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Abstract

The Toll-Like Receptors (TLRs) are proteins involved in the immune system that increase cytokine levels when triggered.
While cytokines coordinate the response to infection, they appear to be detrimental to the host when reaching too high
levels. Several studies have shown that the deletion of specific TLRs was beneficial for the host, as cytokine levels were
decreased consequently. It is not clear, however, how targeting other components of the TLR pathways can improve the
responses to infections. We applied the concept of Minimal Cut Sets (MCS) to the ihsTLR v1.0 model of the TLR pathways to
determine sets of reactions whose knockouts disrupt these pathways. We decomposed the TLR network into 34 modules
and determined signatures for each MCS, i.e. the list of targeted modules. We uncovered 2,669 MCS organized in 68
signatures. Very few MCS targeted directly the TLRs, indicating that they may not be efficient targets for controlling these
pathways. We mapped the species of the TLR network to genes in human and mouse, and determined more than 10,000
Essential Gene Sets (EGS). Each EGS provides genes whose deletion suppresses the network’s outputs.
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Introduction

Signal transduction pathways, such as the Toll-Like Receptors

(TLR) signaling pathways, are an essential component of the

innate and acquired immune response [1]. The TLRs are highly

conserved membrane receptors that recognize specific molecules

of bacterial and viral origin. When triggered, the TLRs recruit

adaptor molecules such as MyD88 or TICAM [2,3], and initiate

signaling cascades leading to the activation of transcription factors

(TFs). Different stimuli activate specific sets of TFs, which regulate

the necessary response of the cell.

Many studies have established the significant role TLRs play

within the immune system: detection of pathogenic particles [3],

signal transduction [4], and activation of TFs [5]. For some

infections, recent works have shown that the TLRs provoke

deleterious side effects to the host by increasing cytokine

concentrations. They have established that mice deficient in

one of the TLRs had a better response to infection: TLR4{={

for C. rodentium [6], TLR2{={ for P. gingivalis [7], and

TLR3{={ for Phlebovirus [8]. Targeting a TLR enables to

decrease cytokine concentrations leading to an increased

survival rate. These results demonstrate that regulating cytokine

production may be a good strategy to improve responses to

infections. One has to keep in mind that the deletion of a TLR

has an overall negative effect on the host on the long term.

Polymorphisms in the TLRs significantly increase the suscep-

tibility to opportunistic infections [9], emphasizing the key role

the TLRs play in the immune system. It is not clear, however,

how targeting other components of the TLR pathways can

improve the responses to infections.

The ihsTLR v1.0 model is a stoichiometric representation of the

human TLR signaling pathways that follows six outputs: AP-1,

CREB, IRF3, IRF7, Reactive Oxygen Species (ROS), and NF-kB

(Table 1) [10]. These compounds play a major role in the response

to infection. AP-1 is involved in proliferation and differentiation,

and activates both pro- and anti-apoptotic responses [11]. CREB

responds to growth factor signals and regulates cell survival and

proliferation [12]. IRF3 and IRF7 are activated during viral

infections and are critical for the activation of Type I IFN [13].

NF-kB plays a role in both innate and adaptive immune responses

by regulating B- and T-cells development, and is involved in the

inflammatory response [14]. ROS, which is the only output not

being a TF, are highly reactive chemicals containing oxygen. ROS

regulate signal transduction pathways at small dose, provoke

oxidative damage at high dose, and are actively involved in wound

healing processes [15].

The stoichiometric reaction format has been used extensively to

represent metabolic [16,17] and signaling networks [18–20].

Alternatively, signal transduction pathways have been modeled by

Petri nets [21] and Boolean logic [22]. The stoichiometric reaction

format has led to the development of various methods, such as

Extreme Pathway (EP) analysis [23], Flux Balance Analysis (FBA)

[24], and Minimal Cut Sets (MCS) [25]. An MCS for an objective

reaction is a minimal set of reactions whose knockout disables that

function. This notion is helpful for studying robustness and

epistasis relationships in complex networks. FBA can easily
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generate MCS by testing all knockout combinations in a network,

however, this approach becomes computationally challenging for

large-scale networks. EP analysis can bypass this difficulty and has

successfully been applied to the E. coli and human metabolic

models [25–27].

In this study, we generated MCS for the ihsTLR v1.0 model.

We encountered 2,669 MCS showing that each output uses

different components of the TLR network. We partitioned the

model in modules, which group reactions having similar functions.

We determined which modules the MCS targeted, allowing to

identify epistatic relations between components of the network. It

appeared from our analysis that the TLRs were not the primary

targets of the MCS, implying the TLR pathways are better

manipulated by disabling targets downstream of the TLRs. We

extended the MCS to the notion of Essential Gene Sets (EGS). EGS

are sets of genes whose deletion ensures the knockout of an output.

We assessed the impact of these deletions over the network, in

term of species, reactions, and modules perturbed. We generated

more than 10,000 EGS for both human and mouse. The EGS

provide valuable information when designing knockout experi-

ments by identifying gene deletions that have minimal impact on

the network. They also identify essential genes that have a key role

in the activation of a particular output of the TLR pathways.

Results

2,669 minimal cut sets produced 68 different signatures
The ihsTLR v1.0 model comprises 781 species involved in 963

reactions. We extended the model to 1,956 reactions to account

for irreversibility and sink reactions. The over-approximation flux

cone �KK of the model yielded 1,598,509 EPs. We computed hitting

sets for each output reaction and reduced them to minimality. We

obtained a total of 2,669 MCS for all outputs (Table 2) (see

Materials and Methods). The number of MCS greatly varies

across outputs: it ranges from 6 for NF-kB(2) to 1,042 for IRF7.

We grouped the reactions from the ihsTLR v1.0 into distinct

modules. Reactions in the same module generally have the same

function or lead to the same end product. These functions usually

consist in activating a specific protein or in transmitting a stimulus

to another part of the network. The modules determine a partition

of the set of all reactions (see Fig. 1 for a module partition of a toy

network). We derived 34 modules from the map of the TLR

network (Fig. S1 by Li et al. [10]). This map clusters biologically

related reactions that share substrates or products. Tables 3 and S1

provide the list and a description of the modules hit by MCS. Ten

of the 34 modules are never targeted by any MCS: Akt, Caspase 9,

Cytoplasmic MAPK substrates, FADD, IL-1, IL-1 cascade, IKK, NOD,

PKR, and SIGIRR.

Three hypotheses are made. First, reactions in these modules

may not be included in any EP, rendering them ‘‘unusable’’ in a

cut set. The analysis of the partial flux cone shows, however, that

the reactions in these modules are present in at least 1 EP. Second,

these modules may not be essential for the activation of the

outputs. Third, too many reactions from these modules may need

to be targeted simultaneously to observe an effect. This last

hypothesis reflects a limitation of the algorithm, which did not

detect MCS of more than 8 reactions in our study.

The mapping of reactions to modules enabled to determine the

signature of each MCS (see Fig. 1 for a graphical illustration of this

concepts in a small network). The signature of an MCS is the list of

modules it targets, i.e. the modules containing reactions hit by the

MCS. We obtained one signature per MCS. We were able to

reduce the 2,669 MCS to 68 distinct signatures indicating that

most of the MCS target the same combinations of modules. We

define as the profile of an output the set of distinct signatures

obtained for that output. We generated profiles for each output

(Fig. 2). In addition to presenting the signatures, the profiles

display distributions showing the number of times each signature is

encountered (top) and how many times each module is hit by an

MCS (right). These distributions emphasize the most frequent

signatures and the modules that are targeted the most, respectively

(cf. Fig. 1). The AP-1(2) and NF-kB(2) profiles are not shown in

Figure 2. The AP-1(2) profile is identical to the AP-1 one, minus

the 7-th signature. The NF-kB(2) profile is composed of only one

signature targeting the NF-kB module.

Each reaction in an MCS belongs to a module and some of

these reactions may belong to the same module. Hence, an MCS

may target the same module through different reactions. We

define the MCS Module Cardinality (MMC) as the number of

modules an MCS hits. Figure 3 shows the MMC distribution for

the outputs. Each distribution describes how many MCS target n
modules simultaneously for a given output (nƒ4 for all MCS). In

addition, the colors describe which modules are targeted, as well as

their relative importance. The distributions enable to immediately

identify modules that are targeted alone (e.g. Common metabolites,

Table 1. Output reactions of the ihsTLR v1.0 model.

Output name Description

AP-1 Binding of the Jun/Fos dimer to the AP-1 site

AP-1(2) Binding of the Jun/Jun dimer to the AP-1 site

CREB Binding of CREB to the CRE site

IRF3 Binding of phosphorylated IRF3 to the ISRE site

IRF7 Binding of phosphorylated IRF7 to the ISRE site

NF-kB Dissociation of the NF-kB/IkBa complex

NF-kB(2) Dissociation of the NF-kB/IkBb complex

ROS Formation of the NADPH oxidase complex, the p47phox

subunit being phosphorylated three times

ROS(2) Formation of the NADPH oxidase complex, the p47phox

subunit being phosphorylated eight times

doi:10.1371/journal.pone.0031341.t001

Table 2. Basic statistics about the MCS.

Output MCS Cardinality Signatures Module hit

AP-1 189 1–7 10 7

AP-1(2) 185 1–7 9 7

CREB 510 1–8 18 9

IRF3 22 1–3 6 5

IRF7 1,042 1–8 18 8

NF-kB 351 1–5 10 5

NF-kB(2) 6 1–3 1 1

ROS 138 1–6 21 13

ROS(2) 226 1–5 20 12

Total 2,669 1–8 68 24

The cardinality of an MCS is defined as the number of reactions present in the
MCS. Its signature corresponds to the list of modules (cf. Table 3) that are
targeted by the MCS. The table lists the number of distinct signatures obtained
for each output reaction, as well as the total number of targeted modules.
doi:10.1371/journal.pone.0031341.t002
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ROS production, TICAM) and the ones that are targeted with other

modules (e.g. PDK1 for ROS, Early endosome for IFR7, or MyD88 for

AP-1 and AP-1(2)). Interestingly, the cardinality of the MCS does

not seem to be a good indicator of the cardinality of the signature

(i.e. the number of modules targeted simultaneously). Particularly

for the CREB, ROS(2), NF-kB, and IRF7 outputs, many MCS of

high cardinality hit few modules at a time (Fig. S1). This

observation seems to indicate that modules are fairly robust to

reaction deletions.

More than 10,000 Essential Gene Sets generated for
human and mouse

We define an Essential Gene Set (EGS) as a set of genes whose

deletion renders a predefined output non-producible. EGS can be

seen as the gene version of MCS. Instead of providing reactions,

EGS procure the list of genes whose knockout stops the production

of an objective, which is a valuable information when designing

knockout experiments. We can clearly disable genes in an EGS

(e.g. with siRNA), and the corresponding objective reaction, unlike

reactions in an MCS (Fig. 4). EGS also summarize MCS since a

common gene may be able to disable multiple reactions. Gene

knockouts are more optimal than reaction knockouts. Finally, EGS

identify essential genes that have a key role in the activation of a

particular output of the TLR model. Even though genes have

much slower dynamics than reactions in the TLR model, we do

not perform any dynamical analysis of these pathways with the

EGS. Transient behaviors of the network do not affect the

producibility of the outputs.

The ihsTLR v1.0 model is based on human pathways. The

TLRs and their pathways are however highly conserved across

species and especially among vertebrates [28]. Since human and

mouse share 90% of their genome [29], we generated Gene-

Protein-Reaction (GPR) associations for the two organisms.

Moreover, most data translation to human comes from mouse.

We recognize that there are some significant differences between

the human and mouse TLR pathways, notably in the TLR10

pathway [30]. This particular pathway was however not involved

in the MCS we encountered, therefore limiting the inconsistencies

in the mouse results. We were able to assign 341 and 335 genes to

570 and 567 species of the model in human and mouse,

respectively (Dataset S1). The discrepancy in the number of

relationships and genes is explained by different numbers of

isoenzymes or subunits in both species. We used the MCS to

generate initially 42 and 44 EGS for human and mouse,

respectively (see Materials and Methods). The number of EGS is

similar since all the proteins of the network have homologs in both

Figure 1. Schematic representation of a signaling network. The left part of the figure shows a toy model of a signaling network. Nodes and
edges represent species and reactions, respectively. The network contains two inputs (top incoming arrows) and two outputs (bottom outgoing
arrows). The set of reactions is partitioned in four modules (A, B, C, and D). Each crossed reaction belongs to an MCS for output O (only 4 MCS are
shown for simplicity). Each color denotes a different MCS. Targeting simultaneously the two red-crossed reactions disables O. This MCS describes an
epistatic relation between modules A and B. The upper-right diagram represents the profile of output O, i.e. the collection of distinct signatures
obtained from the MCS. The profile displays distributions showing the frequency of each signature (top) and how many times each module is hit by
an MCS (right). In our example, the first signature is obtained twice (red and blue MCS). Module A is hit three times: twice by the first signature and
once by the second one. The lower-right diagram represents the MCS Module Cardinality (MMC) distribution of O, which shows the number of MCS
targeting n module(s) simultaneously (n~1,2). The targeted modules are color coded in relative proportion. Among all the MCS of cardinality 2, half
of the targeted reactions belong to module A.
doi:10.1371/journal.pone.0031341.g001
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organisms. We validated these EGS by searching the literature. In

both species, 16 EGS involved genes directly coding for the

outputs and required no further validation (i.e. ‘‘evident’’ EGS).

We were also able to confirm a total of 12 EGS through literature

searches (Tables 4 and S2). In summary, we were able to find

evidence to validate *66% of all EGS.

Only AP-1(2) failed to produce EGS targeting specifically this

output. This is easily explained as disabling AP-1(2) requires to

knock out the Jun protein. This protein is however essential for the

formation of the Jun/Fos complex (i.e. AP-1, cf. Table 1). Hence,

EGS found for AP-1(2) hit AP-1 as well. Since the ROS/ROS(2)

and NF-kB/NF-kB(2) outputs are also closely related, many of the

EGS for one of the outputs disable the other one.

Genes in the EGS are part of the MyD88-dependent pathway

(e.g. MyD88, TRAF6, TLR7, TLR8, TLR9), MyD88-independent

pathway (e.g. TICAM1, TBK1, IKKE), and the MAPK pathways

(e.g. MAPK8, MAP2K4, MAP2K7). The initial EGS we computed

contain in general a small number of genes (see Table S2).

Disregarding the evident EGS, most of the remaining EGS

contain no more than 3 genes (*80%). It is experimentally

difficult to knock out more than two genes at a time. Even with this

limitation, *68% of the non-evident EGS remain experimentally

usable.

We used the 42 and 44 initial EGS to generate a second set of

EGS capable of disabling any combination of outputs. Combining

the initial EGS gave us a total of 10,377 and 11,577 gene sets

targeting any desired set of outputs in human and mouse,

respectively. In addition, we computed the species, reaction, and

module impacts of each EGS, i.e. the number of species, reactions,

and modules disabled after deletion of the EGS. These values

estimate the global impact of the EGS. We enumerated the 801

EGS that target the power set of outputs with minimal impact in

both species (Dataset S2). The minimal EGS target a specific set of

outputs while affecting a minimum number of species, reactions,

and modules.

Discussion

The TLR network is a complex set of signaling reactions which

upon triggering leads to the activation of various TFs and release

of cytokines. These cytokines, which coordinate the response to

infection, also provoke collateral damage when reaching too high

levels. Several studies have shown that the knockout of particular

TLRs were beneficial for hosts undergoing specific infections, as it

reduces cytokine concentrations [6–8]. It is not clear, however,

how targeting other components of the TLR pathways can

improve the responses to infections.

We studied the ihsTLR v1.0 model [10] and generated 2,669

MCS for all outputs of the network. The MCS were organized into

68 distinct signatures, revealing epistatic relationships in the

network (Figs. 2 and 3). Epistasis was not examined at the reaction

level, but rather at the module level. We focused our attention on

the sub-systems of the network whose joint perturbation disabled

an output. Epistatic relationships reveal the major functions

needed to ensure the production of the outputs. For example,

IRF3 production is shut down by perturbing the transmission of

the stimuli from the TLRs via the TICAM adaptor molecules,

while disabling the activation of both PDK1 and PKCf stops ROS

production. Figure 3 shows how the network is being used for each

output. Based on the output, different sets of modules are targeted.

This difference in module composition suggests that each output

uses different pathways of the network.

Since the TLRs are the inputs of the TLR network, one would

expect that they control the outputs. Among the 2,669 MCS, only

183 targeted directly one of the TLRs. Even though the TLRs are

critical in the response to infection, it appears that disabling them

is inefficient to accurately control the network’s outcome.

Searching for targets downstream of the TLRs appears to be a

better strategy to efficiently shut down a desired pathway. This

observation may seem contradictory to previous works showing

that the deletion of the TLRs perturbed reactions within these

pathways. These studies, however, analyzed the TLR pathways for

specific infections. Here, the MCS ensure the suppression of an

objective regardless of the set of triggered TLRs, which makes

MCS non-specific to a particular infection. The low frequency of

the TLRs appearing in the MCS may also be due to redundancies

in the TLR pathways, already highlighted in [10]. In their study,

Li et al. showed that some outputs of the TLR network (i.e. NF-kB,

CREB, AP-1, and ROS) are activated by at least 11 different

receptors. Hence, knocking out one TLR will not affect these

outputs since the remaining receptors can potentially activate

them. One would need to disable all the TLRs to ensure that the

outputs can no longer be activated. This extreme solution has also

the biological disadvantage of disabling all TLR pathways, making

the host highly susceptible to infection. It is difficult to establish

clear consequences of TLR knockouts on the network. We can

only perform this analysis for IRF7. The MCS confirmed that the

knockout of TLR7, TLR8, and TLR9 shuts down IRF7

activation, which disables the transcription of Type I IFN genes

Table 3. Modules of the TLR network.

Module Function

AP-1 Binding of AP-1 complex to AP-1 site

Btk Activation of Btk

Calcium dependent cascade Activation of calcium/calmodulin-dependent
protein kinase

Common metabolites Transport of metabolites into the cytoplasm

CREB Binding of CREB to CRE site

Cytoplasm-Nucleus transport Transport of various species into the nucleus

Early endosome Degradation and recycling of receptors

GSK3b Activation of GSK3b

IFN genes Binding of IFN with the ISRE site

KSR1 Activation of the MAPK pathway

Ligands Import of ligands in the system

Lipids Lipids phosphorylation

MAPK Transmission of stimuli

MAP3K7 Transmission of stimuli

MyD88 Transmission of stimuli from the TLRs

NF-kB Dissociation of NF-kB from IkB

NF-kB phosphorylation Activation of NF-kB

PDK1 Activation of PDK1

PKCf Activation of PKCf

Rho GTPases Activation of GTPases

ROS production Formation of the NADPH oxidase complex

Thioredoxin Oxidation and reduction of thioredoxin

TICAM Transmission of stimuli from the TLRs and
activation of IRF3

TLR Binding of ligands with the TLRs

Function of the modules involved in the TLR network [10]. Only modules hit by
MCS are shown. A short description of these modules is available in Table S1.
doi:10.1371/journal.pone.0031341.t003
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[13], and interferes with the differentiation of monocytes to

macrophages [31].

Gene deletions can be performed to ensure the knockout of the

outputs of the TLR network. Adequate combinations of genes,

which we provide with the EGS, enable to target a specific set of

outputs. Using the MCS, we generated 10,377 and 11,577 EGS

for human and mouse, respectively. Since we considered a human

TLR network, discrepancies may arise in the mouse EGS. This

limiting factor is attenuated as the MCS did not involve any

human specific pathway. The EGS identify essential genes for the

activation of the network’s outputs (Table S2). For example,

TBK1 and IKKE seem to be essential for the activation of IRF3

and IRF7, while PDK1 and PKCf appear to be key in the

production of ROS.

To the best of our knowledge, this study is the first attempt to

use MCS for the study of signaling networks in the form of a

stoichiometric model. MCS have initially been developed for the

study of metabolic networks. Their application to the E. coli and H.

sapiens metabolic networks have given interesting results [25–27].

Even though MCS were not intended for signaling networks, their

usage on such networks gives promising results. Indeed, our

validation of the EGS (derived from the MCS) showed that about

80% of them concord with biological observations. This validation

process indicates that the usage of MCS on the ihsTLR v1.0 model

provides results that are biologically relevant.

Li et al. defined DIOS pathways based on a pairing of inputs and

outputs [10]. In our study, MCS and EGS are output-specific.

However, we can compare the two approaches based on which

output is controlled by the DIOS pathways. By using FBA, Li et al.

only provided single reactions controlling a pathway. We analyzed

EPs to determine sets of reactions, or MCS, disabling a particular

output and to study epistatic relationships between components of

the system. We obtained MCS containing up to 8 reactions.

Obtaining similar results with FBA would be computationally very

expensive for large-scale networks, such as the ihsTLR v1.0 model.

In addition to control reactions we also provided (sets of) control

genes, i.e. the EGS. In addition, Li et al. focused on single DIOS

pathways, while we also describe gene sets capable of disabling

multiple outputs.

We observed similarities with the essential reactions as reported

in Table S6 by Li et al. [10]. Our EGS list that the evident

knockout of IRF3 is capable of disabling the production of this

output. IRF3 is also involved in all the essential reactions of the

IRF3 DIOS pathway. A similar result is observed with IRF7. Four

out of the 5 essential reactions in the ROS production DIOS pathway

are listed in our MCS. Our EGS list that the knockout of IKKa,

IKKb, and IKKc disables the NF-kB output. These genes are the

subunits of the IKK complex, which is involved in essential

reactions of the RIP1, NOD1, NOD2, and RIP2/TRIP6/TRAF2

DIOS pathways (two reactions in each pathway). These 4 DIOS

pathways each control NF-kB [10]. Interestingly, we obtain

similar results even after increasing the number of reactions in the

model.

As suggested by Li et al., metabolites seem to play a crucial role

in signal transduction [10]. Only targeting the Common metabolite

module, which perturbs the normal exchange of metabolites

between the extracellular and cytoplasmic compartments, can

disable most of the outputs. Interestingly, no other module has

such effect, highlighting the pivotal role of metabolite transfers. In

many cases, perturbations of cytoplasmic transports are associated

with the targeting of the Cytoplasm-Nuclear Transport module (Fig. 2).

This result emphasizes again the major role metabolites play in

Figure 2. Profiles obtained for seven of the output reactions: AP-1, CREB, IRF3, IRF7, NF-kB, ROS, and ROS(2). Each vertical line
represents a distinct signature, i.e. the list of modules hit by an MCS. The profiles also display distributions showing the number of times each
signature is encountered (top) and how many times each module is hit by an MCS (right). These distributions emphasize the most frequent
signatures and the most targeted modules, respectively (cf. Fig. 1). Profiles of AP-1(2) and NF-kB(2) are omitted. The AP-1(2) profile is identical to the
AP-1 one, minus the 7-th signature. The NF-kB(2) profile is composed of a single signature targeting the NF-kB module.
doi:10.1371/journal.pone.0031341.g002

Controlling the Outcome of the Toll-Like Receptor
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signal transduction pathways. Nonetheless, as the Cytoplasm-Nuclear

Transport module is never targeted on its own, it appears that the

most critical reactions in these pathways occur within the

cytoplasm.

Surprisingly, none of the MCS targeted the IKK module. The

NF-kB and NF-kB(2) outputs can however be disabled by

targeting this module, which activate the IKK complex. IKK is

a protein kinase formed of three subunits that phosphorylates IkB,

the inhibitory proteins of NF-kB [32]. Members of the IkB family

bind to NF-kB to form an inactive complex. Two IkB proteins are

present in the model: IkBa and IkBb, which correspond to the

NF-kB and NF-kB(2) outputs, respectively. After phosphorylation

by IKK, the NF-kB/IkB complex rapidly dissociates, leaving NF-

kB free for activation. The phosphorylation of IKK occurs in the

model through 11 independent reactions. However, the MCS

algorithm failed to generate MCS with more than 8 reactions,

hence being unable to produce some targeting IKK. One can argue

that preventing the phosphorylation of IKK in vivo would require

to shut down at least 11 different reactions each using a different

enzymatic complex, which may not be an easy task. A simpler way

to prevent IKK phosphorylation would be to disable the formation

of the complex by knocking out one of its three subunits. This

solution was not detected since the reaction leading to the

formation of IKK is absent from the ihsTLR v1.0 model. Adding

this reaction would have certainly provided us with more MCS for

the NF-kB outputs, thus increasing the number of EGS. Being

able to generate MCS of higher cardinality represents an

improvement that would greatly benefit the analysis of stoichio-

metric reconstructions. However, we would like to emphasize that

MCS already give us access to information other techniques are

unable to provide.

An additional limitation arises from the ihsTLR v1.0 model

itself. This model is derived from the map of the TLR pathways

developed by Oda and Kitano [10,33]. However, this map does

Figure 3. Distributions of the MCS Module Cardinality (MMC). Each reaction in a MCS belongs to a module and some of these reactions may
belong to the same module. Hence, an MCS may target the same module through different reactions. The MMC represents the number of distinct
modules an MCS hits. The bars in each plot represent the number of MCS targeting simultaneously n modules (n~f1,2,3,4g). No MCS targets more
than 4 modules at a time. The colors describe which modules are targeted, as well as their relative importance. The distributions enable to
immediately identify modules that are targeted alone (e.g. Common metabolites, ROS production, TICAM) and the ones that are targeted with other
modules (e.g. PDK1 for ROS, Early endosome for IFR7, or MyD88 for AP-1 and AP-1(2)). For n§2, the distributions do no show which combinations of
modules are hit together (see Fig. 2).
doi:10.1371/journal.pone.0031341.g003

Figure 4. Identification of Essential Gene Sets. Species X is
produced by two distinct reactions: R1 and R2 . These reactions require
proteins P1 and P2 to be expressed, respectively. The proteins can be
used as enzymes or substrates. P1 is a dimer coded by genes A and B,
while P2 is coded by gene C. Species X is no longer produced if both
P1 and P2 are absent. Hence, the deletion of genes A and C, or B and C
renders reaction RX non-producible.
doi:10.1371/journal.pone.0031341.g004
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not exhaustively describe the pathways present in the immune

system. Consequently, some crosstalk pathways, which may be

affecting the producibility of the network’s outputs, are potentially

missing from the ihsTLR v1.0 model. Some EGS found from our

computational results may prove to be irrelevant in vivo due to

these missing components. Moreover, since the model is human

centered, the mouse results must be interpreted with additional

caution, although most of the TLR pathways are conserved

between the human and mouse. Finally, a non-uniform gene

nomenclature makes it difficult to exhaustively construct the GPR

associations. We also want to emphasize that transient behaviors of

the network do not affect the producibility of the outputs.

A valuable piece of information that we provide along with the

EGS is the impact they have. Species, reaction, and module

impacts were computed for every EGS. These numbers enable to

choose gene sets whose knockout will have a minimal impact on

the network. These EGS target a specific set of outputs while

affecting the minimum number of species, reactions, and

modules. We enumerated 801 EGS that targeted the power set

of outputs with minimal impact, in both human and mouse

(Dataset S2). Note that a minimal impact does not guarantee that

the knockout will not be lethal for the cell. Linking the TLR

network with a metabolic network could provide an answer to

such a question. The integration of multiple systems is an efficient

way to improve biological predictions of computational models

[20,34,35].

Searching essential reactions or genes (i.e. MCS or EGS) for an

objective has two applications. Firstly, this information can be used

to disable the objective. Secondly, it can identify key elements to

maintain in order to conserve the objective. Given the current

literature, we can conjecture on the effect of disabling any of the

outputs of the TLR network. NF-kB is involved in a multitude of

cellular processes: inflammation, T- and B-cells development,

hematopoeitic cells survival, nitric oxide regulation, and lymphoid

organogenesis [14]. Moreover, NF-kB is involved in the activation

of other TFs present in the network. Hence, knocking out NF-kB

may provoke serious repercussions on the host. In this case, the

EGS identify deletions to avoid at all cost, or sets of genes that

should not be targeted simultaneously in order to preserve the

activity of NF-kB. The knockout of AP-1 deregulates cell cycle and

proliferation, and interferes with lymphoid cells development [11].

Here again, disabling AP-1 risks to provoke some unwanted

consequences such as oncogenesis. Among all the outputs, ROS

may be the one whose disabling causes the least side effects as it is

the only one not being a TF. As a matter of fact, the oxidative

burst generated by ROS provokes collateral damage to the host by

itself [15]. Hence, blocking the formation of the NADPH oxidase

complex would protect the organism from such damage, while

depriving it of the positive effects of the burst.

We studied epistatic relations between modules of the ihsTLR

v1.0 model, and determined knockout strategies to control the

outcome of the TLR pathways. Analysis of the model suggests that

the manipulation of the response of these pathways is best

achieved by disabling targets downstream of the TLRs. We

extended the Minimal Cut Sets to the notion of Essential Gene

Sets (EGS), and determined lists of genes whose deletion perturbs

combinations of the network’s outputs. In addition, we assessed the

impact of such deletions and provided the EGS that have minimal

impact on adjacent pathways.

Materials and Methods

Signaling model
We represent a mass-balanced signaling network involving m

species and n reactions with a stoichiometric matrix S[Rm|n. The

stoichiometric matrix comprises the biochemical reactions occur-

ring within the TLR pathways: receptor/ligand binding, phos-

phorylation cascades, activation of TFs. Each entry Sij specifies

the stoichiometric coefficient for species i in reaction j. We

represent the flux distribution through all the reactions by v[Rn,

where the j-th component vj represents the flux through reaction j.
We consider all reactions to be irreversible (i.e. v§0) by breaking

all reversible reactions into two irreversible ones. The concentra-

tion of each species in the system at time t is given by x(t)[Rm
z.

Under these assumptions, the change of concentration of species in

time is given by

_xx~Sv,v§0: ð1Þ

Chemical reactions occurring in signaling networks (e.g.

phosphorylation, transport, etc) take less than 1 sec, while

transcriptional regulation and receptor internalization take on

the order of 102 sec [18,19]. This difference in time scales justifies

the quasi-steady state assumption suggested by Li et al. [10], under

which the fast signaling dynamics are assumed in steady state. This

assumption is usually used in the study of metabolic networks,

when the dynamics of the (fast) metabolic reactions are assumed in

quasi-steady state when compared to the slow gene regulation

Table 4. EGS validation.

Genes in EGS Outputs targeted Reference to validation experiments

MAPK8 AP1, AP1(2) Dérijard et al. (1994) JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and
phosphorylates the c-Jun activation domain, Cell 76: 1025–1037

TBK1, IKKE IRF3, IRF7 *Sharma et al. (2003) Triggering the interferon antiviral response through an IKK-related pathway,
Science 300: 1148–51

TRAF6 IRF7 *Kawai et al. (2004) Interferon-a induction through Toll-like receptors involves a direct interaction
of IRF7 with MyD88 and TRAF6, Nat Immunol 5:1061–8

MyD88 IRF7 *Kawai et al. (2004) Interferon-a induction through Toll-like receptors involves a direct interaction
of IRF7 with MyD88 and TRAF6, Nat Immunol 5:1061–8

b-TrCP NF-kB(2) Wu et al. (1999) b-TrCP mediates the signal-induced ubiquitination of IkBb, J Biol Chem 274: 29591–4

Vav1 ROS, ROS(2) Kim et al. (2003) The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates
N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions, J Immunol 171: 4425–30

Experimental validations of the predictions are found in the cited publications. A complete list of the EGS is shown in Table S2.
*These articles were also used for the reconstruction of the ihsTLR v1.0 model [10].
doi:10.1371/journal.pone.0031341.t004
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dynamics [16]. Formally, under the steady state assumption,

Equation (1) becomes:

Sv~0,v§0: ð2Þ

All 14 inputs I of the ihsTLR v1.0 model were considered active,

i.e. vI§0, where vI is the vector of all vi,i[I . The inputs are 11

TLRs (TLR1 through TLR11), IL1R1, NOD1, and NOD2. Nine

output reactions are defined in the model (Table 1). An output j is

considered producible if and only if

Av[K s:t: vjw0,

K~fv[RnjSv~0,v§0g:
ð3Þ

The set K from Equation (3) is called the feasible flux cone of S.

Minimal Cut Sets
Initially defined for metabolic networks, a cut set for an

objective reaction is a set of reactions whose knockout disables that

function [25]. Formally, C is a cut set for the objective reaction j in

model S if and only if vj is producible in the wild type (i.e. Av[K
such that vjw0) and

vC~0?vj~0,Vv[K: ð4Þ

A cut set is considered minimal if none of its subset is a cut set

for that reaction (Fig. 1). MCS can be generated in a ‘‘brute force’’

way by performing all knockout combinations and by testing (e.g.

using FBA) if the maximum flux through the objective reaction is

zero. This method becomes rapidly infeasible for large networks

and MCS of high cardinality. Alternatively, MCS can be

constructed as minimal hitting sets of extreme pathways (EP)

[25], which are the generators of the polyhedral cone from

Equation (3). A hitting set for an objective reaction j is a set that

intersects all j-containing EP. This method has previously been

employed to study epistasis in the E. coli and human metabolism

[25–27]. We generated MCS following the algorithm detailed by

Imielinski [26]. In summary, to compute MCS for a target

reaction j, the algorithm performs three main steps: (1) generation

of EP for an ‘‘over-approximated’’ cone K that includes the

feasible flux cone K , (2) computation of minimal hitting sets for

reaction j in K , and (3) reduction of the above sets to minimality.

As proved in [26], the sets obtained at (3) are guaranteed to be

MCS for reaction j in K . However, the approach is not complete,

in the sense that it might miss some MCS.

Essential Gene Sets
We constructed EGS iteratively for each MCS of all outputs.

For each reaction in an MCS, we first identified combinations of

genes whose deletion disabled that reaction. This was done by

searching genes coding for proteins used in that reaction. We

initially had to identify these genes in human and mouse through

searches in the literature and in the Entrez Gene and MGI

databases (Dataset S1). Similar sets of rules, usually called Gene-

Protein-Reaction (GPR) associations, are present in many

metabolic models [17], but were absent from the ihsTLR v1.0

model. Several combinations of genes may exist as different gene

deletions can have the same effect over a reaction. We denote as

Gj the set of all combinations for reaction j. Once we obtained

the sets Gj for all reactions in an MCS, we take their Cartesian

product to construct EGS for the corresponding objective

reaction. In the example from Figure 4, deleting A or B stops

R1 (G1 = f(A), (B)g) and deleting C stops R2 (G2 = f(C)g). We

obtain EGS for RX by taking the Cartesian product of G1 and

G2: EGSRX
= f(A,C), (B,C)g. Note that the sets Gj cannot be

constructed for every reaction; at least one of the reaction

substrates must be coded by a known gene. If at least one reaction

cannot be disabled by gene deletion than no EGS can be

generated. As MCS, EGS are considered to be minimal, i.e. no

subset of an EGS is itself an EGS. We consider an EGS for a set

of outputs as a set of genes whose deletion renders all the

corresponding outputs non-producible.

Estimation of gene deletions impact
In metabolic networks, the lethality of a gene deletion can be

assessed by checking whether it disables the production of a

biomass component. The ihsTLR v1.0 model does not include

such an objective function. Moreover, this approach is relevant for

the study of unicellular organisms, but for more complex

organisms, the producibility of the biomass is only necessary, but

not sufficient for survival. This motivated us to compute several

estimates for the impact of the deletion of an EGS: the species,

reaction, and module impacts (Dataset S2). We define these impacts

as the number of species, reactions, and modules, respectively, that

are no longer producible or affected upon deletion of all the genes

in an EGS. The three estimates allow us to evaluate the global

impact of gene deletions.

We determined which EGS have the ‘‘minimal’’ impact on the

network based on the three impact values. Among all the EGS that

knock out the same set of outputs, we first identified the ones that

disabled either the minimum number of species (i.e. Es), reaction

(i.e. Er), or module (i.e. Em). Then, taking the intersection

Es\Er\Em gave us the EGS with minimal impact. If this

intersection is empty then no ‘‘minimal’’ EGS can be found.

Supporting Information

Figure S1 Classification of the MCS according to their
cardinality and to the number of modules they target. In

each plot, the size of the dots shows the number of MCS

containing x reactions that hit y modules. x and y are given on the

x- and y-axis, respectively. xƒy for all outputs since a reaction

belongs to a single module. Having xvy indicates that several

reactions target the same module. The legend on the top-right

corner provides with an estimate of the number of MCS according

the size of the dot.

(TIF)

Table S1 Modules of the TLR network. Function and

description of the modules involved in the TLR network. Only

modules hit by MCS are listed.

(PDF)

Table S2 EGS validation. List of the initial EGS obtained

from our computation. Experimental validations of the predictions

are found it the cited publications.

(PDF)

Dataset S1 GPR associations of the TLR network. List of

the genes coding for the proteins of the TLR network. Entrez

Gene ID are given for human and mouse.

(XLS)

Dataset S2 EGS with minimal side effect. List of the EGS

that target the power set of outputs with minimal side effect in

human (first sheet) and in mouse (second sheet). Each set of genes

is followed by its respective species, reaction, and module impacts.

(XLS)
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