‘‘Sensitivity’’. Nevertheless, ‘‘Precision’’ is defined by TP/(TP + FP) and is
a different metric, that is sometimes also referred to as Positive Predictive Value
(PPV).
identifications. A completely random guess will give a point along
the diagonal line (line of no discrimination).

To evaluate the performance of our algorithms, we created ROC
plots for networks of size n = 20 genes with c = 20% connectivity,
and for different values of sign knowledge σ , data size m, and
noise levels ν. We applied our algorithms to a set of 20 stable,
random andwell-conditioned (otherwise, preconditioningwould be
required) interconnection matrices A that were generated to be
identified. The sample matrices Awere obtained as the solution of
the following program:

minimize ‖D‖2

subject to γ I ≼
1
2
((Ã + D) + (Ã + D)T ) ≼ ϵI,

Γ < γ < ϵ < E < 0,
Dij = 0 if Aij = 0, ∀i, j = 1, . . . , n,

where Ã is a random, not necessarily stable, interconnectionmatrix
that satisfies a 20% sparsity specification, and D is a perturbation
added to Ã to obtain a stablematrix A = Ã+D. If the (i, j)th entry of
Ã is zero, so is the (i, j)th entry of D, by construction. The constants
Γ , E < 0 regulate the condition number of A = Ã + D (more
accurately, its eigenvalues). The above optimization problem is
based on the observation that an asymmetric matrix A is negative
definite if and only if its symmetric part 1

2 (A + AT ) is negative
definite. Then, A will be stable with Lyapunov matrix I . The data
sets associated with matrix A are obtained by X = −A−1BU + νN ,
where BU ∈ Rn×m is the identity matrix (see Remark 2) and
N ∈ Rn×m is a zero mean and unit variance normally distributed
random matrix (entry-wise). All algorithms were implemented in
MATLAB using the cvx toolbox for convex optimization problems
(Grant, Boyd, & Ye, 0000) and run on an Intel Core 2 Duo 3.06 GHz
processor with 8 GB RAM. For problems of size n = 20, each
iteration of Algorithms 1, 2 and 3 took approximately 2, 5 and
8 s, respectively, while no more than 15 iterations are in general
required for Algorithms 1 and 2, and 25 iterations for Algorithm 3.

Figs. 3 and4 contain theROCplots for parametersσ = 30%, ν =

10%,m = n (full data), and σ = 0%, ν = 50%,m = ⌈
n
3⌉ (par-

tial data), respectively. These cases correspond to the two ‘‘ex-
tremes’’ in terms of possible identification performance, i.e., many
high quality vs. few low quality available data. Every point in the
plots corresponds to a different value of t . As expected, high qual-
ity data gives better identifications, i.e., many points are clustered
close to the upper left corner of the plot (Fig. 3). This also means
that the value of t does not affect much the quality of identifi-
cation. This is not the case with few low quality data, as shown
in Fig. 4. Although the parameter t still does not affect much the
quality of identification, now most points are clustered in the bot-
tom left corner of the plot close to the line of no discrimination,
which implies much worse identification. In particular, Algorithm
1 (Unstable) does not perform any better than a random predic-
tion. For data quality in-between these two extremes, the iden-
tification performance depends on the parameter t , as shown in
Fig. 5.

We observe that Algorithms 2 (Geršgorin) and 3 (SDP) always
performbetter than Algorithm1 (Unstable).4 This observation is an
indication that stability is important, not only for consistency with
the problem assumptions, but also for identification performance.
Additionally, from Figs. 3–5, we see that Algorithm 3 (SDP)
performs slightly better than Algorithm 2 (Geršgorin). This is
reasonable, since it does not impose any hard constraints on

4 Due to space limitations, ROC plots for other parameter combinations (σ ,m, ν)

are not contained in this paper.
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Fig. 3. ROC plots of Algorithms 1 (Unstable), 2 (Geršgorin) and 3 (SDP) for network
size n = 20 and connectivity c = 20%. Shown are the curves (mean and standard
deviation) for σ = 30%, ν = 10% and m = n (full data). This is an ideal case for
identification, with many high quality data. It is expected that predictions should
be good and trusted.

Fig. 4. ROC plots of Algorithms 1 (Unstable), 2 (Geršgorin) and 3 (SDP) for network
size n = 20 and connectivity c = 20%. Shown are the curves (mean and standard
deviation) for σ = 0%, ν = 50% and m = ⌈

n
3 ⌉ (partial data). This is challenging

case for identification, with few low quality data. It is expected that predictions are
not so good and possibly should not be trusted much.

the edge weights of the network. Nevertheless, Algorithm 2
(Geršgorin) has a simple linear formulation and scales better with
the problem size.

5.2. Identification performance

In this section, we study the performance of our algorithms in
terms of the total false identifications. The performance metrics
of interest are the total number of false identifications (FIDs),
the fitting error (ER) compared to the best fit (ER*) obtained
if the identified network was the sought one, and the number
of false zero identifications (FZs) as a function of the total
false identifications. The ratio FZs/FIDs captures sparsity of the
network and ER/ER* indicates how close the identification is to
the sought one. Too high or low FZs/FIDs are undesirable, since
they correspond to very dense or sparse networks that do not
capture reality. Similarly, ER/ER* that is far away from 1, possibly
indicates low quality identification, either qualitatively (signs) or
Fig. 5. ROC plots of Algorithms 1 (Unstable), 2 (Geršgorin) and 3 (SDP) for network
size n = 20 and connectivity c = 20%. Shown are the curves (mean and standard
deviation) for σ = 0%, ν = 50% and m = n (full data). The identification
performance depends on the parameter t .

Fig. 6. Identification performance (y-axis) as a function of the parameter 0 ≤ t ≤ 1
(x-axis), for networks of size n = 20, connectivity c = 20%, sign knowledge
σ = 30%, noise ν = 10% and m = n (full data). (a) Algorithm 1 (Unstable),
(b) Algorithm 2 (Geršgorin), (c) Algorithm 3 (SDP).

quantitatively (edge weights’ values). The ratio FZs/FIDs is also
related to the connectivity (Connect) of the identified networks.

As in Section 5.1, we focus on networks of size n = 20with con-
nectivity c = 20%, generated as before. Fig. 6(a), (b) and (c) show
the performance of Algorithms 1 (Unstable), 2 (Geršgorin) and 3
(SDP), respectively, for parameters σ = 30%, ν = 10% and m = n
(full data).Weobserve that as t increases, FIDs and connectivity de-
crease,while FZs/FIDs andER/ER* increase. In fact, very large values
of t result in the lowest FIDs that are also theworst in quality, since
then FZs/FIDs = 1. To address this tradeoff, we select t so that
it results in a network with equal/similar connectivity to the de-
sired one (c = 20%). This, results in identification performances as
shown in Tables 1–3 for Algorithms 1, 2 and 3, respectively. Table 1
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Table 1
Algorithm 1 (unstable): selection of the parameter 0 ≤ t ≤ 1 for networks with
n = 20 genes and c = 20% connectivity.

σ = 0% σ = 30%
ν = 10% ν = 50% ν = 10% ν = 50%

m = 20

t = 0.0962 t = 0.0854 t = 0.1407 t = 0.1362

32% FIDs 33% FIDs 17% FIDs 20% FIDs
58% FZs

FIDs 59% FZs
FIDs 64% FZs

FIDs 63% FZs
FIDs

180% ER
ER∗ 36% ER

ER∗ 185% ER
ER∗ 39% ER

ER∗

100% StIDs 92% StIDs 59% StIDs 48% StIDs

m = 7

t = 0.0808 t = 0.0834 t = 0.1303 t = 0.1460

34% FIDs 35% FIDs 22% FIDs 23% FIDs
55% FZs

FIDs 55% FZs
FIDs 59% FZs

FIDs 59% FZs
FIDs

145% ER
ER∗ 27% ER

ER∗ 220% ER
ER∗ 40% ER

ER∗

93% StIDs 85% StIDs 5% StIDs 2% StIDs

Table 2
Algorithm 2 (Geršgorin): Selection of the parameter 0 ≤ t ≤ 1 for networks with
n = 20 genes and c = 20% connectivity.

σ = 0% σ = 30%
ν = 10% ν = 50% ν = 10% ν = 50%

m = 20

t = 0.0933 t = 0.0777 t = 0.1373 t = 0.1215

26% FIDs 28% FIDs 16% FIDs 17% FIDs
61% FZs

FIDs 61% FZs
FIDs 67% FZs

FIDs 65% FZs
FIDs

190% ER
ER∗ 38% ER

ER∗ 201% ER
ER∗ 41% ER

ER∗

m = 7

t = 0.0809 t = 0.0820 t = 0.1341 t = 0.1544

27% F.IDs 29% F.IDs 18% F.IDs 19% F.IDs
57% FZs

FIDs 57% FZs
FIDs 62% FZs

FIDs 62% FZs
FIDs

175% ER
ER∗ 33% ER

ER∗ 234% ER
ER∗ 45% ER

ER∗

Table 3
Algorithm 3 (SDP): selection of the parameter 0 ≤ t ≤ 1 for networks with n = 20
genes and c = 20% connectivity.

σ = 0% σ = 30%
ν = 10% ν = 50% ν = 10% ν = 50%

m = 20

t = 0.1485 t = 0.2575 t = 0.3334 t = 0.3126

25% FIDs 24% FIDs 13% FIDs 16% FIDs
65% FZs

FIDs 62% FZs
FIDs 65% FZs

FIDs 66% FZs
FIDs

183% ER
ER∗ 42% ER

ER∗ 185% ER
ER∗ 42% ER

ER∗

m = 7

t = 0.1394 t = 0.1546 t = 0.2562 t = 0.3086

27% F.IDs 28% F.IDs 17% F.IDs 19% F.IDs
58% FZs

FIDs 57% FZs
FIDs 63% FZs

FIDs 65% FZs
FIDs

164% ER
ER∗ 34% ER

ER∗ 203% ER
ER∗ 43% ER

ER∗

also shows the percent of stable identifications (StIDs) returned by
Algorithm 1. Note that this decreases significantly as the noise in-
creases or the size of data set and sign knowledge decreases. In
all cases, the ratio FZs/FIDs is approximately 60%, while the error
ER ranges from a fraction to a multiple of the best one ER*. What
is noteworthy is that Algorithms 2 (Geršgorin) and 3 (SDP) have
comparable performance in terms of FIDs, which can get as low as
16% for high quality data (low noise, high sign knowledge and full
data). In all cases, Algorithms 2 (Geršgorin) and 3 (SDP) perform
better than Algorithm 1 in terms of FIDs.

5.3. Discussion

In Sections 5.1 and 5.2 we discussed two ways of choosing
the parameter t . The first depending on proximity to the up-
per left corner of the ROC plot and the second depending on
Table 4
Sensitivity and (1-specificity) values for selected identifications in Tables 1–3.

(m, σ , ν) and Alg. 1-specificity Sensitivity

(20%, 30%, 10%)
Alg. 1 0.13 ± 0.04 0.61 ± 0.07
Alg. 2 0.11 ± 0.05 0.61 ± 0.06
Alg. 3 0.08 ± 0.03 0.63 ± 0.07

(7%, 0%, 50%)
Alg. 1 0.19 ± 0.03 0.19 ± 0.04
Alg. 2 0.16 ± 0.03 0.33 ± 0.03
Alg. 3 0.18 ± 0.02 0.36 ± 0.03

(20%, 0%, 50%)
Alg. 1 0.21 ± 0.06 0.25 ± 0.07
Alg. 2 0.18 ± 0.07 0.36 ± 0.08
Alg. 3 0.33 ± 0.07 0.57 ± 0.04

the desired connectivity of the identified network. In this sec-
tion we show consistency of these two methods. In other words,
we show that a parameter t that gives an identification with
desired connectivity, lies as close as possible to the upper left
corner of the ROC plot. For this, we check the locations in the
ROC plot of the identifications contained in Tables 1–3. For il-
lustration purposes, we focus on the parameters (m, σ , ν) =

{(20%, 30%, 10%), (7%, 0%, 50%), (20%, 0%, 50%)} in order to com-
pare with Figs. 3–5, respectively. For these data sets, we get sensi-
tivity and (1-specificity) values, as shown in Table 4. Locating these
values in Figs. 3–5 we see that they lie at least as close to the up-
per left corner compared to other points in these ROC plots and,
therefore, they correspond to better identification performance.
Although network connectivity is typically unknown, its is easier
to get an estimate of it from biological knowledge, than construct
ROC plots that depend on identification performance.

6. SOS pathway in E. coli

We further applied the proposed identification algorithms to
a subnetwork of the SOS pathway in E. coli, using the genetic
perturbation experimental data set

X = 10−3



906 −132 −139 187 291 −61 −77 −17 −25
212 383 −117 64 169 −87 39 125 84
18 −107 10 524 61 80 13 64 89 −70
104 −50 −273 139 180 146 69 −4 275
119 −97 56 315 2147 142 −68 135 113
76 −189 −214 250 347 2017 −67 −172 −22

−122 −47 −102 −107 −11 104 3068 365 217
178 −183 36 −70 −34 −155 8 26 633 87
72 −128 73 81 305 51 −61 274 672


provided in Gardner et al. (2003). Since there was no explicit
mention to U , we assumed that BU = I9.5 The a priori knowledge
we used is depicted in Table 5 and has been obtained based on the
diagram of Fig. 7.

The subnetwork that we considered consists of nine genes and
several transcription factors and metabolites (Fig. 7). The main
pathway featured in this network is the pathway between the
single-stranded DNA (ssDNA) and the protein LexA that acts as
a repressor to several other genes (recA, ssb, dinI, umuDC, and
rpoD). The protein RecA, which is activated by the single-stranded
DNA, cleaves LexA and thus upregulates the above-mentioned
genes. Other key regulators in the network are the sigma factors
σ70, σ32, and σ38. These sigma factors play an important
role in initiating transcription in heat shock and starvation
responses.

5 Note that this is a reasonable assumption, since different values of BU would
only result in scaling of the model. See also Remark 2.
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Table 5
A summary of a priori knowledge for the SOS pathway in E. coli. A ‘‘+’’ sign indicates known activation, a ‘‘−’’ sign indicates known inhibition, ‘‘0’’ indicates the absence of
connection, and ‘‘?’’ indicates an unknown connection. In brackets are known gene interactions that are considered unknown for the purposes of identification.

Genes recA lexA ssb recF dinI umuDC rpoD rpoH rpoS

recA ? − ?(−) ?(+) ?(+) ?(−) + ?(0) ?(0)
lexA + − ?(−) ?(+) ?(+) ?(−) + ?(0) ?(0)
ssb + − ?(−) ?(+) ?(+) ?(−) + ?(0) ?(0)
recF ?(0) ?(0) ?(0) ?(−) ?(0) ?(0) + ?(0) +

dinI + − ?(−) ?(+) ? ?(−) + ?(0) ?(0)
umuDC + − ?(−) ?(+) ?(+) ?(−) + ?(0) ?(0)
rpoD + − ?(−) ?(+) ?(+) ?(−) ? + ?(0)
rpoH ?(0) ?(0) ?(0) ?(0) ?(0) ?(0) + ? ?(0)
rpoS ?(0) ?(0) ?(0) ?(0) ?(0) ?(0) + ?(0) ?
Fig. 7. Diagram of interactions in the SOS network. DNA lesions caused by
mitomycin C (MMC) (blue hexagon) are converted to single-stranded DNA during
chromosomal replication. Upon binding to ssDNA, the RecA protein is activated
(RecA*) and serves as a coprotease for the LexA protein. The LexA protein
is cleaved, thereby diminishing the repression of genes that mediate multiple
protective responses. Boxes denote genes, ellipses denote proteins, hexagons
indicate metabolites, arrows denote positive regulation, filled circles denote
negative regulation. Red emphasis denotes the primary pathway by which the
network is activated after DNA damage. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Source: Taken from Gardner et al. (2003).

We applied Algorithms 1–3 on the data set X for different
values of the parameter t . The corresponding ROC plots are shown
in Fig. 8. As discussed in Section 5, the best identifications will
correspond to values of the parameter t that give points in the
ellipse in Fig. 8. For Algorithm 1 these points correspond to t ∈

[0.01, 0.1], for Algorithm 2 they correspond to t ∈ [0, 0.1], and
for Algorithm 3 they correspond to t ∈ [0.05, 0.5]. In particular,
we choose t = 0.01 for Algorithm 1, t = 0.01 for Algorithm 2
and t = 0.1 for Algorithm 3. These parameters result in 37%, 31%
and 31% false identifications, respectively. Therefore, Algorithms
2 and 3 still perform better than Algorithm 1, demonstrating the
importance of the stability specification.

All identifications obtained from Algorithm 1 are unstable,
while the obtained networks have connectivity approximately
equal to 50%. Note that this identification performance is worse
than the one shown in Tables 1–3 for full data and 30% sign
knowledge. This is expected since the SOS pathway ismuch denser
Fig. 8. ROC plots of Algorithms 1 (Unstable), 2 (Geršgorin) and 3 (SDP) for the
SOS pathway shown in Fig. 7 and different values of the parameter t . The best
identifications are contained in the ellipse close to the upper left corner.

(its connectivity is approximately 60%), which conflicts with the
sparsity objective.6 Following we present the interconnection
matrix for the SOS pathway in E. coli returned by Algorithm 2 for
t = 0.01:

A = 10−3



−33 −2 0 0 5 0 2 0 0
9 −21 −1 −44 1 2 2 0 20
2 −2 −29 0 0 0 2 0 0
10 0 −2 −123 2 8 4 0 37
2 −2 0 0 −30 0 2 0 0
2 −2 0 0 0 −31 2 0 0
2 −2 0 0 0 0 −38 2 0
0 0 0 0 0 0 2 −2 0
2 −2 0 0 2 0 2 0 −15


.

Matrix A has 7 false positives, 3 false negatives, 16 false zeros, and
26 false identifications in total, while it is also stable and satisfies
the desired sparsity pattern. The matrix A returned by Algorithm 3
for t = 0.1 is:

6 Note that we are analyzing a part of the SOS response mechanism in E. coli in
which central role plays the protein LexA. This protein regulates the expression
activity of a large number of other genes, which explains the particularly high
connectivity observed here. In fact, it is known that LexA directly regulates, i.e.,
binds to the promoters, of 31 other genes (Fernandez De Henestrosa et al., 2000).
The connectivity of genes like LexA is atypical.
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A = 10−3



−10 −3 0 −1 2 0 2 0 0
5 −23 0 0 0 −1 2 0 2
2 −2 −1 −4 0 0 3 0 0
0 0 0 −4 0 0 2 0 2
2 −2 0 0 −5 0 2 0 0
2 −2 0 −1 0 −5 2 0 0
2 −2 0 −4 0 0 −3 2 0
0 0 0 −5 0 0 2 0 0
2 −4 0 0 2 0 2 0 −15


.

Matrix A has 3 false positives, 6 false negatives, 16 false zeros, and
25 false identifications in total, while it is also stable and satisfies
the desired sparsity pattern.

7. Conclusions

In this paper, we considered the problem of identifying a
minimal model that best explains genetic perturbation data
obtained at the network’s equilibrium state. We relaxed the
combinatorially hard cardinality optimization specification by
employing its weighted ℓ1 approximation and extended our
formulation to account for a priori knowledge on the network
structure, as well as stability of the derived solutions. We tested
performance and sensitivity of our algorithms to parameter
selection, for various sizes of data sets, sign knowledge and noise
levels. We concluded that stability is not only necessary for
consistency with the problem assumptions, but also for better
identification performance. The strength of our approach lies in its
convex nature that can handle large scale identification problems.
Its efficiency was also demonstrated on real experimental data
obtained for the SOS pathway in E. coli.
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