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Abstract

The reduction of dynamic systems has a rich history, with many important applications related to stability, control and verification. Reduction
of nonlinear systems is typically performed in an “exact” manner — as is the case with mechanical systems with symmetry — which, unfortunately,
limits the type of systems to which it can be applied. The goal of this paper is to consider a more general form of reduction, termed approximate
reduction, in order to extend the class of systems that can be reduced. Using notions related to incremental stability, we give conditions on when
a dynamic system can be projected to a lower dimensional space while providing hard bounds on the induced errors, i.e. when it is behaviourally
similar to a dynamic system on a lower dimensional space. These concepts are illustrated on a series of examples.
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1. Introduction

Modelling is an essential part of many engineering
disciplines and often a key ingredient for successful designs.
Although it is widely recognized that models are only
approximate descriptions of reality, their value lies precisely
on the ability to describe, within certain bounds, the modelled
phenomena. In this paper we consider modeling of closed-
loop nonlinear control systems, i.e. differential equations, with
the purpose of simplifying the analysis of these systems.
The goal of this paper is to reduce the dimensionality of
the differential equations being analysed while providing hard
bounds on the introduced errors. One promising application of
these techniques is to the verification of hybrid systems, which
is currently constrained by the complexity of high dimensional
differential equations.

Reducing differential equations — and in particular
mechanical systems — is a subject with a long and rich history.
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The first form of reduction was discovered by Routh in the
1860’s; over the years, geometrical reduction has become
an academic field in itself. One begins with a differential
equation with certain symmetries, i.e. a differential equation
invariant under the action of a Lie group on the phase space.
Using these symmetries, one can reduce the dimensionality
of the phase space (by “dividing” out by the symmetry
group) and define a corresponding differential equation on
this reduced phase space. The main result of geometrical
reduction is that one can understand the behaviour of the
full-order system in terms of the behavior of the reduced
system and vice versa [11,16,5]. While this form of “exact”
reduction is very elegant, the class of systems for which
this procedure can be applied is actually quite small. This
indicates the need for a form of reduction that is applicable to
a wider class of systems and, while not being exact, is “close
enough”.

In systems theory, reduced order modelling has also been
extensively studied under the name of model reduction [4,3].
The typical problem addressed in this literature consists in
approximating a system Y| by a system Y5> while minimizing
the L, norm:
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(/0 () — yz(t)lzdl>2 (1)

where y; is the output of Y| and y; is the output of 3.
This kind of reduction is not adequate when one is interested
in applications to formal verification of hybrid systems. A
typical safety verification problem consists in determining if
any trajectory of X starting in a given set of initial conditions
S enters a given set of unsafe states B. If one solves this
verification problem with the reduced order model X, then one
cannot conclude, based on an upper bound on (1), if trajectories
of X' do enter the B. This motivates us to study reduction
problems in which trajectories of X and its reduced model 2>
are instead related by the L, norm:

sup [y (1) — y2(0)l. 2
1€[0,00[

More recent work considered exact reduction of control
systems [17,15] based on the notion of bisimulation which was
later generalized to approximate bisimulation [7,13,8].

We develop our results in the framework of incremental
stability and our main result is in the spirit of existing
stability results for cascade systems that proliferate the Input-
to-State Stability (ISS) literature. See, for example, [12] and
the references therein. A preliminary version of our results
appeared in the conference paper [14].

2. Preliminaries

A continuous function y : Ra' — R(‘)", is said to belong to
class Ko if it is strictly increasing, y(0) = 0 and y (r) — oo
as r — oo. A continuous function 8 : Rg X Rg — Rg is
said to belong to class KL if, for each fixed s, the map B(r, s)
belongs to class K, with respect to r and, for each fixed r, the
map fB(r, s) is decreasing with respect to s and 8(r, s) — 0 as
s — 0.

A function ¢ : R" — R™ is said to be smooth if it is
infinitely differentiable. We denote by T ¢ the tangent map to
¢ and by T, ¢ the tangent map to ¢ at x € R". The map ¢ is
said to be a submersion at x € R” if Ty¢ is surjective and is
said to be a submersion if it is a submersion at every x € R”".
When ¢ is a submersion we will also use the notation ker(7 ¢)
to denote the distribution:

ker(To) ={X:R" > R" | Tp-X =0}.

The Lie bracket of vector fields X and Y is denoted by [X, Y]

and [ker T'p, Y] denotes the distribution defined by all the

vector fields Z such that Z = [X, Y] for some X € ker T ¢.
Given a point x € R", |x| denotes the usual Euclidean norm

while || f|| denotes ess sup, (o ;) |/ (1)| for any given function
f:[0,7] = R*, t € RT.

2.1. Dynamic and control systems

In this paper we shall restrict our attention to dynamic and
control systems defined on Euclidean spaces.

Definition 1. A vector field is a pair (R"”, X) where X is a
smooth map X : R” — R". A smooth curve x : I — R”",
defined on an open subset / of R including the origin, is said to
be a trajectory of (R”, X) if the following condition holds:

d
LXO=X@&0) Viel

When we want to emphasize the initial condition x(0) = x
we shall denote a trajectory as x(-, x). A vector field is said to be
forward complete when for every x € R” the trajectory x(-, x)
is defined on an interval of the form | —a, +o0o[ for some a < 0.
All the vector fields in this paper are assumed to be forward
complete. This assumption is always satisfied for problems of
formal verification in which the vector field describes the result
of applying a stabilizing controller to the open-loop dynamics.

Definition 2. A control system is a triple (R”, R™, F)) where
F is a smooth map F : R" x R” — R". A smooth curve
X : I — R", defined on an open subset / of R including the
origin, is said to be a trajectory of (R”, R™, F) if there exists
a smooth input curve u : I — R such that the following
condition holds:

%x(r) = Fx(@),u)) Vtel.

Similarly to vector fields, we denote by xy(-, x) the trajectory
x of a control system associated with the input curve u and
satisfying x(0) = x.

We have defined trajectories based on smooth input curves
mainly for simplicity since the presented results hold under
weaker regularity assumptions.

3. Exact reduction

For some dynamic systems described by a vector field X on
R" it is possible to replace X by a vector field Y describing
the dynamics of the system on a lower dimensional space, R",
while retaining much of the information about X. When this is
the case we say that X can be reduced to Y. This idea of (exact)
reduction is captured by the notion of ¢-related vector fields.

Definition 3. Let ¢ : R* — R™ be a smooth map. The vector
field (R”, X) is said to be ¢-related to the vector field (R™, Y)
if for every x € R" we have:

Trp - X(x) =Y op(x). 3)

The following proposition, proved in [1], characterizes
o-related vector fields in terms of their trajectories.

Proposition 1. The vector field (R", X) is ¢-related to the
vector field (R™,Y) for some smooth map ¢ : R" — R™ iff
for every x € R" and for everyt € RS‘ we have:

pox(t,x) =y, p(x)), “4)

where X and 'y are the trajectories of X and Y, respectively.
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For ¢-related vector fields, we can replace the study of
trajectories x(-, x) with the study of trajectories y(-, ¢(x))
living on the lower dimensional space R™. To illustrate the
usefulness of this result in the context of formal verification,
assume that one is interested in showing that part of the state
will never enter a set of undesirable states B € R™. If the part
of the state we are interested in is given by y = ¢(x) with
y € R", m < n and if X is ¢-related to Y then we can analyse
the evolution of y by working with the reduced model Y instead
of working with the full-order model X.

If a vector field and a submersion ¢ are given we can use the
following result, proved in [10], to determine the existence of
p-related vector fields.

Proposition 2. Let (R", X) be a vector field and let ¢ : R" —
R™ be a smooth submersion. There exists a vector field (R™, Y)
that is @-related to (R", X) iff:

[ker(T'p), X] < ker(T'¢). ®)

When X is a linear vector field X (x) = Ax and ¢ is a linear
map ¢(x) = Lx, condition (5) admits a simpler and intuitive
description. Recalling that [v, Ax] = Av for any v € R", (5)
becomes Ak € ker(L) for every k € ker(L) or equivalently,
A(ker(L)) C ker(L). A linear vector field Ax would then be
L-related to another vector field iff ker(L) is an A-invariant
subspace of R". This is easily seen to be a quite restrictive
condition. In order to enlarge the class of vector fields that can
be reduced we introduce, in the next section, an approximate
notion of reduction.

4. Approximate reduction

The generalization of Definition 3 proposed in this section
requires a decomposition of R" of the form R" = R"™ x
R¥. Associated with this decomposition are the canonical
projections m, : R" — R™ and 7y : R* — RF taking
R" 5 x = (y,2) € R" x RFto ,,(x) = y and w3 (x) = z,
respectively. Intuitively, R" corresponds to the state space of
the full model and we will be interested in the evolution of only
the part of the state described by y = 7, (x), for which we will
be seeking a reduced model.

Definition 4. The vector field (R”, X) is said to be approxi-
mately m,-related to the vector field (R™, Y) if there exist a
class K function y and a constant ¢ € Ra' such that the fol-
lowing estimate holds for every x € R" and for every ¢ € Rg :

170 0 X(1, x) — y(t, T (X)) < y (I (X)) + ¢, (6)

where x and y are the trajectories of X and Y, respectively.
Note that when X and Y are m,,-related we have:

|7Tm o X([, x) - y(tv ﬂm(x))| = 07

which implies (6). Definition 4 can thus be seen as a
generalization of exact reduction captured by Definition 3.
Similar ideas have been used in the context of approximate
notions of equivalence for control systems [8].

Although the bound on the gap between the projection of
the original trajectory x and the trajectory y of the approximate
reduced system, given by (6), is a function of x, typical
verification problems assume that initial conditions belong to a
compact set S. The following result is therefore useful in those
situations:

Proposition 3. If (R", X) is approximately my-related to
(R™, Y), then for any compact set S € R” there existsa§ € RT
such that for all x € S and all t € R(J)r the following estimate
holds:

|7 0 X(, x) — y(t, T (X)) < 6. )

Proof. Let 6 = max,ec ¥ (|mk(x)]) + ¢. The scalar § is well
defined since y (|mx(-)|) + ¢ is a continuous map and C is
compact. [

From a practical point of view, approximate reduction is only
a useful concept if it admits characterizations that are simple
to check. In order to derive such characterizations we need to
review several notions of incremental stability.

4.1. Incremental stability

In this subsection we review two notions of incremental
stability which will be fundamental in proving the main
contribution of this paper. We follow [6] and [2].

Definition 5. A control system (R”,R™, F) is said to be
incrementally uniformly bounded-input-bounded-state stable
(IUBIBSS) if there exist two class Koo functions y; and y, and
a constant d € Rg‘ such that for each x;, xo € R" and for each
pair of smooth input curves uy, uy : ]R(J)r — R™ the following
estimate holds for all ¢ € Rg:

[Xu, (, X1) — Xu, (£, X2)| < v1(|x1 — x2|)
+y2(lug —wz|)) +d. ¥

A system is IUBIBSS when two different trajectories Xy,
and xy,, starting at different but close initial conditions and
associated with close but different input curves, will remain
close for all time. In the linear case IUBIBSS turns out to be
equivalent to stability but it is a distinct concept in the nonlinear
case [6]. In general it is difficult to establish IUBIBSS directly.
A sufficient condition is given by the existence of an [UBIBSS
Lyapunov function. Note, however, that IUBIBSS only implies
the existence of a [UBIBSS Lyapunov function with very weak
regularity conditions [6].

Definition 6. A C! function V : R" xR" — ]R(J)r is said to be an
IUBIBSS Lyapunov function for control system (R"”, R™, F)
if there exist a £ € RT and class Ky functions o, a, and @
such that for every x, x € R"” and u1, uy € R™ the following
holds:

(D) [x1—x2| 2 & = a(|lx;—x2]) < V(xl,X2)a§/ a(lxy—x2l);
@ lx1 = x2l = plur —wal) +§ = 5 F&,u) +
S F(x2,u2) < 0.
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A stronger notion than IUBIBSS is incremental input-to-
state stability.

Definition 7. A control system (R”,R™, F) is said to be
incrementally input-to-state stable (IISS) if there exist a class
ICL function B and a class Ko function y such that for each
x1, x2 € R" and for each pair of smooth curves uy, u : Rg —
R™ the following estimate holds for all 7 € Ra’ :

1Xuy (7, X1) = Xu,y (7, x2)[ < B(|x1 — x2[, 1) + y ([[ug — w2 ]}). (9)

Since B is a decreasing function of ¢ we immediately see
that (9) implies (8) with y1(#) = B(r,0) and y»(r) = y(r),
r € Ra’ . In addition to require trajectories to remain close if
initial conditions and input curves are close, IISS requires the
distance between trajectories to converge to zero over time. In
the linear case IISS is equivalent to asymptotic stability but it is
a distinct concept in the nonlinear case [2]. The notion of IISS
is also implied by the existence of an IISS Lyapunov function.
See [2] for a converse result when the inputs take values in a
compact set.

Definition 8. A C! function V : R* x R* — Rg is said to be
an IISS Lyapunov function for the control system (R”, R™, F')
if there exist class Koo functions ¢, @, o, and w such that for
every x1, xo € R" and uy, up € R™ the following holds:

(1) a(lx1 = x2) < V@, x) <@ (e —xl;
@ i = x| = e - w) = FEFGu) +
FEF (x2,u2) < —a(lx1 — x2)).

4.2. Fiberwise stability

In addition to incremental stability we will also need a
notion of partial practical stability. This notion will be used
to ensure that the dynamics neglected in the approximate
reduction process is well behaved.

Definition 9. A vector field (R", X) is said to be fibrewise
practically stable with respect to 7y if there exist a class Ko
function y and a constant ¢ € Rg such that the following
estimate holds for all x € R” and 7 € R(J)r:

Ik X, ) < v (77 (0)]) + c.

Fibrewise practical stability can be checked with the help of
the following result:

Lemma 1. A vector field (R", X) is fibrewise practically stable
with respect to my, if there exist two K functions, o and @, a
constant d € Ra' , and a function V : R" — R such that for
every x € R”" satisfying |y (x)| > d we have:

(1) a(m ) < V) < @(lm ),
2) frX @) <0.

4.3. Existence of approximate reductions

In this subsection we prove the main result providing suffi-
cient conditions for the existence of approximate reductions.

Theorem 1. Ler (R", X) be a fibrewise practically stable
vector field with respect to wy and let F = T, - X : R™ x
RF — R™ viewed as a control system with state space R™, be
IUBIBSS. Then, the vector field (R™, Y) defined by:

Y(y) = Ty.0mtm - X(y,0) = F(y,0)

for every y € R™ is approximately m,,-related to (R", X).
Proof. By assumption, control system (R™, R F = TrmpoX)
is IUBIBSS. If we denote by y a trajectory of F' we have:

Yy, & 31) = ¥y, (@, y2)| < villyr — 21) + v2(llvi = v2l)) + d.
In particular, we can take:

vo =0,

Y1 =y2 = mp(x), Vi = mg o X(+, X),

to get:

|7m o X(2, x) = y(t, T (x))]
= Ymox(r.x) (& Tm (X)) — Yo (£, 70m (X))
= ¥y, &, T (%)) — Yo (£, 77 (X))
= v2(lvilD) +d = y2(llmk o X(-, X)) +d.
But it follows from fiberwise practical stability of X with
respect to my that:
7wk o X(-, )| < y (I (X)) + c.
We thus have:

7tm 0 X(1, x) = y(t, T (X))| < y2 (v (kX)) +¢) +d
=y My (m(x)) + v2 (A2c) +d,
for some constants A1, Ay € Ra' . This concludes the proof since
y2(A1y(]-])) is aclass K function and y»(Aac)+d € R(J)r. O
Theorem 1 shows that sufficient conditions for approximate
reduction can be given in terms of ISS-like Lyapunov functions
and how reduced system can be constructed. Before illustrating

Theorem 1 with several examples in the next section we present
an important corollary.

Corollary 1. Ler (R", X) and (R™,Y) be vector fields
satisfying the assumptions of Theorem 1. Then, for any compact
set § C R”" there exists a 5 > 0 such that for any x € S and
y € m,(S) the following estimate holds:

|7m 0 X(2, x) —y(t, y)| < 4.
Proof. Using the same proof as for Theorem 1, except picking
y1 = T (x) and y» =y, it follows that:
|7m 0 X(2, x) =y, V)| < y1(|I7tm (x) — yI)
+ 2 iy (7 (0)) + 2 (A20) +d.
The bound § is now given by:

§ = max
(x,y)eSxmn(S)

+v2 My (mex)) + v2 (A20) +d

Y1(7m (x) =y
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Fig. 1. Ball in a rotating hoop.

which is well defined since S X 7, (S) is compact. [
5. Examples

In this section, we consider examples that illustrate the
usefulness of approximate reduction.

5.1. Ball in the hoop

As a first example we consider the ball in a rotating hoop
with friction, as described in Chapter 2 of [9] and displayed
in Fig. 1. For this example there are the following parameters:
m — mass of the ball, R — radius of the hoop, g — acceleration
due to gravity, u friction constant for the ball, and
& — angular velocity for the ball. The equations of motion are
given by:

= —ﬁa) + £2sinf cos — LS sin 6
m R
6=w (10
where 6 is the angular position of the ball and w is its angular
velocity.
If m, : R2 — R is the projection 7, (w, ) = o, then

according to Proposition 2 there exists no vector field ¥ on R
which is m,-related to X (as defined by (10)). However, we will
show that Y (w) = T{(,0)7s - X (w, 0) is approximate m,,-related
to X.

In applying Theorem 1 we follow three steps:

(1) We show that X is forward complete;

(2) We show that X is fiberwise practically stable;

(3) We show that F = T, - X : R™ x RK — R™ is JUBIBSS;
(4) We construct the reduced model Y.

5.1.1. Step 1: Forward completeness
We use:

1 1
V= EmRZa)Z +mgR(1 — cos @) — Emlezsz sin @

as a Lyapunov function to show that (10) is stable. Note that
V(w,0) = 0 for (w,0) = (0,0) and V(w,0) > 0 for
(w,0) # (0,0) provided that RE? < g, which we assume.
Computing the time derivative of V we obtain:

V= —,uRza)2 <0,

thus showing stability of (10) and forward completeness.

5.1.2. Step 2: Fiberwise practical stability

We now consider a compact set C invariant under the
dynamics and restrict our analysis to initial conditions in this
set. Such a set can be constructed, for example, by taking
{x € R? | V(x) < c} for some positive constant ¢. Note that
stability of (10) implies fibrewise stability on C since m,, (C) is
compact.

5.1.3. Step 3: IUBIBSS
We will show that:

Ty - X (@.0) = — Lo+ £2sinf cos 6 — %sin@
m

is IUBIBSS on C with 6 seen as an input by proving the
stronger property of IISS. Consider the function:

U= )?
= —(w1 — w2)".
) 1 2
Its time derivative is given by:
U= (w1 — w2) [—ﬁ(wl —wy) + 52 sin 0 cos 61
m

g . 5 . g . ]
— —=sinf; — &“sinb, cos O — sin 6@
R 1—§ b 2+R b

< —ﬁ(wl —w)* + w1 — w ‘52 sin 6 cos 6
m
— %sin@l — 52 sin 6 cos 0 + %sineg‘
H 2
< —;(an —w2)” + |w) — @2|L|6) — 6]
=t —w)?
= o (w1 — w2)
7
+ (—5- @ — o) + o1 —walLler —621), (1D
2m

where the second inequality follows from the fact that
g£2sinfcos® — £sinf is a smooth function defined on the
compact set my(C) and is thus globally Lipschitz on mg(C)
(since its derivative is continuous and thus bounded on any
compact convex set containing 1y (C)) with Lipschitz constant
L. We now note that the condition:

2mL
|w1 — wa| > T|91 — 03]

makes the second term in (11) negative from which we
conclude the following implication:

2mL . % ’
lw) —an| > ——|0) —0h| = U < —— (w1 —w)
" 2m

showing that U is an IISS Lyapunov function for (10) and thus
concluding ITUBIBSS.

5.1.4. Step 4: Construction of the reduced model
According to Theorem 1 the approximate reduction of (10)
is given by:

) 2
0 =—-——wo.
m
Projected trajectories of the full-order system as compared with

trajectories of the reduced system can be seen in Fig. 2; here
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Fig. 2. A trajectory of the full order system (red) vs. a trajectory for the reduced system (blue) for R = 5, 10, 20, 40 (from left to right and top to bottom,
respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

uw =m = 1and & = 0.1. Note that as R — o0, the reduced
system converges to the full-order system (or the full-order
system effectively becomes decoupled).

5.2. Pendulum on a cart

We now consider a pendulum attached to a cart which is
mounted to a spring (see Fig. 3). For this example, there are
the following parameters: M — mass of the cart, m — mass
of the pendulum, R — length of the rod, k — spring stiffness,
g — acceleration due to gravity, d — friction constant for the
cart, and b — friction constant for the pendulum. The equations
of motion are given by:

X=v

0=w

. 1

V= —————
M + m sin“ 0

b
X (me2 sinf + mg sinf cosf — kx — dv + ECOSQ)

1
= ——">5— (—mezsiné)cosH
R(M + m sin“ 0)

—(m + M)gsin€ + kx cos6 + dvcosb

)

where x is the position of the cart, v its velocity, € is the angular
position of the pendulum and w its angular velocity.

If 7(x.p) : R* — R2 is the projection: 7y y)(x, 0, v, w) =
(x, v) and X is the vector field as defined in (12), the goal is to
reduce X to R? by eliminating the # and o variables.

12)

Fig. 3. A graphical representation of the pendulum on a cart mounted on a
spring.

5.2.1. Steps 1 and 2: Forward completeness and fibrewise
practical stability

Forward completeness and fibrewise practical stability
of (12) are prove like in the previous example by noting that
X is Hamiltonian for d = b = 0 and using the Hamiltonian as
a Lyapunov function V.

5.2.2. Step 3: IUBIBSS

Control system F' = Tmy , - X(x,6, v, w), in which 6§ and
w are regarded as inputs, is given by:

F ((x7 U), (07 CL))) = T”(x,v) : X(x’ 0’ v, w)
1

= (mRa)2 sinf — kx
M + msin“ 6

b
+ mgsin@cos@—dv—i—icosé’). (13)
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2 ‘ ‘

-2 -1 0 1; 2

-2 -1 0 ak 2

Fig. 4. A projected trajectory of the full-order system (red) and a trajectory for the reduced system (blue) for d = 0.001, 0.01, 0.1, 1 (from left to right and top to
bottom, respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

To show that F is [IUBIBSS we first rewrite (13) in the form:
F((x,v), (6, w)
1
= (mezsinQ —kx—dv—chbcosQ)
M+m
and consider the following IISS candidate Lyapunov function:

U= m(xl —x2)? + %(Ul — )%
Its time derivative is given by:
U=-— d (vl—vz)z—l- mR

m+ M m+ M

X (w% sinf] — wj cosf; — a)% sinf, + @y cos 92)
X (v1 — v2).

Using an argument similar to the one used for the previous
example, we conclude that:

[vg —v2| = [(61, w1, @1) — (62, w2, 2)l,

with L the Lipschitz constant of the function @? $inf — @ cos 0,
implies:

U<-———(—-w?
< 2(m+M)(U1 v2)

thus showing that X is IISS and in particular also [UBIBSS.

5.2.3. Step 4: Construction of the reduced model
The reduced model Y (x, v) is given by:

X
(1')) = Y(xv U) = T(x,O,v,O)T[(x,v) : X(xs 07 v, 0)

v
(—%(dv + kx)) '

In order to illustrate some of the interesting implications of
approximate reduction, we compare the reduced system, Y, and
the full-order system, X, inthe casewhen R=m =k =b =1
and M = 2. It follows that the equations of motion for the
reduced system are given by the linear system:

()-(2 )
v) T \=—= d)\v)’

2
so we can completely characterize the dynamics of the reduced
system: every solution spirals into the origin. This is in stark
contrast to the dynamics of X (see (12)) which are very
complex. The fact that X and Y are approximately related,

and more specifically Theorem 1, allows us to understand
the dynamics of X through the simple dynamics of Y. To
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be more specific, because the distance between the projected
trajectories of X and the trajectories of Y is bounded, we know
that the projected trajectories of X are “essentially” be spirals.
Moreover, the friction constant d will directly affect the rate
of convergence of these spirals. Examples of this can be seen in
Fig. 4 where d is varied to affect the convergence of the reduced
system, and hence the full order system.
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