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a b s t r a c t

In this paper, we consider metric transition systems which are transition systems equipped with
metrics for observation and synchronization labels. The existence of metrics leads to the introduction
of two new concepts, (i) (ε, δ)-approximate (bi)simulation of transition systems and (ii) approximate
synchronization of transition systems.
We show that the notion of (ε, δ)-approximate (bi)simulation can be thought of as a generalization or

relaxation of the earlier work on δ-approximate (bi)simulation by Girard and Pappas. We demonstrate
the link between reachability verification and approximate (bi)simulation, and we also provide a
characterization of (bi)simulation relations using a tool similar to the (bi)simulation function.
Approximate synchronization can be thought of as a generalization of synchronization of transition

systems in the usual sense. In fact, the usual synchronization and interleaving synchronization are two
special cases of the notion of approximate synchronization developed in this paper. Furthermore, we
present a result on the compositional properties of the approximate (bi)simulation with respect to the
approximate synchronization.
In addition to the theoretical presentation of approximate bisimulation and synchronization, we

also discuss the application of this framework in analyzing control systems over digital communication
networks.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

System abstraction is an important tool for analyzing complex
systems.With abstraction, the complexity of the systems (typically
associated with the size of the state space) can be decreased,
resulting in lesser computational cost in the analysis [1].
System abstraction is traditionally associated with system

equivalence, in the sense abstraction of a complex system amounts
to constructing an equivalent system with lesser complexity. The
equivalence guarantees that the results of analysis performed on
the less complex system can be carried over into the complex
system. Language equivalence and bisimulation (and its variants)
are two of themost commonly used notions of system equivalence
for systems abstraction [2–5].
Requiring the abstraction to be equivalent to the original

system is sometimes too restrictive. Researchers have been
working to develop more relaxed abstraction theories that enable
further model simplification. One of the ideas is to relax the
requirement that the abstraction is equivalent to the original
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system, and replace it with a requirement that the abstraction is
only approximately equal to the original system (see, e.g. [6–8]).
The key ingredient to these theories is a metric that can quantify
the distance between the system and its abstraction, and hence
the quality of the abstraction. In this paper, we start with the idea
of approximate bisimulation of transition systems as developed
recently in [8] and previous related papers by the authors.
Although we set our discussion in the framework of transition

systems, the applicability of the results is not restricted to discrete
event systems. In fact, many interesting classes of continuous and
discrete time dynamical systems can be embedded as transition
systems [3], and abstraction can be studied as abstraction of the
transition system [9,2].
This paper presents some results that have been reported

earlier in our conference paper [10]. Here, we extend the earlier
work on approximate bisimulation [8] by introducing a pseudo-
metric on set of labels of the transition systems. Having a notion
of distance in the set of labels enables us to define a notion
of approximate synchronization. Loosely speaking, by approximate
synchronization we mean allowing systems to synchronize not
only on the same label, but also with labels that are close.
Approximate synchronization can be thought of as a relaxation of
the notion of synchronization in the usual sense.
Contrary to exact notions of synchronization for traditional

transition systems, approximate synchronization is a much more
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natural and robust concept especially when different systems
need to synchronize over temporal or spatial variables where
exact synchronization may be too restrictive or not robust. For
example, random communication delays between geographically
distant subsystems requires a notion of synchronization that
does not require strict simultaneity. Thus, approximation in the
synchronization can be related to tolerance in timing. Verification
of systems with relaxed timing is an active research area. There
has been some work in the direction of developing a new metric
to quantify distance in the timing-relaxed way [11–13]. Similarly,
in the area of multi-agent control, if spatial information about the
agents is captured on the labels, then approximate synchronization
can be used as a compact and natural way of representing
communication (or cooperation) range. Here, labels that are close
correspond to agents that are spatially close.
In this paper, we first extend the notion of approximate

(bi)simulation of metric transition systems, by introducing a pseu-
dometric on the set of labels. We elucidate the relation between
ourwork and an earlier work by Girard and Pappas [8], andwe also
provide away to characterize approximate (bi)simulation relations
by using an extension of the (bi)simulation functions. We then in-
troduce the notion of approximate synchronization and present
a result that shows that approximate (bi)simulation is composi-
tional with respect to approximate synchronization. Even further,
we show that this result also extends to the case where clusters
of transition systems (called composite transition systems) are
synchronized. We then show that the notion of approximate syn-
chronization is useful in analyzing systems with control over com-
munication networks [14–16]. The transmission of uncertainty
corresponding to measurement discretization can be naturally
modeled as approximate synchronization.

2. Metric transition systems

In this section, we extend the idea of approximate simulation
and bisimulation, by introducing a pseudometric on the set of
labels of the transition systems.
We define a transition system as a six tuple T = (Q ,Σ,→,

Q 0,Π, 〈·〉), where Q is the set of states, Σ is the set of labels,
→⊂ Q × Σ × Q is a set of transitions, Q 0 is the set of initial
states, Π is the set of possible observations, 〈·〉 : Q → Π is the
observation map. The transition system is called ametric transition
system if the set of observationsΠ and labelsΣ are equipped with
pseudometrics dΠ and dΣ respectively.1 Apseudometric is ametric
that allows zero distance between different points.

Notation 1. In this paper we shall use the following notations.

∀ε ≥ 0, σ ∈ Σ, Bε(σ ) := {σ ′ ∈ Σ | dΣ (σ , σ ′) ≤ ε},
∀ε ≥ 0, z ∈ Π, Bε(z) := {z ′ ∈ Π | dΠ (z, z ′) ≤ ε},

∀q ∈ Q , S ⊂ Σ, Ω(q, S) := {q′ ∈ Q | ∃σ ∈ S, q
σ
→ q′}.

Definition 2. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. A relationR ⊂ Q1 × Q2 is a (ε, δ)-approximate
simulation of T1 by T2, δ, ε ≥ 0, if for any (q1, q2) ∈ R,

(i) dΠ (〈q1〉1, 〈q2〉2) ≤ δ,
(ii) For any a ∈ Σ, q′1 ∈ Q1 such that q1

a
→ q′1, there exists an

a′ ∈ Σ and q′2 ∈ Q2 such that

dΣ (a, a′) ≤ ε, q2
a′
→ q′2, (q′1, q

′

2) ∈ R.

1 From this point on we assume that all transition systems are metric transition
systems, hence we do not distinguish between the two notions.
Notice that ε and δ represent the precision in the approximation
in terms of the synchronization labels and the observations
respectively. A (0, δ)-approximate simulation relation is a δ-
approximate simulation in the sense of [8], which requires exact
synchronization. A (0, 0)-approximate simulation relation is a
classical exact simulation relation with exact synchronization.
Furthermore, the following proposition reveals the partial ordering
of approximate simulation relations.

Proposition 3. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. Let R ⊂ Q1 × Q2. For any δ′ ≥ δ ≥ 0 and
ε′ ≥ ε ≥ 0 the following statements hold.

(i) If R is a (ε, δ)-approximate simulation of T1 by T2 then it is also
a (ε′, δ)-approximate simulation of T1 by T2.

(ii) If R is a (ε, δ)-approximate simulation of T1 by T2 then it is also
a (ε, δ′)-approximate simulation of T1 by T2.

A (ε, δ)-approximate bisimulation relation can be defined as a
symmetric version of a (ε, δ)-approximate simulation, as follows.

Definition 4. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. A relationR ⊂ Q1 × Q2 is a (ε, δ)-approximate
bisimulation between T1 and T2, δ, ε ≥ 0, if R is both a (ε, δ)-
approximate simulation of T1 by T2 and a (ε, δ)-approximate
simulation of T2 by T1.

Corollary 5. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. Let R ⊂ Q1 × Q2. For any δ′ ≥ δ ≥ 0 and
ε′ ≥ ε ≥ 0 the following statements hold.

(i) If R is a (ε, δ)-approximate bisimulation between T1 and T2 then
it is also a (ε′, δ)− approximate bisimulation between T1 and T2.

(ii) If R is a (ε, δ)-approximate bisimulation between T1 and T2 then
it is also a (ε, δ′)-approximate bisimulation between T1 and T2.

Approximate simulation and bisimilarity between transition
systems are characterized as follows.

Definition 6. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. We say that T2 simulates T1 with precision
(ε, δ) if there exists R, a (ε, δ)-approximate simulation of T1 by
T2, such that for every q01 ∈ Q

0
1 , there exists a q

0
2 ∈ Q

0
2 such that

(q01, q
0
2) ∈ R. This relation is denoted by T1�ε,δ T2.

Definition 7. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. We say that T1 and T2 are approximately
bisimilar with precision (ε, δ) if there exists R, a (ε, δ)-
approximate bisimulation between T1 and T2, such that

(i) for every q01 ∈ Q
0
1 , there exists a q

0
2 ∈ Q

0
2 such that (q

0
1, q

0
2) ∈

R,
(ii) for every q02 ∈ Q

0
2 , there exists a q

0
1 ∈ Q

0
1 such that (q

0
1, q

0
2) ∈

R.

This relation is denoted by T1≈ε,δ T2.

The concept of (ε, δ)-approximate bisimulation is illustrated in
Fig. 1. Based on Proposition 3 and Corollary 5, we can derive the
following proposition.

Proposition 8. Given two transition systems T1 and T2. For any δ′ ≥
δ ≥ 0 and ε′ ≥ ε ≥ 0. the following statements hold.

(i) If T1�ε,δ T2 then T1�ε′,δ T2.
(ii) If T1�ε,δ T2 then T1�ε,δ′ T2.
(iii) If T1≈ε,δ T2 then T ≈ε′,δ T2.
(iv) If T1≈ε,δ T2 then T ≈ε,δ′ T2.
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Fig. 1. An illustration of approximate (bi)simulation with metricized labels
between two transition systems T1 and T2 . The outputs of related states must be
distanced by at most δ. The two transition systems does not have to synchronize
with the same labels. Rather, the labels can be at most ε apart.

We can also show that the approximate bisimulation relations
possess some kind of transitivity property, as stated in the
following proposition.

Proposition 9. Given three transition systems T1, T2 and T3. For any
δ, δ′ ≥ 0 and ε, ε′ ≥ 0. the following statements hold.
(i) If T1�ε,δ T2 and T2�ε′,δ′ T3, then T1�ε+ε′,δ+δ′ T3.
(ii) If T1≈ε,δ T2 and T2≈ε′,δ′ T3, then T1≈ε+ε′,δ+δ′ T3.

The relation between the reachable sets (of observations) of
the transition systems and the approximate (bi)simulation is
summarized as follows.

Definition 10. Given a transition system T = (Q ,Σ,→,Q 0,
Π, 〈·〉), an observation y ∈ Π belongs to the reachable set of the
transition systemR(T ) if there exists an initial state x0 ∈ Q 0 and
a trajectory starting from x0,

x0
a1
→ x1

a2
→· · ·

an
→ xn,

such that 〈xn〉 = y.

Theorem 11. Given two transition systems T1 and T2, the following
relations hold.
(i) T1�ε,δ T2 for some ε, δ ≥ 0 implies

sup
y1∈R(T1)

inf
y2∈R(T2)

dΠ (y1, y2) ≤ δ. (1)

(ii) T1≈ε,δ T2 for some ε, δ ≥ 0 implies

max

(
sup

y1∈R(T1)
inf

y2∈R(T2)
dΠ (y1, y2),

sup
y2∈R(T2)

inf
y1∈R(T1)

dΠ (y1, y2)

)
≤ δ. (2)

Proof. (i) We need to show that if T1�ε,δ T2 for some ε, δ ≥ 0,
then for any y1 ∈ R(T1), there exists a y2 ∈ R(T2) such that
dΠ (y1, y2) ≤ δ. There exists a trajectory of T1 starting from x1,0 ∈
Q 01 ,

x1,0
a1
→ x1,1

a2
→· · ·

an
→ x1,n,

such that
〈
x1,n

〉
1 = y1. Suppose that R ⊂ Q1 × Q2 is a

(ε, δ)-approximate simulation of T1 by T2. By the definition of
approximate simulation, we can infer that there exists a trajectory
of T2 starting from a x1,0 ∈ Q 01 ,

x2,0
a′1
→ x2,1

a′2
→· · ·

a′n
→ x2,n,

(x1,i, x2,i) ∈ R.
Denote
〈
x2,n

〉
2 = y2. It follows from the definition of approximate

simulation that dΠ (y1, y2) ≤ δ.
(ii) Analogous to part (i). �

The application of approximate (bi)simulation as an aid in
safety verification of dynamical systems is presented in [8].
Given a dynamical system embedded as a transition system T1,
another dynamical system embedded as a transition system T2 is
constructed such that T1�0,δ T2. The system correspondingwith T2
is simpler, in the sense of smaller state space. The reachable set of
T1 can thus be approximated with that of T2 with precision δ.
The introduction of ametric for the labels can be thought of as a

relaxation that allows for tighter bound in the approximation of the
reachable set. This is illustrated on the continuous time dynamical
system

dx
dt
= f (x, u), y = h(x), (3)

x ∈ X, x(0) ∈ X0, u ∈ U, y ∈ Y ⊂ Rm. (4)

This system can be embedded into a transition system T =
(Q ,Σ,→,Q 0,Π, 〈·〉), where Q = X, Σ = R+, Q 0 = X0,
Π = Y, 〈x〉 = h(x).

→⊂ Rn × R+ × Rn,

such that x
τ
→ x′ if and only if there exist x0 ∈ X0 and u : [0, τ ] →

U such that the continuous solution to the differential equation

dx
dt
= f (x, u), x(0) = x0 (5)

satisfies x(τ ) = x′. Alternatively stated, x
τ
→ x′ if and only if

there is an input that can drive the system starting at the initial
state x to the state x′ in τ time unit. The set of labels and
observations, R+ and Y ⊂ Rm are equipped with the Euclidian
distance ‖·‖. With this interpretation of transition system, the
distance between two labels corresponds to the difference in the
timing, in which the terminal state is reached. Therefore, in this
case, approximate synchronization corresponds to relaxation in
the timing. The following implication can be proven.

Proposition 12. Given two transition systems T1 and T2, the
following relations hold.

(i) T1�∞,δ T2 for some δ ≥ 0 if and only if

sup
y1∈R(T1)

inf
y2∈R(T2)

dΠ (y1, y2) ≤ δ. (6)

(ii) T1≈∞,δ T2 for some δ ≥ 0 if and only if

max

(
sup

y1∈R(T1)
inf

y2∈R(T2)
dΠ (y1, y2),

sup
y2∈R(T2)

inf
y1∈R(T1)

dΠ (y1, y2)

)
≤ δ. (7)

Therefore, by relaxing the requirement on the timing, we can
get a result stronger than Theorem 11. A different treatment of a
similar idea is presented in [12].

3. Extension of the (bi)simulation functions

In this section we discuss the extension of the concept of
(bi)simulation functions [8], to deal with metrics on synchroniza-
tion labels.
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Definition 13. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. A function φ : Q1 × Q2 → R+ ∪ {∞} is an
ε- simulation function of T1 by T2 if for any q1 ∈ Q1 and q2 ∈ Q2,

φ(q1, q2) ≥ dΠ (〈q1〉1 , 〈q2〉2), (8a)

φ(q1, q2) ≥ sup
q1

σ
→ q′1

inf
q2
Bε(σ )
→ q′2

φ(q′1, q
′

2). (8b)

Notice that an ε-simulation function can be thought of as a
relaxed version of bisimulation function in the sense of [8]. In order
the match a transition of T1, T2 does not necessarily perform a
transition with the same label. Rather, T2 can choose any move, as
long as its label is at most ε apart from that of T1. A bisimulation
function in the sense of [8] is a 0- simulation function.

Proposition 14. Given two transition systems T1 and T2. If φ is an
ε-simulation function of T1 by T2, for some ε ≥ 0, then it is also an
ε′-simulation function of T1 by T2, for any ε′ ≥ ε ≥ 0.

Definition 15. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. A function φ : Q1 × Q2 → R+ ∪ {∞}
is an ε-bisimulation function between T1 and T2 if it is both an
ε- simulation function of T1 by T2 and an ε- simulation function
of T2 by T1. That is, for any q1 ∈ Q1 and q2 ∈ Q2,

φ(q1, q2) ≥ dΠ (〈q1〉1 , 〈q2〉2), (9)

φ(q1, q2) ≥ sup
q1

σ
→ q′1

inf
q2
Bε(σ )
→ q′2

φ(q′1, q
′

2), (10)

φ(q1, q2) ≥ sup
q2

σ
→ q′2

inf
q1
Bε(σ )
→ q′1

φ(q′1, q
′

2). (11)

The relation between (bi)simulation functions and approximate
(bi)simulation can be summarized in the following theorems.

Theorem 16. Given two transition systems T1 and T2. If φ is an ε-
simulation function of T1 by T2, for some ε ≥ 0, then for any δ ≥ 0,
its δ-level set,

Rδ(φ) := {(q1, q2)|φ(q1, q2) ≤ δ},

is a (ε, δ)-approximate simulation of T1 by T2.

Proof. Take any (q1, q2) ∈ Rδ(φ), by (8a) we have that,

dΠ (〈q1〉1 , 〈q2〉2) ≤ δ. (12)

For any σ ∈ Σ such that q1
σ
→ q′1, (8b) implies the existence of

q′2 ∈ Q2 and σ
′
∈ Σ such that

q2
σ ′

→ q′2, dΣ (σ , σ
′) ≤ ε,

φ(q′1, q
′

2) ≤ δ.

Therefore (q′1, q
′

2) ∈ Rδ(φ). �

Theorem 17. Given two transition systems T1 and T2. If φ is an ε-
bisimulation function between T1 and T2, for some ε ≥ 0, then for any
δ ≥ 0, its δ-level set,

Rδ(φ) := {(q1, q2)|φ(q1, q2) ≤ δ},

is a (ε, δ)-approximate bisimulation between T1 and T2.

Proof. Analogous to that of Theorem 16. �

Generally speaking, the characterization of an ε-simulation
function is similar to that of a simulation function when there is
nondeterminism in the system.
4. Approximate synchronization

Typically, synchronization of transition systems is formalized
by (exact) synchronization of the labels. In this section, we
introduce the idea of approximate synchronization. Loosely
speaking, the idea is to let two transition systems synchronize
using labels that are close, but not necessarily equal. Closeness is
defined in the sense of the a pseudometric in the set of labels.

4.1. Approximate synchronization of transition systems

Definition 18. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Πi, 〈·〉i), i = 1, 2. The approximate synchronization operator ‖ε ,
ε ≥ 0, acting on the two systems results in another transition
system

T := T1 ‖ε T2, (13)

where T = (Q1 × Q2,Σ × Σ,→,Q 01 × Q
0
2 ,Π1 × Π2, 〈·〉).

The transition relation → is such that (q1, q2)
σ ,σ ′

→ (q′1, q
′

2) iff

q1
σ
→1q′1, q2

σ ′

→2q′2, dΣ (σ , σ
′) ≤ ε. The observation map 〈·〉 is

defined as

〈(q1, q2)〉 := (〈q1〉1 , 〈q2〉2). (14)

Notice that the composite transition system T = T1 ‖ε T2
is quite different from the transition systems T1 and T2, in the
following sense:

• The observation space of T is a product of those of T1 and T2.
• The set of labels of T is also a product of those of T1 and T2.

We need to define a notion of pseudometric for an observation
space that is a product of two observation spaces, and similarly for
the set of labels.

Definition 19. The observation space Π1 × Π2 is equipped with
the following pseudometric.

dΠ
(
(π1, π2), (π

′

1, π
′

2)
)
:= dΠ1(π1, π

′

1)+ dΠ2(π2, π
′

2). (15)

The set of labels Σ × Σ is equipped with the following
pseudometric.

dΣ2
(
(σ1, σ2), (σ

′

1, σ
′

2)
)
:= max

i=1,2
max
j=1,2

dΣ (σi, σ ′j ). (16)

Generally, we can define the pseudometric dΠ on Π1 × Π2
differently. The only requirement that needs to be satisfied is
that dΠ should coincide with dΠ1 and dΠ2 when used to measure
distances inΠ1 andΠ2, respectively.

dΠ
(
(π1, π2), (π

′

1, π2)
)
= dΠ1(π1, π

′

1), ∀π2 ∈ Π2, (17)

dΠ
(
(π1, π2), (π1, π

′

2)
)
= dΠ2(π2, π

′

2), ∀π1 ∈ Π1. (18)

The pseudometric on Σ × Σ is the largest pairwise distance
between a label in the first composite transition system and the
second composite transition system. This can be interpreted as the
worst synchrony between the components of the two systems.
Approximate synchronization can be thought of as a relaxed
version of the exact synchronization. Exact synchronization is a
special case of approximate synchronization ‖ε , namely when ε =
0. Obviously, the larger the tolerance (ε) in the synchronization
is, the more flexible the two systems can evolve with respect to
each other. If we assume that the transition systems have stutter
transition [17], the case when ε = ∞ can be thought of as the
situation when the executions of the two transition systems are
interleaving. The executions can interleave because one transition
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system can always synchronize with the stutter transition of the
other.
The fact that defined notion of approximate synchronization is

a relaxation of the traditional notion of synchronization is reflected
in the following proposition.

Proposition 20. Given two transition systems Ti = (Qi,Σ,→i,Q 0i ,
Π, 〈·〉i), i = 1, 2. For any ε, ε′ ≥ 0, the following holds.

T1 ‖ε T2�0,0 T1 ‖ε+ε′ T2. (19)

This proposition tells us that a synchronization with higher
tolerance always simulates one with less tolerance.
It is already known that the notion of approximate (bi)simula-

tion has a compositional property [8] with respect to exact
synchronization. In the following we shall show that the extended
notion of approximate (bi)simulation that we present in this paper
also has a compositional property with respect to approximate
synchronization.

Theorem 21. Consider transition systems T1, T2, T ′1 and T
′

2. Suppose
that the transition systems T1 and T ′1 have observation spaceΠ1, while
T2 and T ′2 have observation spaceΠ2. Moreover we assume that all of
them share the same set of labels Σ . If T1�ε1,δ1 T

′

1 and T2�ε2,δ2 T
′

2,
then for any ε ≥ 0,

T1 ‖ε T2�ε+max(ε1,ε2),δ1+δ2 T
′

1 ‖ε+ε1+ε2 T
′

2. (20)

Proof. Denote

T := T1 ‖ε T2, T
′
:= T ′1 ‖ε+ε1+ε2 T

′

2. (21)

Since T1�ε1,δ1 T
′

1 and T2�ε2,δ2 T
′

2, there exist appropriate approxi-
mate simulation relationsR1 ⊂ Q1 × Q ′1 andR2 ⊂ Q2 × Q ′2 (see
Definition 6). We defineR ⊂ (Q1 × Q2)× (Q ′1 × Q

′

2) as follows.(
(q1, q2), (q′1, q

′

2)
)
∈ R :⇔

(q1, q′1) ∈ R1and (q2, q′2) ∈ R2.

We are going to prove that R is a (ε + max(ε1, ε2), δ1 + δ2)-
approximate simulation of T by T ′. Take any

(
(q1, q2), (q′1, q

′

2)
)
∈

R.

dΠ
(
(〈q1〉1 , 〈q2〉2) ,

(〈
q′1
〉
1′ ,
〈
q′2
〉
2′
))

= dΠ1(〈q1〉1 ,
〈
q′1
〉
1′)+ dΠ2(〈q1〉2 ,

〈
q′1
〉
2′) ≤ δ1 + δ2. (22)

The inequality is due to the fact that (qi, q′i) ∈ Ri, i = 1, 2.
For any α, β ∈ Σ and (q̃1, q̃2) ∈ Q1 × Q2 such that

dΣ (α, β) ≤ ε, (q1, q2)
α,β
→T (q̃1, q̃2),

we need to show that there exist α′, β ′ ∈ Σ and (q̃′1, q̃
′

2) ∈ Q
′

1×Q
′

2
such that

dΣ (α′, β ′) ≤ ε + ε1 + ε2, (q′1, q
′

2)
α′,β ′

→T ′(q̃′1, q̃
′

2),

dΣ2
(
(α, β) ,

(
α′, β ′

))
≤ ε +max(ε1, ε2),(

(q̃1, q̃2), (q̃′1, q̃
′

2)
)
∈ R.

Because (qi, q′i) ∈ Ri, i = 1, 2,weknow that there existα′, β ′ ∈ Σ
and (q̃′1, q̃

′

2) ∈ Q
′

1 × Q
′

2 such that

dΣ (α, α′) ≤ ε1, q′1
α′

→T ′1
q̃′1, (q̃1, q̃

′

1) ∈ R1,

dΣ (β, β ′) ≤ ε2, q′2
β ′

→T ′2
q̃′2, (q̃2, q̃

′

2) ∈ R2.

It follows immediately that(
(q̃1, q̃2), (q̃′1, q̃

′

2)
)
∈ R.
From the triangular inequality, we obtain

dΣ (α′, β ′) ≤ dΣ (α, β)+ dΣ (α, α′)+ dΣ (β, β ′),
≤ ε + ε1 + ε2,

and therefore (q′1, q
′

2)
α′,β ′

→T ′(q̃′1, q̃
′

2). Furthermore,

max
i∈{α,β}

max
j∈{α′,β ′}

dΣ (i, j) ≤ ε +max(ε1, ε2).

Hence

dΣ2
(
(α, β) ,

(
α′, β ′

))
≤ max(ε1, ε2).

Finally, we need to show that for any (q01, q
0
2) ∈ Q

0
1 × Q

0
2 there

exists (q′01 , q
′0
2 ) ∈ Q

′0
1 ×Q

′0
2 such that

(
(q01, q

0
2), (q

′0
1 , q

′0
2 )
)
∈ R. This

fact is a direct consequence of R1 and R2 being the approximate
simulation relations that define T1�ε1,δ1 T

′

1 and T2�ε2,δ2 T
′

2. �

This result can be extended to approximate bisimulation, as
follows.

Theorem 22. Given transition systems T1, T2, T ′1 and T
′

2. Suppose
that the transition systems T1 and T ′1 have observation spaceΠ1, while
T2 and T ′2 have observation spaceΠ2. Moreover we assume that all of
them share the same set of labels Σ . If T1≈ε1,δ1 T

′

1 and T2≈ε2,δ2 T
′

2,
then for any ε ≥ 0,

T1 ‖ε T2≈ε+max(ε1,ε2),δ1+δ2 T
′

1 ‖ε+ε1+ε2 T
′

2. (23)

Proof. Analogous to that of Theorem 21. �

Notice that when ε = ε1 = ε2 = 0, Theorems 21 and 22 are
reduced to the already known compositionality properties of the
approximate (bi)simulation relation in [8].

4.2. Composite transition systems

As explained in the previous subsection, the result of approxi-
mately synchronizing two transition systems is a kind of compos-
ite transition systems, whose transitions are labeled by a pair of
labels. It is quite straightforward to generalize this idea, for exam-
ple if we want to have several transition systems synchronizing.
In this subsection, we formalize this idea and make it possible to
discuss approximate synchronization of two (or more) composite
transition systems.

Definition 23. Given a set of labels Σ , a composite transition
system T = (Q ,Σn,→,Q 0,Π, 〈·〉) is a transition system with a
set of labelsΣn, 1 < n ∈ N. The number n is called themultiplicity
of the composite transition systems.

Before we proceed to define approximate synchronization of
composite transition systems (possibly with different multiplici-
ties), we need to define a notion of distance between elements in
Σn andΣm, where n andm are not necessarily equal.

Definition 24. Given σ ∈ Σn andω ∈ Σm, we define the distance
between σ and ω as

dΣ∗(σ , ω) = dΣ∗(ω, σ ) := max
i=1,...,n

max
j=1,...,m

dΣ (σi, ωj).

Definition 25. Given two composite transition systems Ti =
(Qi,Σni ,→i,Q 0i ,Πi, 〈·〉i), i = 1, 2. The approximate synchro-
nization operator ‖ε , ε ≥ 0, acting on the two composite transition
systems yield another composite transition system

T := T1 ‖ε T2, (24)
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Fig. 2. Compositional properties of approximate (bi)simulation. Each ellipse
symbolizes approximate synchronization. The arrows indicate approximate
(bi)simulation. The relation between the precisions of the approximate
(bi)simulations is given in Theorem 26 and not displayed here.

where T = (Q1 × Q2,Σn1+n2 ,→,Q 01 × Q
0
2 ,Π1 × Π2, 〈·〉).

The transition relation → is such that (q1, q2)
σ ,σ ′

→ (q′1, q
′

2) iff

q1
σ
→1q′1, q2

σ ′

→2q′2, dΣ∗(σ , σ
′) ≤ ε. The observation map 〈·〉 is

defined as

〈(q1, q2)〉 := (〈q1〉1 , 〈q2〉2). (25)

The new observation space Π = Π1 × Π2 is equipped with the
pseudometric

dΠ
(
(π1, π2), (π

′

1, π
′

2)
)
= dΠ1(π1, π

′

1)+ dΠ2(π2, π
′

2).

Notice that composite transition systems are intrinsically
transition systems with an additional assumption in the structure
of their sets of labels. Two composite transition systems with
the same multiplicity share the same set of labels, and hence
the concept of approximate (bi)simulation applies to them. The
compositional properties of the approximate (bi)simulation in the
previous subsection, which is defined for composite transition
systems with multiplicity 2 can be extended easily to this more
general case.

Theorem 26. Given a set of labels Σ and composite transition
systems T1, T2, T ′1 and T

′

2. Suppose that the transition systems T1 and
T ′1 have observation spaceΠ1 andmultiplicity n1, while T2 and T

′

2 have
observation spaceΠ2 and multiplicity n2.

(i) If T1�ε1,δ1 T
′

1 and T2�ε2,δ2 T
′

2, then for any ε ≥ 0,

T1 ‖ε T2�ε+max(ε1,ε2),δ1+δ2 T
′

1 ‖ε+ε1+ε2 T
′

2. (26)

(ii) If T1≈ε1,δ1 T
′

1 and T2≈ε2,δ2 T
′

2, then for any ε ≥ 0,

T1 ‖ε T2≈ε+max(ε1,ε2),δ1+δ2 T
′

1 ‖ε+ε1+ε2 T
′

2. (27)

The compositional properties given in Theorem 26 is illustrated
in Fig. 2.

5. Safety problem over a digital communication channel

In this section, we discuss the problem of safety verification
of a control system over a digital communication channel, from
the perspective of the theory presented in the previous sections.
Problems with safety specifications arise in many application
domains such as automotive control, manufacturing systems, and
air-traffic management systems. Given a continuous time linear
plant Pc and a set Ω of good states within which the plant should
evolve, this problem deals with finding the set of all initial states
(known in the literature as the maximal safe set [18]) for which
there exists a controller such that the closed–loop system never
leaves the set Ω . This control problem has been studied in the
literature in the past few years both for continuous–time systems
[19] and for discrete–time systems [20–22,18].
We address the issue of guaranteeing safety specifications

for the control scheme shown in Fig. 3, where C and Pc
share information via a communication link. Information coming
from the controller is at first quantized and then sent via the
communication link. Information coming from the plant is at
first sampled, then quantized and finally sent via the link to the
controller. The parameters that characterize the communication
system are the sampling time Ts, the quantization threshold M
and the quantization width δ, and the transmission power level p.
Together, these variables define the communication cost, which is
related to the bandwidth and the transmission power.
Let x(k + 1) = Ax + Bu and u(k + 1) = Fu + Gx, with

x ∈ Rn, u ∈ Rm, be the dynamics respectively of P (obtained by
the discretization of the continuous time system Pc with sampling
time Ts) and C . We assume that the communication channel is
time–varying. The addressed controller synthesis problem can be
stated as follows.

Problem 27. Given a plant P and a safe set Ω ⊂ Rn, find a
(digital) controller C and the set of all initial states inΩ such that
the closed–loop system satisfies the safety requirements for all
possible transmission channel states, i.e.

x(k) ∈ Ω, ∀k ≥ 0,

while keeping the communication cost as low as possible.

Our recent publication [23] proposes a method for solving
Problem 27, that is based on the principles of PBD [24]. We
formulate the control problem over the abstract scheme depicted
in Fig. 3. Non–idealities coming from the communication system,
such as quantization error and transmission noise, can bemodeled
as additive continuous disturbances d1 and d2. We assume that
the disturbance on the signals is confined within compact sets
D1 ⊂ Rn, 0 ∈ D1 and D2 ⊂ Rm, 0 ∈ D2. We also assume that
τ1 and τ2 model the non–deterministic delay in data transmission
in the two links: we assume that the delay belongs to a finite
set of elements, namely a packet can non–deterministically be
received within a finite number of steps. This happens when the
communication protocol exploits error detection and admits a
finite number of retransmissions. The above assumptions can be
formalized as follows.

d1 ∈ D1, d2 ∈ D2, τ1 ∈ {0, 1, . . . , τ̄1}, τ2 ∈ {0, 1, . . . , τ̄2}. (28)

The presence of continuous disturbances and delay has to be
taken into accountwhen designing the controller C to satisfy safety
requirements. A controller solving the safety problem must be
robust with respect to these disturbances. Our approach is based
on an assume-guarantee reasoning, frequently used in the formal
verification of reactive and timed systems. First we synthesize
a controller that satisfies the safety requirements on the plant
system P under the nominal condition, i.e. in the absence of
disturbance [20,18], and in presence of the expected transmission
delay:

d1 = 0, d2 = 0, τ1 = τ
e
1 , τ2 = τ

e
2 . (29)

The approach reported in [23] considered the case with no delay
(τ̄1 = τ̄2 = 0), and estimated by extensive Matlab simulations the
maximumdisturbance sets D̄1, D̄2, such that the safety constraint on
the plant is satisfied. By relating the sets D̄1, D̄2 to the parameters of
the communication systems,wewere able to design a transmission
power control strategy that minimizes a communication cost
(e.g. power consumption) while guaranteeing that the disturbance
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Fig. 3. Communication scheme.
remains bounded in D̄1, D̄2. More precisely, the disturbance sets
D̄1, D̄2 were given as functions of the signal-to-noise ratio (SNR),
and this information was used to design a switching strategy for
the transmission power level.
However, the simulation-based method that we used to

determine D̄1, D̄2 was qualitative and non conservative. One can
exploit the approximation framework developed in this paper to
compute tight upper bounds for D̄1, D̄2.
Given P and C , we use C ‖ε P to model the real implementation

of the control loop. That is, the synchronization between the plant
and the controller is only approximate, because of the disturbance
in the transmission. We assume without loss of generality that ε is
the diameter of the sets D̄1 and D̄2. To take into account the delays,
we can augment the state spaces xτ̄1 of P and uτ̄2 of C , as usually
done in the analysis of time delay systems:

xτ̄1(k+ 1) =


A 0 · · · 0 0
I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 xτ̄1(k)+

B
0
...
0

 u(k)
= Aτ̄1xτ̄1(k)+ Bτ̄1u(k),

xτ̄1 = (x, x(−1), . . . , x(−τ̄1))
T
∈ Rn(τ̄1+1)

x(0) ∈ X0, x(−1)(0) = x(0), . . . , x(−τ̄1)(0) = x(0).

The variable x denotes the current value of the state, while the
variables x(−i) denote the value of the state i steps before. The same
can be done to define the augmented state space uτ̄2 of C . We can
embed these two systems respectively into transition systems TP
and TC . We will illustrate the procedure in the case τ̄1 = τ̄2 = 2,
since all other cases can be dealt with analogously.

Definition 28 (Transition SystemModel of P). Given a system P , we
define a transition system TP as follows:

• QP = R3n is the state space;
• Q 0P is the set of initial states of the plant P;
• ΣP = Rn × Rm;
• →P is the transition relation defined as follows:

(x, x(−1), x(−2))
(x,ũ)
−→(x′, x, x)⇔ x′ = Aτ̄1x+ Bτ̄1 ũ; (30)

(x, x(−1), x(−2))
(x(−1),ũ)
−→ (x′, x, x(−1))⇔ x′ = Aτ̄1x+ Bτ̄1 ũ; (31)

(x, x(−1), x(−2))
(x(−2),ũ)
−→ (x′, x, x(−1))⇔ x′ = Aτ̄1x+ Bτ̄1 ũ; (32)

• ΠP = Rn is the set of observations;
• 〈x〉P = x is the observation map.

The intuition of the transition relation is as follows: the
augmented state space models the memory of the state in the
previous τ̄1 time slots, and the label indicates which one of these
states triggers the synchronization with the other system. For the
transition relation defined above,we assume thatwhen the system
synchronizes with the most recent state x (30), then it cannot
synchronize in the future with the previous values x(−1), x(−2): this
means that the received packets cannot swap (e.g. if we are using
a packet reordering protocol, such as TCP).2When τ̄1 > 2, one can
iterate the reasoning above to define the transition relation rules.
Similarly, we can define TC , the transition system model of C . We
define a metric onΣ = ΣP ×ΣC = Rn × Rm as follows:

d
(
(x, ũ), (x̃, u)

)
= max

{
|x− x̃|, |u− ũ|

}
. (33)

For a given disturbance set with diameter ε, the idea is to compute
a finite abstraction of the approximate synchronization C ‖ε P , and
verify its safety. We can achieve this by first computing finite
approximate abstractions of the plant and the controller, and
then computing the approximate synchronization of the abstract
systems. Let T ′P and T ′C be abstractions of P and C such that
T ′P ≈εP ,δP TP andT ′C ≈εC ,δC TC .When the systems P and C are stable,
it is possible to compute finite abstractions T ′P and T ′C with any
desired precision [25]. By Theorem 22, the following holds:

(TC ‖ε TP)≈ε+max(εC ,εP ),δC+δP (T
′

C ‖ε+εC+εP ,δC+δP T ′P ).

Our abstraction allows to verify in finite time the safety
specifications: we can use the precision of our abstraction to
compute an enlarged safe set, for which the abstract system is
required to be safe [26]. It is reasonable that if ε (that is the
diameter of the disturbance set) is greater than the diameter of the
safe set, then the confidence on the precision of our abstractionwill
be too coarse to be able to verify safety.

6. Conclusions

The notion of approximate (bi)simulation proposed by Girard
and Pappas [8] has developed as a useful tool of abstraction of
dynamical systems. The theory stems from the idea of relaxing
the requirement that an abstraction is exactly equal to the original
system. In this paper, we follow the same path by imposing
even more relaxed conditions on the approximate (bi)simulation.
Namely,we introduce a pseudometric on the set of labels and allow
some tolerance in the labels, when one system simulates another.
We show that this new notion of approximate (bi)simulation is
a generalization of the other one, in the sense that if we set the
tolerance in the label to zero, we recover all the existing results.
Another notion that we introduce in this paper is that of

approximate synchronization. Approximate synchronization is
based on the idea of relaxing the requirements that when two
transition systems synchronize, they synchronize on the same
label. Instead, we allow them to synchronize on labels that are
close. We show that approximate (bi)simulation is compositional
with respect to approximate synchronization. In addition to
the theoretical presentation of approximate bisimulation and
synchronization, we also discuss the application of this framework
in analyzing control systems over digital communication network.
Having set up a theoretical framework, we set our next goal at

providing a computational framework for the ideas thatwe discuss
here. Approximate (bi)simulation of Girard and Pappas has a nice

2 A model that does not perform packet reordering (e.g. UDP) can be modeled in
this framework by appropriately redefining the transition relation.
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computational framework, in the form of bisimulation functions,
to facilitate the construction of approximate (bi)simulation
relations [8,27]. We have generalized the notion of bisimulation
function. We now need to extend the computation machinery to
cope with the new notion.
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