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Abstract

We study the control problem from the point of view of the behavioral systems the-
ory. Two controller constructions, called canonical controllers, are introduced. We
prove that for linear time invariant behaviors, the canonical controllers implement
the desired behavior if and only if there exists a controller that implements it. We
also investigate the regularity of the canonical controllers, and establish the fact
that they are maximally irregular. This means a canonical controller is regular if
and only if every other controller that implements the desired behavior is regular.

Key words: behaviors, behavioral control, regular interconnection, regular
controller, canonical controller, implementability.

1 Introduction

Control problems, seen from the behavioral systems theory point of view,
amount to finding a controller, which when interconnected with the plant
in a specified way yields the desired behavior [14,1]. The problem may be
formulated as follows. Consider a plant to be controlled which has two kinds
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Fig. 1. Control in the behavioral approach.

of variables: to-be-controlled variables and control variables. A controller is a
device that is attached to the control variables and restricts their behavior.
This restriction is imposed on the plant, such that it affects the behavior of
the to-be-controlled variables (see Figure 1). The resulting behavior is called
the controlled system.

In this paper we discuss the properties of a special type of controllers, the so
called canonical controllers [11,10,16]. We are particularly interested in their
regularity properties. The concepts of canonical and regular controllers will
be formally introduced later in this paper.

While the behavioral approach sees control as interconnection, the more com-
mon point of view in control theory is to view a controller as a feedback
processor that accepts the plant sensor outputs as its inputs and produces
the actuator inputs as its outputs. In [14], this paradigm is called ‘intelligent
control’, as the controller acts as an intelligent agent capable of reasoning how
to react to sensory observations.

The main advantages of the behavioral over the classical feedback point of
view are:

(i) Its practical generality. In many control systems, the controller (i.e. the
device added to the plant system to obtain a desired behavior) does not act
as a sensor/actuator device. Dampers, heat fins, acoustic noise insulators
are examples of such devices.

(ii) Its theoretical simplicity. Control in the behavioral setting has been in-
troduced in [14], and subsequent development includes the work in [6,17,9].
The reader is referred to [12] for further motivation and details.

Throughout this paper, we shall denote the control variables as c and the
to-be-controlled variables as w. These variables take their value at any given
time from their respective signal spaces C and W. Let W and C denote the set
of all trajectories of the variables w and c that are a priori possible, before we
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Fig. 2. The relation between Pfull, P, C, and K.

have even modelled the plant. In dynamical systems, W and C are typically
the set of (smooth) signals from the time axis to the signal spaces W and C.

In discrete event systems, the time axis is discrete and the signal spaces are
typically called alphabets.

We shall now discuss our problem from a purely set theoretic point of view.
The behavioral model of the plant system that captures the relevant relation
between w and c is called the full plant behavior, which is denoted by Pfull.

Naturally, we assume that Pfull is contained in W×C. The full plant behavior
consists of all signal pairs (w, c) compatible with the plant dynamics. If we
project the full behavior on W, we obtain the so called manifest behavior,
which is denoted as P. Thus,

P := {w ∈ W | ∃ c ∈ C such that (w, c) ∈ Pfull} .

A controller C is a subset of C, containing all signals c allowed by the controller.
The controlled behavior is then defined as

K := {w ∈ W | ∃ c ∈ C such that (w, c) ∈ Pfull and c ∈ C} .

The relationship between the full plant behavior, the manifest behavior, the
controller and the controlled behavior is captured in Figure 2.

In this framework, the control problem can be formulated as to find a controller
C that yields a desired controlled behavior D. Hence the controller C should
yield the controlled behavior K = D. We call D the desired controlled behavior.
If it is possible to find a controller C that yields K = D, then D is said to
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be implementable 2 or implemented by C. Further, if a given desired D is
implementable, we say that ’the control problem is solvable’.

The remainder of this paper is organized as follows. In Section 2 we present
two constructions for the canonical controllers and their properties in the
setting of general behaviors. In Section 3 we discuss the concept of imple-
mentability, particularly for LTI behaviors. Section 4 is devoted for discussion
on the concept of regularity. In Section 5, we study the behavior implemented
by the canonical controller and use the result from Section 4 to establish its
regularity.

2 The construction and properties of the canonical controllers

In the previous section we explained that we work in the generality in which
the plant has two types of variables, the to-be-controlled variables and the
control variables, and further that a controller can put a restriction on just
the control variables. This restriction is propagated through the plant to the
to-be-controlled variables.

The idea of the canonical controller uses the ’internal model principle’ in the
following way [11,10]. We use a plant model that has the same behavior as the
plant. The propagation of information explained in the previous paragraph is
then reversed by interconnecting the plant model to the desired behavior D
using the to-be-controlled variables 3 . This is how we construct the canonical
controller. Figure 3 illustrates this construction. Notice that the word PLANT
is mirrored to highlight the fact that the interconnection is reversed. The
behavior of the canonical controller obtained using this construction is denoted
as C′

canonical.

C′

canonical := {c ∈ C | ∃ v ∈ W such that (v, c) ∈ Pfull and v ∈ D} . (1)

Figure 4 provides a block diagram showing how C′
canonical is applied.

In [11,10], it is proven that for a class of plants, which are ‘homogeneous’
in the plant and control variables, the control problem is solvable (i.e. D is
implementable). if and only if the canonical controller C′

canonical implements D.
We now define the homogeneity property.

Definition 1 A full plant behavior Pfull is said to have the homogeneity prop-

2 In the literature the term achievable is sometimes used instead of implementable.
3 A construction similar to the canonical controller has been used in [7]
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connection is reversed.
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Fig. 4. The canonical controller C′
canonical in action.

erty if for any w1, w2 ∈ W and c1, c2 ∈ C, the following implication holds.

(w1, c1), (w1, c2), (w2, c1) ∈ Pfull ⇒ (w2, c2) ∈ Pfull.

Homogeneity can also be understood as follows. The behavior Pfull can be seen
as a relation between W and C. A relation is called independent if it can be
written as a Cartesian product of its projections on the related domains. The
behavior Pfull has the homogeneity property if it can be written as a disjoint
union of independent relations. In particular, if W and C are linear spaces
and Pfull is a linear subspace, then Pfull has the homogeneity property.

The following theorem captures an important property of the canonical con-
troller C′

canonical.

Theorem 2 If the full plant behavior Pfull has the homogeneity property, then
the canonical controller C′

canonical implements the smallest implementable behav-
ior containing P ∩ D.
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PROOF. Denote the behavior implemented by C′
canonical as K. From (1), we

can infer that K ⊇ P ∩ D. To show that C′
canonical implements the smallest

implementable behavior containing P ∩ D, consider any other controller C′

that implements K′ such that K′ ⊇ P ∩ D. We shall prove that K ⊆ K′.

Take any element w ∈ K. We are going to show that w ∈ K′. If w ∈ P ∩ D,

then w ∈ K′, since K′ ⊇ P ∩D.

If w 6∈ P ∩ D, there exists a c ∈ C′ and w′ ∈ P ∩ D such that both (w, c)
and (w′, c) are elements of Pfull. Now we are going to show that w 6∈ K′ is a
contradiction. Suppose that it is true, then

{c ∈ C | (w, c) ∈ Pfull} ∩ C′ = ∅.

By the homogeneity property, we also have that

{c ∈ C | (w, c) ∈ Pfull} = {c ∈ C | (w′, c) ∈ Pfull}.

Thus, the following relation is also true.

{c ∈ C | (w′, c) ∈ Pfull} ∩ C′ = ∅.

This implies w′ 6∈ K′, which is a contradiction. �

Remark 3 Theorem 2 also tells us that for every control problem involving
a plant with the homogeneity property, the smallest implementable behavior
containing P ∩ D exists.

Obviously, a necessary condition for implementability of D is D ⊂ P. This
fact, combined with Theorem 2 gives C′

canonical its special property.

Corollary 4 Assume the full plant behavior has the homogeneity property.
Then, the canonical controller C′

canonical implements D if and only if D is im-
plementable (that is, if and only the control problem is solvable).

As already noted, if Pfull is a linear behavior, then it has the homogeneity
property. Hence, although seemingly restrictive, the class of behaviors with
the homogeneity property is, in fact, fairly large, and most importantly, it
captures the class of linear time-invariant behaviors, the subject of sections
3-5.

We give LTI behaviors as examples of behaviors with the homogeneity prop-
erty. For that of behaviors without the homogeneity property, refer to the
plant behavior depicted in Figure 2.

There is, in fact, a second canonical controller that is of interest, and has been
introduced in [16]. The canonical controller, denoted as C′′

canonical, is defined as

6



follows

C′′

canonical :=











c ∈ C | ∃ v such that
• (v, c) ∈ Pfull, and

• (v, c) ∈ Pfull ⇒ v ∈ D











. (2)

In words, this canonical controller accepts a control-variable trajectory c if and
only every to-be-controlled-variables trajectory v that can be paired with c is
accepted in the desired behavior. Clearly, whatever behavior is implemented
by this controller, it must be contained in D. In fact, we have the following
theorem.

Theorem 5 The canonical controller C′′
canonical implements the largest imple-

mentable behavior contained in D.

PROOF. Denote the behavior implemented by C′′
canonical as K. It is quite obvi-

ous that K ⊆ D. To show that C′′
canonical implements the largest implementable

behavior in D, consider any other controller C′ that implements K′ such that
K′ ⊆ D. We shall prove that K′ ⊆ K.

Take any element w ∈ K′. There exists a c ∈ C′ such that

(w, c) ∈ Pfull,

{v ∈ W | (v, c) ∈ Pfull} ⊆ K′ ⊆ D. (3)

From (2) and (3), we can infer that c ∈ C′′
canonical and therefore w ∈ K. �

Remark 6 Using Theorem 5, we can also infer that for every control prob-
lem (not necessarily the ones with homogeneity property), the largest imple-
mentable behavior contained in D exists.

As a consequence of Theorem 5, the canonical controller C′′
canonical possesses

the following special property.

Corollary 7 The canonical controller C′′
canonical implements D if and only if

D is implementable (that is, if the control problem is solvable).

Figure 5 illustrates the action of C′′
canonical. Notice that the connectors are

replaced with symbols denoting “implies”. For comparison, the behaviors im-
plemented by the two canonical controllers are shown in Figure 6.

3 Implementability of linear behaviors

In the remaining of the paper we shall restrict our attention to LTI differ-
ential behaviors. This class of behaviors has been discussed quite extensively
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canonical and C′′

canonical.

in the literature, see [13,6,12], for example. In the following we give a brief
introduction to the subject to make this paper self-contained.

We use the symbol Lw to denote the class of LTI differential 4 systems with
w variables. These are dynamical systems Σ = (R, Rw, B), where the behavior
B can be expressed as the solutions of a system of differential equations

R

(

d

dt

)

w = 0. (4)

4 The analysis also holds if difference equations were used instead of differential
equations; however, we restrict our attention to differential equations in order to
ease the exposition.
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Here the polynomial matrix R ∈ R•×w[ξ]. Furthermore, the behavior B is
defined to be the set of all smooth solutions to the differential equations,

B :=

{

w ∈ C
∞(R, Rw) | R

(

d

dt

)

w = 0

}

. (5)

The differential equation (4) is called a kernel representation of B and some-

times we write B = ker R
(

d

dt

)

. A kernel representation is called minimal if
the rank of the polynomial matrix is equal to the number of its rows.

Often, the behavior is defined through auxiliary variables. In this case, we
use the term manifest for the variables of interest, and latent for the auxiliary
ones. If B ∈ Lw+` is a system involving the manifest variables w and the latent
variables l then it can be proven (see [13,6]) that the manifest behavior Bw

defined by

Bw := {w ∈ C
∞(R, Rw) | ∃ ` ∈ C

∞(R, R`) such that (w, `) ∈ B}

is also an element of Lw. This result is referred to as the elimination theorem.

Remark 8 The choice of the underlying function space C∞(R, Rw) is made
for mathematical convenience. An alternative that is quite commonly used is
to regard the behavior as the collection of weak solutions of the differential
equation (4), which are elements of L

loc
1 (R, Rw), the space of locally integrable

functions. We refer to [6] for further exposition on this issue.

We return to the control problem discussed in Section 1. For linear time-
invariant differential systems, the control problem can be formulated as fol-
lows. The plant behavior Pfull ∈ Lw+c is expressed in terms of the to-be-
controlled variables w and the control variables c. The controller behavior C
is an element of Lc. The controlled behavior K defined by

K := {w ∈ C
∞(R, Rw) | ∃ c ∈ C such that (w, c) ∈ Pfull},

is an element of Lw (as a consequence of the elimination theorem).

For linear differential systems, the implementability question becomes:

Question: Given Pfull ∈ L
w+c, which behaviors K ∈ L

w can be implemented
by using a suitable controller C ∈ Lc?

The answer to this question is summarized in the following theorem.

Theorem 9 Given Pfull ∈ L
w+c, the behavior K ∈ L

w is implementable if and
only if

N ⊆ K ⊆ P, (6)
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where N ∈ Lw is the hidden behavior defined by

N := {w ∈ C
∞(R, Rw) | (w, 0) ∈ Pfull},

and P is the manifest plant behavior defined by

P := {w ∈ C
∞(R, Rw) | ∃ c ∈ C

∞(R, Rc) such that (w, c) ∈ Pfull}.

This result was first published in [15] and subsequently used in [5,8,9,2,11,10].

It is important to notice that the controller that implements K is usually not
unique. Generally speaking, the controllers that implement the same behavior
may have very different properties.

4 Regular interconnections

In the previous section, we have been discussing interconnection of linear dif-
ferential behaviors without considering any further restrictions. We now in-
troduce a notion of compatibility in the control problem. In order to motivate
it, consider the following example. Let P and C be defined as the following.

P := {w ∈ C
∞(R, Rw) |

d2w

dt2
− w = 0},

C := {w ∈ C
∞(R, Rw) |

dw

dt
+ w = 0}.

We can easily verify that P is an autonomous behavior [6], that is, any trajec-
tory in P is completely characterized by its past. Moreover, this behavior has
unstable exponential trajectories. Thus, P is an unstable autonomous behav-
ior. Now, consider the interconnection P ‖ C, which consists of the trajectories
in the intersection of P and C, i.e. P ∩C. (Here, ‖ denotes the interconnection
of two systems, while ∩ denotes the intersection of the behaviors of the two
systems.) For the above example, notice that the unstable trajectories in P
(the trajectories that are not bounded as t → ∞) do not belong to the in-
terconnection P ‖ C. Moreover, since all trajectories in P ‖ C are stable (i.e.,
limt→∞ w(t) = 0 for all elements w in P ‖ C) we infer that the interconnection
of P and C yields a stable behavior. Therefore, if we do not add any further
restrictions on the admissible controllers, it is perfectly possible that an au-
tonomous unstable behavior is stabilized. Such controllers may be impossible
to implement. More on this can be found in [14,3,10].

In order to cope with this, we introduce the concept of compatibility. With
this concept, interconnections like the one in the previous paragraph are dis-
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counted. The control problem then becomes ‘to find a compatible controller’
instead of just ‘to find any controller’.

A notion of compatibility for behavior interconnections in a general sense, not
limited to just LTI systems, has been studied in [3]. For LTI systems, this
general notion is related to the concept of regular interconnection, that has
been introduced before in [14].

Consider a behavior B ∈ L
w. Let R( d

dt
)w = 0 be a minimal kernel representa-

tion of B. Being minimal, R has at least as many columns as it has rows. Let
g be the number of rows. The number of columns is obviously w. Therefore,
g 6 w. This means that we are always able to select g columns from R to
form a square polynomial matrix with nonzero determinant. Notice that the
selection is generally not unique. If we group together the components of w
corresponding to the g selected rows and call them y, and do similarly to the
remaining w − g components and call them u, we end up with partitioning
w into output y and input u. The reason u is called input is because it is
free, in the following sense. For any choice of C∞ input trajectory u, we can
always find an output trajectory y such that (u, y) ∈ B. Notice that the num-
ber of inputs and outputs are properties of the behavior, and are independent
of the minimal kernel representation used to represent the behavior. There-
fore, we can define two maps m and p such that m : L

w → {0, 1, . . . , w} and
p : Lw → {0, 1, . . . , w}, which give the number of inputs and the number of
outputs of a given behavior respectively. Obviously, for any behavior B ∈ Lw,
we have that m(B) + p(B) = w.

Definition 10 The interconnection of two behaviors B1 and B2 is said to be
regular if

p(B1) + p(B2) = p(B1 ‖ B2).

In a sense, regularity implies that the set of equations governing the dynamics
of both behaviors are independent of each other.

We shall now apply regularity to the control problem. Recalling the definitions
of the full plant behavior Pfull and the controller behavior C, we define the full
controlled behavior Kfull as

Kfull := {(w, c) ∈ Pfull | c ∈ C}.

The interconnection between the plant and the controller is regular if

p(Pfull) + p(C) = p(Kfull).

If this is the case, then the controller C is called a regular controller.

It can be shown that a controller is regular if and only if it can be realized
as a (possibly non-proper) transfer function from the output variables to the
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input variables of Pfull. Therefore, a controller is regular if it can be viewed as
an “intelligent controller” that processes sensor outputs into actuator inputs.
See [14] for more details.

Given the formulation of regular interconnection, we recast the question of
implementability of K in the previous section into the question of regular
implementability of K.

Question: Given Pfull ∈ Lw+c, which behaviors K ∈ Lw can be implemented
by using a suitable regular controller C ∈ Lc?

It turns out that regular implementability involves controllability of the plant.
For more on the concept of controllability from the behavioral systems theory
point of view, we refer the reader to [6]. In fact, it has been proven in [4] and
[14] that every implementable behavior K of a controllable plant P is regularly
implementable.

A necessary and sufficient condition for regular implementability, even when
the plant may not be controllable, is given in [2].

Theorem 11 Given a full plant behavior Pfull ∈ Lw+c. Denote the hidden be-
havior and the manifest plant behavior as N and P respectively. Let Pcontrollable

be the controllable part of P. The behavior K ∈ L
w is regularly implementable

if and only if
1) K is implementable, i.e. N ⊆ K ⊆ P and
2) K + Pcontrollable = P.

Regular implementability of a behavior K implies the existence of at least
one regular controller that implements it. In general, given a regularly im-
plementable behavior, there exist irregular controllers that implement it. The
question that we address in the rest of this section is: Under what conditions
on the plant Pfull and the controlled behavior K, can we conclude that every
controller that implements K is regular? It turns out that the answer to this
question does not depend on K, but just on the plant.

Define the control variable plant behavior Pc ∈ L
c as follows

Pc := {c | ∃w such that (w, c) ∈ Pfull}.

We have the following result.

Theorem 12 Let Pfull ∈ Lw+c be the full plant behavior. Given any controlled
behavior K ∈ Lw, every controller C ∈ Lc that implements K is a regular
controller if and only if Pc = C∞(R, Rc).

12



PROOF. Let

R(
d

dt
)w + M(

d

dt
)c = 0

be a minimal kernel representation of Pfull. Note that Pc = C
∞(R, Rc) is

equivalent to R having full row rank.

(if) Take any controller C ∈ Lc. Let C( d

dt
)c = 0 be its minimal kernel repre-

sentation. Since R has full row rank, it follows that







R( d

dt
) M( d

dt
)

0 C( d

dt
)













w

c





 = 0

is a minimal kernel representation of Kfull. Therefore,

p(Kfull) = rank R + rank C,

= p(Pfull) + p(C).

Hence the controller is regular.

(only if) Suppose that Pc 6= C∞(R, Rc). Let P ( d

dt
)c = 0 be a minimal kernel

representation of Pc. Note that P 6= 0. It follows that if we choose a controller
that has the same minimal kernel representation as Pc, then the resulting
interconnection is not regular. �

5 Control with the canonical controller

Let us revisit the formulation of the control problem for linear time invariant
systems. We are given a full plant behavior Pfull. Let

R(
d

dt
)w + M(

d

dt
)c = 0 (7)

be a minimal kernel representation of Pfull. We are also given a desired con-
trolled behavior D, whose minimal kernel representation is D( d

dt
)w = 0.

The behavior of the first canonical controller C′
canonical ∈ Lc is defined as

C′

canonical := {c ∈ C
∞(R, Rc) | ∃ v ∈ W such that (v, c) ∈ Pfull and v ∈ D} .

Obviously, a kernel representation for this controller can be obtained by elim-
inating v from the following kernel representation.







R( d

dt
) M( d

dt
)

D( d

dt
) 0













v

c





 = 0. (8)
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The behavior of the second canonical controller is defined as

C′′

canonical :=











c ∈ C
∞(R, Rc) | ∃ v such that

• (v, c) ∈ Pfull, and

• (v, c) ∈ Pfull ⇒ v ∈ D











. (9)

Recall the fact that LTI behaviors satisfy the homogeneity property. For linear
time-invariant differential systems, these two canonical controllers are essen-
tially equivalent, as shown in the following theorem.

Theorem 13 The following three statements are equivalent.
(i) C′

canonical = C′′
canonical.

(ii) The second canonical controller C′′
canonical is not empty.

(iii) The hidden behavior N is contained in the desired controlled behavior D,
i.e. N ⊆ D.

PROOF. We prove (i)⇒(ii)⇒(iii)⇒(i)
(i)⇒(ii). Notice that the zero trajectory is always contained in C′

canonical, there-
fore C′

canonical is never empty.

(ii)⇒(iii). We first prove that for any c1 and c2 in C′′
canonical, their linear combi-

nations are also in C′′
canonical. Notice that from the definition (9), it is not clear

that this is the case. Suppose that c1 and c2 are in C′′
canonical. There exist w1 and

w2, both in D, such that (w1, c1) and (w2, c2) are both in Pfull. Now take any
linear combination α1c1 + α2c2. For any w such that (w, α1c1 + α2c2) ∈ Pfull,

the following reasoning holds.

(w, α1c1 + α2c2) ∈ Pfull
linearity of Pfull=⇒ (w − α1w1 − α2w2 + w1, c1) ∈ Pfull,

property of C′′

canonical=⇒ (w − α1w1 − α2w2 + w1) ∈ D,

linearity of D
=⇒ w ∈ D.

Hence, if C′′
canonical is nonempty, it is obvious that the zero trajectory is included

in C′′
canonical. Let K′′

canonical be the controlled behavior implemented by C′′
canonical.

Since 0 ∈ C′′
canonical, we have that N ⊆ K′′

canonical. From Theorem 5 we also
know that K′′

canonical ⊆ D. Hence N ⊆ D.
(iii)⇒(i). Take any c ∈ C′

canonical. There exists a w ∈ D such that (w, c) ∈ Pfull.

Take any other w′ such that (w′, c) ∈ Pfull, then we also have (w−w′, 0) ∈ Pfull.

Therefore (w − w′) ∈ N ⊆ D. By the linearity of D, we conclude that w′ ∈ D
and therefore c ∈ C′′

canonical. We have shown that C′
canonical ⊆ C′′

canonical. The
converse is obvious from the definitions of the canonical controllers. �

This theorem implies that if the control problem is solvable, then the two
canonical controllers are equal. Motivated by this theorem, we shall consider
in the subsequent discussion only the first canonical controller C′

canonical. The
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question what controlled behavior is actually implemented by the canonical
controller is answered by the following theorem.

Theorem 14 Consider Pfull ∈ Lw+c and D ∈ Lw. The controlled behavior K
implemented by the canonical controller C′

canonical ∈ Lc is

K = N + D ∩ P

with N the hidden behavior and P the manifest plant behavior.

PROOF. Let the kernel representation of Pfull be given by (7), and let D
be represented by D( d

dt
)w = 0. We then know that a kernel representation of

C′
canonical can be obtained by eliminating w from (8). Therefore, K is the man-

ifest behavior (with w as the manifest variable) of the behavior represented
by















R( d

dt
) M( d

dt
) 0

0 M( d

dt
) R( d

dt
)

0 0 D( d

dt
)





























w

c

v















= 0.

Notice that K is then also the manifest behavior (with w as the manifest
variable) of the behavior represented by















R( d

dt
) 0 0

0 M( d

dt
) R( d

dt
)

0 0 D( d

dt
)





























w − v

c

v















= 0. (10)

Now define w′ := w − v, we can see from (10) that the dynamics of w′ is
decoupled from that of c and v. Furthermore, the behavior of w′ is exactly N
(see Section 3). The second and third rows of (10) indicate that the behavior
of v, which is obtained by eliminating c, is D ∩ P. From here, using the fact
that w = w′ + v, we obtain

K = N + D ∩ P.

�

This result is not unexpected. In fact, we can see it as an application of The-
orem 2 to the special case of LTI behaviors. Similarly, we can apply Corollary
4 to LTI systems to obtain the following corollary.

Corollary 15 The canonical controller C′
canonical ∈ Lc implements D ∈ Lw if

and only if D is implementable, i.e. N ⊆ D ⊆ P.

So far we have seen that when D is implementable, the canonical controller
C′

canonical implements it. However, as we have seen in Section 4, implementabil-
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ity alone may not be good enough. In the following we shall address the issue
of regularity of the canonical controller C′

canonical.

Theorem 16 Given a full plant behavior Pfull ∈ L
w+c and a desired controlled

behavior D ∈ Lw. Assume that D is implementable. The canonical controller
C′

canonical implements D regularly if and only if Pc = C∞(R, Rc).

PROOF. (if) Follows directly from Theorem 12.

(only if) Without loss of generality, we can assume that Pfull has a minimal
kernel representation of the following form.







R1(
d

dt
) M1(

d

dt
)

0 M2(
d

dt
)













w

c





 = 0,

with both R1 and M2 having full row rank. The kernel representations of
N and Pc are then given by R1(

d

dt
)w = 0 and M2(

d

dt
)c = 0 respectively.

Since N ⊆ D, we are able to find a suitable full row rank matrix F ( d

dt
) such

that F ( d

dt
)R1(

d

dt
)w = 0 is a minimal kernel representation of D. Therefore a

kernel representation of the canonical controller C′
canonical can be obtained by

eliminating v from















R1(
d

dt
) M1(

d

dt
)

0 M2(
d

dt
)

F ( d

dt
)R1(

d

dt
) 0





















v

c





 = 0.

Since R1 has full row rank, we easily obtain the following kernel representation
of C′

canonical (possibly non-minimal).







M2(
d

dt
)

F ( d

dt
)M1(

d

dt
)





 c = 0.

We see that C′
canonical always repeats some laws of Pfull, namely the rows in

M2. Thus C′
canonical is regular only if M2 is the zero matrix, which implies

Pc = C
∞(R, Rc). �

This result, combined with Theorem 12, tells us that the canonical controller
is maximally irregular, in the sense that if there exists any irregular controller
that implements the desired behavior D, then the canonical controller is ir-
regular too.
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6 Concluding remarks

The idea of the canonical controller in the behavioral framework is attractive
because of its simplicity of construction and also since it formalizes the ‘inter-
nal model principle’ without undue recourse to the ‘equations’ with which the
plant is described. This approach of building systems without using the equa-
tions explicitly underlines the representation free nature of behavioral theory.
Some specific issues are summarized here to highlight the main results of the
paper.

We defined two canonical controllers. For the case of linear time-invariant be-
haviors (or more generally, for plants with homogeneity property), when the
desired behavior D is implementable, the canonical controllers are the same
(see Theorem 13). However, they can differ when D is not implementable. In
this situation each of the two canonical controllers are extreme in a certain
sense. The first canonical controller implements the smallest implementable
behavior that contains P ∩D. The second canonical controller C′′

canonical imple-
ments the largest implementable behavior contained in D. These statements
were formulated and proved in theorems 2 and 5 respectively.

For the case of linear time-invariant behaviors, the implementability of D
implies non-emptiness of C′′

canonical (Theorem 13). When C′′
canonical is nonempty,

it is a linear subspace of C∞(R, R•), and hence contains the zero trajectory.
Thus, we have a necessary condition for implementability of D, namely if the
zero trajectory belongs to C′′

canonical.

We then addressed the issue of regularity of a controller with respect to a
given plant. It turns out that the condition of guaranteed regularity of every
controller that implements a given desired behavior, is a property of just the
plant, and is independent of the given desired behavior.

The issues of regularity of every controller and the canonical controllers are
related by the results in the final section. Here we showed that, given a plant,
irregularity of any controller implies irregularity of the canonical controller,
and hence we termed the canonical controller as maximally irregular.
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