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Abstract—Control of conventional transportation networks aims at bringing the state of the network (e.g., the traffic flows in the
network) to the system optimal (SO) state. This optimum is characterized by the minimality of the social cost function, i.e., the total cost
of travel (e.g., travel time) of all drivers. On the other hand, drivers are assumed to be rational and selfish, and make their travel
decisions (e.g., route choices) to optimize their own travel costs, bringing the state of the network to a user equilibrium (UE). A classic
approach to influence users’ route choice is using congestion tolls. In this paper we study the SO and UE of future connected vehicular
transportation networks, where users consider both the travel cost and the utility from data communication, when making their travel
decisions. We leverage the data communication aspect of the decision making to influence the user route choices, driving the UE state
to the SO state. We assume the cache-enabled vehicles can communicate with other vehicles via vehicle-to-vehicle (V2V) connections.
We propose an algorithm for calculating the values of the data communication utility that drive the UE to the SO. This result provides a
guideline on how the system operator can adjust the parameters of the communication network (e.g., data pricing and bandwidth) to
achieve the optimal social cost. We discuss the insights that the results shed on a secondary optimization that the operator can
conduct to maximize its own utility without deviating the transportation network state from the SO. We validate the proposed
communication model via Veins simulation. The simulation results also show that the system cost can be lowered even if the bandwidth
allocation does not exactly match the optimal allocation policy under 802.11p protocol.

Index Terms—traffic control; vehicular communication networks; system optimal; user equilibrium
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1 INTRODUCTION

IN transportation systems, the prospect of wide-scale con-
nected autonomous vehicles (CAVs) is approaching its

realization, due to the advances in control and communi-
cation. In a traditional transportation network, the drivers
make travel decisions (e.g., route choices, travel timing) that
minimize the transportation related costs, such as travel
time, travel distance, etc. With the emergence of CAVs that
form vehicular ad-hoc networks (VANETs), data commu-
nication network connectivity is not only going to be an
important factor for enabling vehicular control, but also
going to change the CAV users traveling behavior. Some
CAV users will expect the type of data communication
service they are accustomed to at their homes and offices.
Thus, CAV users may choose routes not only depending on
travel time and costs, but also based on the quality of data
service that will be provided on the route, since this directly
affects their productivity and/or quality of life. CAV users
may choose to take a route with longer travel time in order
to have a better data communication network connectivity.
A similar scenario, where users trade off between different
commodities according to their preferences, is that travelers
may choose a more expensive hotel, or a less convenient
hotel location, if it offers a high speed WiFi connection.
Evidence of this behavior has been recently reported in [1],
where data connectivity affects the route choice of (human)
drivers. Hereafter in this paper, we will refer to the travel
decision makers (i.e., drivers or CAV users) as “users.”

Travel decision making among users can be analyzed

in a game theoretical setting [2], [3]. The travel decision of
each user impacts the state of the transportation network,
and thereby may also impact the transportation costs of all
users. The Nash equilibrium of this game is referred to as
the Wardrop equilibrium or the user equilibrium (UE). Thus, UE
occurs if no user can be better off by unilaterally changing
his travel decision. In a traditional transportation network,
the UE state1 is achieved if every user tries to minimize
his/her travel cost (e.g., travel time).

In contrast to UE, we can also consider the system
optimal (SO) state. The system optimal state occurs if the
social cost function, i.e., the total of the travel costs of all
users, is minimized. In general, assuming that the users are
selfish and rational, it is known that UE and SO are not
the same. This phenomenon is sometime referred to as the
Braess’ paradox [4], [5]. The ratio between the social costs at
UE and at SO is called the price of anarchy (PoA) [6]. The SO
is regarded as the ideal state: a closer UE to the SO in terms
of the traffic flows results in a lower social cost. Consider a
simple network that consists of a single O-D pair connected
by two links with traffic flow x1 and x2 respectively. For
simplicity, we assume that the travel time on the link is
T1 = 7 + 6x1 + 4x2 and T2 = 1 + 2x1 + 10x2 respectively.
We will introduce a more realistic travel cost model (Bureau
of Public Roads function) in Section 5.3. Fig. 1 shows how
the system cost varies with the traffic flow on link 1 under

1. i.e., the state of the transportation network if the game is at UE.
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different trip rates in this network. Given the trip rate q,
one can solve for the traffic flows at the SO and at the UE.
Connecting the SO points (UE points) under all possible trip
rates gives the SO trace (UE trace), which is shown by the
black dashed line (red dashed line) in Fig. 1. We note that
the UE deviates from the SO as the trip rate increases. Traffic
control policies, for example congestion tolls, push the UE
closer to, and even the same as, the SO, as indicated by the
arrow in Fig 1. PoA is eliminated if the UE trace matches the
SO trace.
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Fig. 1: System cost v.s. traffic flow under different trip rates. Black(red) dashed
line connects the SO(UE) states under different trip rates, and is referred to as
the SO(UE) trace. The UE trace deviates from the SO trace when the trip rate
increases. Our goal is to drive the UE trace closer to, or even the same as, the SO
trace, as indicated by the black arrow.

In this paper, we study the UE state and the SO state
in the vehicular communication network, where the inter-
dependency between the network condition (including traf-
fic network condition and communication network condi-
tion) and the users’ valuation of the cost (including travel
cost and communication cost) leads to a different UE. We
assume that the cache-enabled vehicles can communicate
with other vehicles via vehicle-to-vehicle (V2V) connections.
We refer to the traffic flows that support data caching and
forwarding as the cache-enabled traffic flows hereinafter.
Therefore, for a choice of caching, infrastructure, and user
connectivity profile, data connectivity depends on the flow
density. A dense flow may reduce the quality of service of
the V2I connections while benefiting the content users by
increasing the cache hit probability, and vice versa. This
connectivity dynamics, coupled with the traffic condition,
affects users’ route planning. For example, a dense traffic
flow in a road segment leads to a longer travel time, but can
potentially lower the communication cost if the benefit of
the V2V caching gain dominates the loss of the V2I QoS de-
clining. On the other hand, as more users choose to use the
road segment with low travel cost and low communication
cost, congestion may occur in both the traffic network and
the communication network, which will discourage other
users from using this road segment.

The interaction between the transportation network and
the users decisions has been thoroughly studied [2]. How-
ever, the effect of network communications, both from a
connectivity dynamics point of view, and from a decision
point of view, have not been considered. In this work, we

study the influence of the traffic condition and the data
service on users route planning. We adopt the notion that
the system operator can use the communication network
parameters as a leverage to push the user equilibrium (UE)
to the system optimal (SO). This paper is a substantial
extension of our previous conference paper [7]. Specifically,
we make the following contributions:
(a) We derive the data throughput in the vehicular commu-

nication network that supports content caching and V2V
communication, based on which we propose a commu-
nication cost model. This model takes into consideration
the throughput scaling law in ad-hoc networks, the
cache hit probability of the users, and the limitation of
V2V bandwidth allocation. Our work makes it possible
to incorporate the data communication aspect in traffic
flow control.

(b) In order to demonstrate that the proposed communica-
tion cost function enables a wide range of applications,
we propose a V2V bandwidth allocation scheme with
the aim of driving the UE to the SO under the marginal
cost pricing framework [2].

(c) We conduct a comprehensive case study on a network
in New York State Capital District using the proposed
bandwidth allocation scheme, which gives the optimal
bandwidth allocation for the main highways in the
network.

(d) We validate the proposed communication cost model
via simulation. The simulation results also show that
the system cost can be lowered under 802.11p protocol.
The remainder of this paper is organized as follows.

In Section 2 we review the related work on the data com-
munication and user behavior in vehicular communication
networks. In Section 3 we present the model of the trans-
portation network and the communication network, and
present the communication cost function and a general trip
cost function. In Section 4 we discuss the SO state and the
UE state, and the corresponding necessary conditions on the
traffic flows. In Section 5 we design a primary optimization
technique that steers UE to match SO by leveraging the
communication cost, and show the achievability of this UE-
SO matching. A secondary optimization is presented in Sec-
tion 6 with the objective of minimizing the total bandwidth
allocation. A comprehensive case study on a network in
the New York Capital District is demonstrated in Section
7. In Section 8 we validate the proposed communication
cost model via simulation, and show the simulation results
when the bandwidth allocation does not exactly match the
optimal value under 802.11p protocol, where the bandwidth
can only take on 8 possible values. We conclude our work
in Section 9.

2 RELATED WORK

In order to decrease the Price of Anarchy (PoA) in trans-
portation networks, congestion tolls have been proposed
and is currently adopted in practice [8], [9]. A wealth of
research has been done on the design of congestion tolls.
Marginal cost pricing is a well-known approach for steering
the user equilibrium to the system optimal, which has been
proposed in [2]. In marginal cost pricing, the toll of a link
is set to the difference between the marginal cost at user
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equilibrium and the marginal cost at system optimal. There
exists a number of problems in this marginal cost pricing
approach, for example, users may have different sensitivities
to the tolls. The recent work by Wang et al. [10] seeks to
eliminate the PoA by imposing scaled marginal-cost road
pricing on the a transportation network where users have
different toll sensitivities. Another problem is that in the
marginal cost pricing approach, the trip rate is assumed
to be known a-priori. However, the real trip rate may not
be the same as the predicted trip rate, thus the marginal
cost pricing may result in a high PoA. In [11], the demand-
independent tolls have been proposed, which induce the
system optimum flow as a Wardrop equilibrium without the
prior knowledge of the trip rates if the travel time is a BPR-
type cost function [12]. Knowledge of the cost functions is
key in characterizing both the system optimal and the user
equilibrium. The recent work by Zhang et al. [13] seeks to
derive the users travel cost functions from city-wide real
traffic data.

It is expected that CAV users needs for, and valuation of,
data service vary based on their socioeconomic character-
istics and trip-related features. There is wealth of literature
on people’s behavior in response to transportation service
and data communication service. These studies, however,
reside in different research fields. Transportation studies
typically focus on traveler behavior including mode choice,
route choice, departure time choice, etc. For traveler route
choice, the main focus ranges from the effects of road pricing
[14], fuel costs [15], congestion level [16], reliability [17],
land use [18], to advanced traveler information system [19].
User responses to cost and quality of data communication
service have been investigated in a wide spectrum of fields
including information systems, psychology, and business
management. Studies have looked into effects of perceived
fee [20], user prior experience and habits [21], social in-
fluence [22], perceived monetary value, among others. In
a recent literature review, [23] summarized key areas and
methods on research related to people’s data communica-
tion behavior in the past decade. However, no existing study
has explored the problem of exploiting the communication
aspect to maximize the social welfare when users are faced
with the joint choice of transportation and data service ,
which is the key feature of CAV users, and is the focus of
this paper.

Incorporating the communication network in the trans-
portation networks enables a wide range of applications
[24], [25], for example, interactive entertainment, urban
sensing [26], collision avoidance in platoon formation [27],
improving the intersection capacity via platoons [28], etc. A
wealth of research focuses on vehicle-to-vehicle (V2V) com-
munication and Vehicle-to-infrastructure (V2I) communica-
tion in transportation networks (e.g. [29], [1], [30]). Content
caching in vehicular networks has been considered in the
past, exploiting the large data storage space of vehicles and
the dynamic topology of the networks (e.g. [31], [32], [33]).

In this paper, we use the marginal pricing, which is
a classic approach of congestion tolls, to demonstrate a
possible application of our proposed communication model.
Our novel contribution is in modeling the data throughput
of each link in vehicular communication networks that
support V2V communication and data caching. Based on

this throughput, we derive a communication cost func-
tion that takes into consideration the throughput scaling
law in ad-hoc networks, the cache hit probability of the
users, and the constraints on V2V bandwidth allocation.
This communication cost function enables a wide range of
applications, and makes it possible to incorporate the data
communication aspect in the traffic flow control. For exam-
ple, it can be used to steer the user equilibrium to system
optimal under the aforementioned marginal cost pricing
framework. With our proposed model, we analyze if the
marginal cost pricing can actually achieve UE-SO matching.
This communication cost can be viewed as a type of toll, but
this “toll” cannot be controlled by the operator directly, and
will be influenced by the traffic flows in real time. Another
focus of our work is the development of a simulation
environment/tool to simulate both communication network
protocols and transportation network dynamics, where the
communication quality impacts users’ behavior in real time.
Up to our knowledge, there does not exist a simulator
that captures this joint dynamics of network protocols and
transportation networks. We validate the proposed model
and the bandwidth allocation scheme via simulation under
802.11p protocol. By using the marginal cost pricing frame-
work, the optimal bandwidth allocation may not be feasible
under 802.11p protocol. Therefore, via simulation, we show
that the closest possible allocation to the optimal allocation
under 802.11p can still lower the system cost.

3 SYSTEM MODEL

In this section, we first present the transportation network
model and the communication network model in Section
3.1. Then we discuss the costs incurred by traffic and by
data communication in Section 3.2. For ease of reference,
related notations are shown in Table 1.

3.1 Network Model

The transportation network consists of a number of road
segments, which we refer to as links. Infrastructure related
parameters, such as the free-flow speed, stay the same
throughout a link. Without any loss of generality, we only
consider one-way traffic, i.e. all links are directed. A two-
way link can be equivalently replaced by two one-way
directed links if the traffic on one direction does not have
communication overlap with the traffic on the other direc-
tion. The set of all links in the transportation network is
denoted by A. Each vehicle in this transportation network
travels from an origin to a destination via a set of links.
We refer to an ordered sequence of links that connects an
origin and a destination as a route. The set of all possible
origin-destination pairs (O-D pairs) is denoted by N . There
are one or more routes between each O-D pair. The set of all
possible routes between the O-D pair i is represented by Ki,
and the set of all possible routes between all possible O-D
pairs is represented by K. We denote the arrival trip rate
(trips per unit time) for O-D pair i ∈ N by qi. The indicator
variable δi,k(a) is defined such that δi,k(a) = 1 if link a is
part of route k ∈ Ki. Otherwise δi,k(a) = 0. Fig. 2 shows
an example network that consists of one O-D pair. An O-D
pair can potentially be traversed using multiple routes. For
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Notation Description
A set of links (road segments)
N set of all origin-destination (O-D) pairs
K set of all routes between all possible O-D pairs
Ki set of all routes connecting O-D pair i ∈ N

q
trip rate vector with entry qi denoting the trip rate
between O-D pair i ∈ N

x
link flow vector with entry xa denoting the flow on
link a ∈ A

y
route flow vector with entry yi,k denoting the flow
on route k ∈ Ki that connects O-D pair i ∈ N

b
bandwidth allocation vector with entry ba denoting
the bandwidth allocated to link a ∈ A

bmax
maximum bandwidth vector with entry bmax

a de-
noting the upper bound on the bandwidth along
link a ∈ A

δi,k(a) =1, if link a is on route k between O-D pair i;
=0, otherwise

T(·) travel cost vector with entry Ta(·) denoting the
travel cost of link a ∈ A

C(·) communication cost vector with entry Ca(·) denot-
ing the communication cost of link a ∈ A

Cmax 1× |A| vector with entry Cmax
a denoting the upper

bound of the communication cost on link a ∈ A
Jsys(·) system cost

Ji(·)
1× |Ki| vector with entry Ji,k(·) denoting the total
trip cost on route k ∈ Ki that connects O-D pair
i ∈ N

Λi 1× |Ki| vector with all entries being the same λ
ha(xa) one-hop cache hit probability on link a ∈ A
va(xa) average speed on link a ∈ A
la length of link a ∈ A
r transmission range. r << la, ∀a ∈ A
pa caching ratio on link a ∈ A
ua flow density of link a ∈ A
0 zero vector with every entries being 0

TABLE 1: Table of Notations

link 1 link 2

link 3

n

o d
q(o,d)

Fig. 2: A transportation network consisting of an origins o and a destination d.
Links are indexed by the numbers next to them. Node n is the intersection of
link 1, 2. The trip rate from o to d is q(o, d). Communication range is denoted by
dotted circle around a vehicle.

example, the O-D pair (o, d) can be traversed using route 1-2
or route 3. The dotted circle represents the communication
range of a vehicle.

The vehicles travel along the links and form the link flow
vector x ∈ R|A|, where the entry xa represents the traffic
flow on link a ∈ A, and |A| represents the cardinality of set
A. Similarly, the route flow vector y ∈ R|N |×|K| represents
the number of vehicles that choose certain routes, where the
entry yi,k denotes the flow on route k ∈ Ki that connects
the O-D pair i ∈ N .

All routes should satisfy the flow conservation con-
straints, i.e. the sum of the route flows along all routes that
connect an O-D pair equals the O-D trip rate, and the flow
on a link equals the sum of the flows that enter the link [3].

The flow conservation constraints are given by:∑
k∈Ki

yi,k = qi, ∀i ∈ N, (1)

yi,k ≥ 0, ∀i ∈ N, k ∈ Ki, (2)

xa =
∑
i∈N

∑
k∈Ki

δi,k(a)yi,k, ∀a ∈ A. (3)

Note that x is therefore a linear function of y.
Each user is a participant both in the transportation

network and in the communication network. We envision
the use of vehicles as nodes with the network interfaces that
support V2V communication. Vehicles communicate with
each other by broadcasting in an ad-hoc manner, and the
system operator can control the V2V communication by
limiting the broadcast bandwidth. In practice, the system
operator is a certain ”coordinator”, for example the Fed-
eral Highway Administration, which coordinates highway
transportation programs in cooperation with states and
other partners to enhance the country’s safety, economic
vitality, quality of life, and the environment. This ”coordina-
tor” will provide incentives to the network operator in order
to maximize the social welfare. But how this coordination is
done is beyond the scope of the paper. The bandwidth allo-
cation vector is denoted by b, where the entry ba represents
the bandwidth allocated for link a. The concrete shape of
the communication cost is discussed in the next subsection.

3.2 Travel & Communication Cost Functions
We associate each route with a cost. As aforementioned,
users in the vehicular communication network do not only
value travel cost, such as travel time and travel distance,
they also need data service for a better travel experience.
Therefore, the trip cost consists of two parts: travel cost and
communication cost. When a user chooses which route to
take, for each route k that connects the O-D pair i, they are
presented with the travel cost Ti,k and the communication
cost Ci,k. Without specifying how user preference would
affect their trade-off between the travel cost and the commu-
nication cost, we denote the trip cost of route k that connects
the O-D pair i by Ji,k(Ti,k, Ci,k).

The travel cost is a measure of the transportation related
disutility. We do not restrict the travel cost to be any specific
type of disutility. Instead, we represent the travel cost of a
link a as a function of the traffic flow vector, i.e. Ta(x). Given
the traffic flow, all users experience the same link travel cost
on the same link. Note that if the travel time is chosen to
be the travel cost, then the average speed can be used to
calculate Ta(x). We define the route travel cost Ti,k(x) as
the sum of the link travel cost along the route.

The communication cost is a measure of the communi-
cation network performance, and is a function of the cache-
enabled traffic flows and other relevant network parame-
ters. The communication cost involves content downloading
delay, data price charged, etc. The network topologies we
consider are highway and urban networks where there is
negligible communication range overlaps at intersections
and parallel roads. The cache-enabled vehicles are envi-
sioned as nodes, all of which send requests according to the
following procedure. A query node broadcasts its request to
the neighboring nodes that are within its transmission range
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r along the same link. If one of the neighboring nodes has
the requested content in its cache, it sends the content to
the query node. If none of the neighboring nodes caches the
requested content, the request is re-broadcast to the second
hop neighbors. After a certain number of hops, the request
is dropped if no node has cached the requested content. For
ease of discussion, we assume that the request is dropped
after one hop, and the neighboring vehicle who has the
requested content in the cache sends this content directly to
the querying vehicle. This can be readily expanded to multi-
hop scenario by incorporating transmission power control
policy and routing algorithm, which determine the maxi-
mum number of hops, or the maximum searching distance.
We also assume that the caching ratio pa, i.e. the probability
that a piece of content can be found in a node along the link
a, is the same for all nodes.

We assume the vehicles’ location on link a follows a
Poisson distribution with the density parameter ua. The
travel time and the average speed on link a given the
link flow xa is denoted by ta(xa) and va(xa), respectively.
We denote the cache-enabled flow on link a as x̃a. From
[34], the probability that at least one neighboring node has
the requested content in cache, i.e. the one-hop cache hit
probability, is given by:

ha(x̃a, xa) = 1− e−2rpaũa , (4)

where ũa =
x̃a

va(xa)
. (5)

The one-hop cache hit probability does not solely determine
the network performance. The interference among vehicles
traveling in a dense flow may cause a significant access
delay even if the one-hop cache hit probability is relatively
high. On the other hand, more bandwidth allocation along
a link with a high flow density can mitigate the interference
among the vehicles, and thus reduce the content access
delay. Therefore, we define the communication cost to be in-
versely proportional to the throughput achieved from cache
hit, which is derived as follows. We assume that the traffic
network is not highly dense, and the throughput of a road
is Θ( 1

r ) [35]. We further assume that the channel capacity,
which is proportional to the bandwidth, is divided equitably
between the vehicles on a road and that the throughput
scales with Θ( 1√

u
) [36], then the throughput per node is

Θ(
ba

2r
√
ũa
ha(x̃a, xa))

We assume that the bandwidth allocated by the system
operator along a road cannot exceed a maximum value,
denoted by bmaxa , a ∈ A. Similarly, the user-perceived com-
munication cost will not be unbounded, and we denote
the maximum possible communication cost on a road by
Cmaxa , a ∈ A. Let k denote a positive constant, then we can
define the communication cost of link a as

Ca(x̃a, xa, ba) = min{ca(x̃a, xa, ba), Cmaxa }, (6)

where ca(x̃a, xa, ba) = Θ−1(
ba

2r
√
ũa
ha(x̃a, xa)), (7)

and 0 ≤ ba ≤ bmaxa .

If all vehicles are cache-enabled, i.e. x̃a = xa,∀a ∈ A, then

ca(x̃a, xa, ba) = ca(xa, ba) (8)

= Θ−1(
ba
√
la

2r
√
xata(xa)

ha(xa))

= k
( ba

√
la

2r
√
xata(xa)

ha(xa)
)−1

=

√
xata(xa)

1− e−2rpaxata(xa)/la

2r√
la

k

ba
,

We define the route communication cost Ci,k(x̃,x,b) as the
sum of the link communication costs along the route. Note
that the communication model is applicable in highway and
urban scenarios where there is negligible communication
range overlaps at intersections and parallel roads. Our
model is also applicable in two-direction roads where the
car densities are the same, as implied in [34]. We justify
this model simplification in Section 8.1 by validating that
the model’s prediction matches the simulation result. The
network model for a general transportation topology is an
avenue of future work.

4 PROBLEM FORMULATION

In this section, we first formulate the UE state and the SO
state, and discuss the necessary conditions on the traffic
flows for both states. Then we present the general formu-
lation with the objective of minimizing the total travel cost
at the UE state subject to the constraints on the maximum
bandwidths and the maximum possible communication cost
perceived by the users.

4.1 System Optimal

From Wardrop’s second principle [37], the average travel
cost is minimized at system optimal. Therefore, from the
system’s perspective, a low total travel cost improves the
social welfare. For example, a low average travel time or
average travel distance can alleviate the traffic congestion,
reduce air pollution, and be more energy efficient. The state
where the total travel cost is minimized is referred to as the
System Optimal state (SO). The link flow at the SO is the
solution of the following minimization problem:

min Jsys(x) =
∑
a∈A

xaTa(x), (9)

which is subject to the flow conservation constraints (1)
through (3). We assume that the system cost Jsys(x) is a
convex function of x. This assumption implies that the SO is
the unique and local minimum of Jsys. We also assume that
the SO occurs at an interior point of the positive orthant of
y (i.e., y is strictly positive), so that all routes between any
O-D pair i are used at the SO. If this is not the case, then
routes with zero traveler can be simply removed from Ki

without any loss of generality.
The condition of the local optimality of (9) under the

flow conservation constraint (1) through (3) can be derived
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using Lagrange multiplier. From [3], the first-order condi-
tion for the solution of the above formulation is, for all
i ∈ N, k ∈ Ki, 

yi,k(T̃i,k(x)− µi) = 0

T̃i,k(x)− µi ≥ 0∑
k∈Ki

yi,k = qi
yi,k ≥ 0

, (10)

where µi is a positive Lagrange multiplier, and T̃i,k(x)
denotes the marginal travel cost of route k that connects
the O-D pair i, which is the sum of the marginal travel
cost of all links on the route. The physical meaning of the
marginal travel cost of a link is the marginal contribution of
an additional user who uses the link to the total travel cost
of the network. So we have

∂Jsys
∂xa

, T̃a(x) = Ta(x) +
∑
b∈A

xb
∂Tb(x)

∂xa
,

∂Jsys
∂yi,k

, T̃i,k(x) =
∑
a∈A

δi,k(a)T̃a(x).

The first-order condition (10) can be interpreted as: at SO,
the marginal travel costs on all routes connecting the same
O-D pair are the same. Since we assume that all routes are
taken at the SO, the first-order condition of the SO can be
written as, for all i ∈ N, k ∈ Ki,∑

a∈A
δi,k(a)

(
Ta(x) +

∑
b∈A

xb
∂Tb(x)

∂xa

)
= µi. (11)

Solving for x from (11) and the flow conservation con-
straints gives us the traffic flows at the SO. Note that there
are many papers addressing marginal cost pricing, but they
are either in different domains or using different tools (e.g.
toll stations). Our main contribution here is not the marginal
cost pricing. We use this method as a framework to address
the more interesting issues, which include the modeling of
user experience considering both the travel cost and the
communication cost, and the proposal of exploiting the
communication aspect to influence the users’ behavior in
order to eliminate the price of anarchy.

4.2 User Equilibrium
The users typically behave non-cooperatively in the trans-
portation network, and the system may have one or more
user equilibrium (UE) states, where no user can benefit by
unilaterally changing routes. We refer to the routes with
positive flows at UE as the used routes, and the routes with
zero flows at UE as the unused routes. From the Wardrop’s
first principle [37], at UE, the costs of all used routes that
connect the same O-D pair are the same, and the cost of
any unused route is not smaller then these used routes.
Therefore, in the traditional transportation network, the
necessary condition for UE is given as follows: for any i ∈ N
and k, l,m ∈ Ki, where k and l are used routes and m is an
unused route

Ti,k(x) = Ti,l(x) ≤ Ti,m(x). (12)

In the vehicular communication network where the
users also take into consideration the communication cost

when planning their trips, the UE deviates from that in
the traditional transportation network. As described in Sec-
tion 3.2, the trip cost Ji,k is a function of the travel cost
and the communication cost. Therefore, (12) becomes: for
all i ∈ N , for any used route k ∈ Ki, and for any unused
route m ∈ Ki,{

Ji,k
(
Ti,k(x), Ci,k(x̃,x,b)

)
= λi,

Ji,m
(
Ti,m(x), Ci,m(x̃,x,b)

)
≥ λi

(13)

where λi is some positive constant for the O-D pair i.

4.3 General Formulation

The objective is to minimize the system cost at the UE
state. As discussed in Section 3.2 (and described in (6)),
the communication cost is upper-bounded by the maximum
possible value of the users’ perceived cost, and is affected
by the physical layer limitations, such as the bandwidth
allocation. The budget for travel cost is intrinsically modeled
in the trip cost. If the travel cost of a route is too high, which
results in a high route cost, the user may simply choose
another route. It is also implied that any user entering the
network already has a destination, therefore the user will
have to travel no matter what the travel cost is. If any future
survey or experiment in the civil engineering field gives a
specific user experience model (e.g. budget on travel cost
when given the communication cost), similar analysis can
be done using the framework presented below.

Under these constraints, we can adjust the communica-
tion related parameters with the objective of minimizing the
system cost at the UE state, as shown in formulation (14)
below.

min.
x,b

xTT(x) (14a)

s.t. Ji(T,C)−Λi = 0|Ki|,∀i ∈ N (14b)
Λi ≥ 0|Ki|,∀i ∈ N (14c)
C(x̃,x,b) = min{c(xc,x,b),Cmax} (14d)
0 ≤ b ≤ bmax, (14e)

where (14b) and (14c) guarantee that the objective (14a) is
minimized over the flows at the UE state, (14d) caps the
communication cost by the maximum possible value of the
user’s perceived communication cost, and (14e) limits the
bandwidth allocation according to the budget of the system
operator.

5 PRIMARY OPTIMIZATION: SO-UE MATCHING

In this section, we first design a technique that can drive the
flows at UE to match the flows at SO based on a necessary
condition on the communication cost function, assuming
that the trip cost function takes on a specific form. Then
we analyze if the UE-SO matching is achievable under the
communication constraints (14d) and (14e). We present a
case study to demonstrate the achievability of the UE-SO
matching. Lastly, we discuss the uniqueness of the UE state
in the vehicular communication networks. Note that the
parameters in the examples in this section are set in a way
such that the corresponding figures are easier to read.
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5.1 Necessary Condition of SO-UE Matching

If the communication cost is factored into the route choices,
there exists a new dimension in network management,
which provides the opportunity for pushing the UE closer
to, and even the same as, the SO, as indicated by the
arrow in Fig 1. The system operator can thus adjust the
communication network related parameters in such a way
that the traffic flows UE match the traffic flows at SO. Denote
the flows and the cache-enabled flows at SO by xSO and
x̃SO respectively. From (11) and (13), in order to drive the
flows at the UE state to match the flows at the SO state, it
is necessary that for every used route k and every unused
route m that connects the O-D pair i,

Ji,k(T(xSO),C(x̃SO,xSO,b)) = λi,

Ji,m(T(xSO),C(x̃SO,xSO,b)) ≥ λi,
(15)

where λi is some positive constant for the O-D pair i.
The necessary condition (15) is also sufficient if there

is only one UE state, which can provide a guideline on
how the system operator can manage the communication
network to achieve the SO. The uniqueness of the UE
state is discussed in Section 5.4. The necessary condition
(15) decouples the traffic flow control of the transportation
network and the management of the communication net-
work. If one can solve the SO using a convex optimization
solver, the resulting link traffic flows and travel costs can
be substituted into the trip cost Ji,k(Ti,k, Ci,k), and the
numerical values of the communication costs of every routes
are obtained. Then, the operator can adjust the trip cost
by tuning the communication network related parameters,
such as bandwidth and data price, so that the necessary
condition (15) is satisfied. We call such technique as User-
System Equilibrium (USE). USE guarantees that the social
welfare is maximized at equilibrium if there is only one UE
state, even if the users behave non-cooperatively.

We illustrate this technique via an example, where we
assume, for illustrative simplicity, that the trip cost is a linear
scalarization of the travel cost and the communication cost.
Here, we have two objectives: lower the travel cost and
lower the communication cost, and linear scalarization is
often used in multi-objective optimization problems. In fact,
if any future survey or experiment in the civil engineering
field gives a different user experience model, similar anal-
ysis can be done using the same framework presented in
this section. We denote the weight towards the traffic cost
by α ∈ (0, 1), which reflects the tradeoff between the travel
cost and the communication cost. If the user’s profile can be
gathered in real-time, the weight towards travel cost α can
be customized to incorporate users preference. If a vehicle
does not support data caching and forwarding, α can be
set to 1. For ease of discussion, we assume all users have
the same preference and α takes on a positive value, which
implies all vehicles support data caching and forwarding.
Then the route cost is given by:

Ji,k(T,C) = αTi,k(x) + (1− α)Ci,k(x,b). (16)

Then, for any used route k ∈ Ni and any unused route

m ∈ Ni the communication cost at SO should satisfy

Ci,k(xSO,b) =
λi

1− α
− 1

1− α
Ti,k(xSO),

Ci,m(xSO,b) ≥ λi
1− α

− 1

1− α
Ti,m(xSO).

(17)

Note that the first term in the RHS of (17) can take on any
positive value, and is the same for all routes that connects
the O-D pair i. Therefore, only the difference between the
routes’ communication costs is relevant. For any pair of
routes k, l ∈ Ki, define

∆k,lCi(x,b) := Ci,k(x,b)− Ci,l(x,b),

∆k,lTi(x) := Ti,k(x)− Ti,l(x).

The necessary condition for UE-SO matching becomes: for
all O-D pair i ∈ N , and all used routes k, l ∈ Ki, and all
unused routes m ∈ Ki,

∆k,lCi(x
SO,b) =

α

1− α
∆l,kTi(x

SO) (18a)

∆m,kCi(x
SO,b) ≥ α

1− α
∆k,mTi(x

SO) (18b)

We refer to Eq. (18) as the UE-SO Overlapping condition
(USO condition). As aforementioned, we can use the USE
technique to adjust the communication related parameters
to drive the flows at UE to match the flows at SO. First, xSO

needs to be solved. Then, (18) is applied to solve for the
bandwidth b. However, if certain criteria are not satisfied,
the USO condition (18) is not achievable, and thus the USE
technique is not applicable. In this case, the UE state is
impossible to match the SO state under the marginal cost
pricing framework, which is discussed in detail in the next
subsection. Note that other road pricing framework my be
considered in this case, for example, demand-independent
tolls proposed in [11].

5.2 Achievability of USO Condition
In this subsection, we study when the USO condition can
be achieved under the communication cost constraints (14d)
and (14e), assuming that the system operator can change the
bandwidth allocation. The USO condition (18) is not always
achievable, as the communication cost of route k ∈ Ki is
bounded above by the maximum possible value of users’
perceived communication cost Cmax

i,k , and is bounded below
by Ci,k(xSO,bmax) due to the constraint on the budget
of the bandwidth allocation. Without loss of generality, we
consider the communication cost of any used route k ∈ Ki,
the communication cost of any unused route m ∈ Ki, and
the communication cost of a specific used route k∗ ∈ Ki. For
any route l ∈ Ki, the four points on the (Ci,l* ,Ci,l) plane:

(
Ci,k∗(xSO,bmax), Ci,l(x

SO,bmax)
)(

Cmaxi,k∗ , Ci,l(x
SO,bmax)

)(
Cmaxi,k∗ , C

max
i,l

)(
Ci,k∗(xSO,bmax), Cmaxi,l

) (19)

form a rectangle, within which the communication costs
are feasible. We refer to this region as the feasibility region
hereinafter. If the line defined by (18a) on the (Ci,k* ,Ci,k)
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C1

C2

C3

Δ1,2Ci =
α
1−α

Δ2,1Ti

Δ3,2Ci =
α
1−α

Δ2,3Ti Si,1,2
Si,3,2

Si,1,2 ∩ Si,3,2

Fig. 3: Example of non-empty intersection of two feasibility sets. There are three
routes connecting a single O-D pair, each of which consists of only one link.

plane passes through this feasibility region, and if the plane
defined by (18b) on the (Ci,k* ,Ci,m) plane intersects with
this feasibility region, one can find a bandwidth allocation
scheme to satisfy the USO condition for the pair of routes
k, k∗ ∈ Ki and m, k∗ ∈ Ki. Denote the feasibility set Si,l,k∗
as the set of points that satisfy the USO condition and also
lie in the feasibility region for the pair of route l, k∗ ∈ Ki.
One can find the bandwidth allocation scheme for the whole
network that achieves the UE-SO matching if and only if the
intersection of the feasibility sets of all (l, k∗) pairs is not
empty, i.e. there exists a k∗ ∈ Ki such that,⋂

l∈Ki

Si,l,k∗ 6= ∅, ∀i ∈ N, (20)

This is illustrated in the example shown in Fig. 3, where
there are three routes (indexed by 1, 2, and 3) connecting a
single O-D pair. The USO condition is plotted as the dashed
lines. The feasibility regions of the route pair 1, 2 and 3, 2
are represented respectively by the rectangles on the C1-C2

plane and on the C3-C2 plane. The feasibility set for route
pair 1, 2 and 3, 2 are represented respectively by the yellow
plane and the blue plane. The intersection of the feasibility
sets is non-empty (the red line in Fig. 3), which means
there exists at least one bandwidth allocation scheme that
satisfies the USO condition (5.16) and the communication
cost constraints (14d) and (14e).

5.3 Case Study

Consider a single O-D pair (with trip rate 6000/h) con-
nected by two routes, each of which consists of only one
link (so they can be indexed by 1 and 2 respectively).
The first road has length 1000 meters and two lanes. The
second road has length 500 meters and one lane. The trans-
mission range, and the caching ratio are 50 meters and
0.01 respectively. We adopt the travel time as the travel
cost. The travel time is assumed to follow the Bureau of
Public Roads (BPR) function T (x) = l

vmax
(1 + γ( xP )β),

where vmax is the speed limit, and P is the capacity of a
link. This BPR function is widely used in civil engineering
[38]. We will use the same empirical parameters as in [38]
hereinafter, unless specified otherwise. Specifically, we set
vmax = 35mph (15.6464m/s), γ = 0.2, and β = 10. In order

to simulate traffic congestion and avoid corner cases in sec-
tion 8, we set P = 1500/h per lane. Therefore, the travel cost
of route 1 and route 2 are T1(x1) = 1000

15.6464 (1 + 0.2( x1

3000 )10)
and T2(x2) = 500

15.6464 (1 + 0.2( x2

1500 )10) respectively. For
simplicity, we set k = 1, thus the communication costs are
given by

C1 =
3.1623

√
x1T1(x1)

1− e−x1T1(x1)/1000

1

b1
, (21)

C2 =
4.4721

√
x2T2(x2)

1− e−x2T2(x2)/500

1

b2
. (22)

The flows at SO are x1 = 3904.3/h, x2 = 2095.7/h, which
can be computed by any convex programming method. The
communication costs at SO are

C1 =
51.2410

1− e−0.2626
1

b1
, (23)

C2 =
49.8038

1− e−0.2480
1

b2
. (24)

If we set α = 0.2, the USO condition (16) can be written as

C1 − C2 = −7.2628. (25)

Fig. 4 shows how the upper bound on the bandwidth
and the upper bound on the communication cost affect the
feasibility set. The blue dashed line represents the USO
condition. In the three cases shown in Fig. 4, only when
bmax = [4 4]T and Cmax = [150 150]T (the middle black
rectangle, referred to as case 2 hereinafter), the USO condi-
tion passes through the feasibility region, so the feasibility
set is non-empty. In the red feasibility region (case 1), the
bandwidth constraint on route 1 is the bottleneck, and the
communication cost cap on route 2 is too low. Although
the maximum value of the users’ perceived communication
cost cannot be modified, the system operator can, if physi-
cally possible, increase the maximum bandwidth allocation
on route 1 so that the left edge of the red rectangle can
intersect with the USO condition. Similar analysis can be
applied to the green feasibility region (case 3), where the
bandwidth constraint on the route 2 is the bottleneck, and
the communication cost cap on route 1 is too low.

0 50 100 150 200 250 300
C1

0

50

100

150

200

250

300

350

C
2

Fig. 4: USO condition and feasibility region.
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If we solve the formulation (14) by substituting the
parameters of the above three cases, the optimal flow so-
lutions at UE and the corresponding minimum system cost
achievable are given in Table 2. Since the feasibility set in
the black rectangle is non-empty, one can find a bandwidth
allocation scheme to drive the flows at UE to match the
flows at SO, as shown in the third column in Table 2, where
the system cost is shown to achieve its minimum. The other
two cases have empty feasibility sets, therefore the flows
at UE cannot be driven to match the flows at SO, and the
system cost does not achieve the minimum possible value.

Case 1 2 3
x1 4038.3 3904.3 (matches SO) 3810.7
x2 1961.7 2095.7 (matches SO) 2189.3

Jsys(x) 420.14 386.58 (minimum) 405.57

TABLE 2: Flow solution that minimizes the system cost under corresponding
cases.

5.4 Multiple UE States
It is known that there exists a single UE state in the tradi-
tional transportation network if the following assumption
holds [3]:

Assumption 1: The travel cost of each link depends on the
flow along that link only, and is monotonically increasing
w.r.t. the link flow, i.e., ∀a, b ∈ A,{

∂Ta(xa)
∂xb

= 0, if b 6= a
∂Ta(xa)
∂xa

> 0
.

However, the additional communication cost in the ve-
hicular communication networks will change the users’
behavior. As a result, the system may have multiple UE
states. If multiple UE states exist, it is possible that the
desired UE state (i.e. the UE state that matches the SO
state) is not manifested in the network. In this case, the
system operator may need to adjust the network parameters
to move the undesired UE state to the desired UE state.
On the other hand, if there exists a unique UE state, the
necessary condition in Eq. (15) is also sufficient, and the
desired UE state is guaranteed to match the SO state if the
USE technique is used and the condition (20) holds. Fig. 5
shows the change of the trip costs w.r.t. the flow along link 1
under the configuration of case 2. Note that in Fig. 5, the trip
costs intersect at only one fixed point, which corresponds
to the unique UE state according to the Wardrop’s first
principle [37]. The USE technique is used to configure the
communication cost, therefore the UE state matches the SO
state, as indicated by the black dashed line in Fig. 5. Fig.
6 shows the intersection of route 1 cost w.r.t. x1 and route
2 cost w.r.t x2. The projection of the trip cost intersection
on the x1-x2 plane (black curves in Fig. 7) shows the fixed
points under all possible trip rates, where the green points
represent the UE states under corresponding trip rates. It is
shown in Fig. 7 that the number of UE states depends on
the trip rate.

6 SECONDARY OPTIMIZATION: BANDWIDTH AL-
LOCATION

In this section, we first present a general formulation of
the secondary optimization (the system cost minimization
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J1; b1=4Mbps; b2=3.6138Mbps
J2; b1=4Mbps; b2=3.6138Mbps

x1
UE=x1
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Fig. 5: In case 3, trip costs intersect at a single fixed point. USE technique
guarantees that the UE state matches the SO state, as indicated by the black
dashed line.

Fig. 6: Route 1 cost w.r.t. x1 intersects with route 2 cost w.r.t x2.

in (14) can be regarded as the primary optimization). Then
we propose a secondary objective of minimizing the total
bandwidth allocation and apply this objective to case 2
discussed in Section 5.3. We present the secondary opti-
mization in order to make the discussion more complete.
The solution to the secondary optimization is not obvious,
nor is the convexity of the subproblems of the secondary
optimization (see Appendix for the proof). Our discussion
provides a detailed method to deal with the additional
degree of freedom in the system, which is useful from the
practical point of view.

6.1 General formulation of the secondary optimization
In practice, we only obtain the relationship among the com-
munication costs by applying the USE technique. Assuming
that the trip cost is the weighted sum of the travel cost
and the communication cost, the USE technique gives the
difference between the communication cost of route pairs, as
shown in (16). The numerical values of the communication
costs under the UE-SO matching is not yet determined and
the method of tuning the communication network related
parameters (in this case, the bandwidth allocation) in order
to achieve such cost values is not yet specified. In fact, there
may exist multiple bandwidth allocation schemes if the
system has a non-empty intersection of the feasibility sets.
This provides the system operators with the opportunity to
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Fig. 7: Projection of the trip cost intersection in Fig. 6 on the x1-x2 plane. Each
trip rate corresponds to a single UE state indicated by the green points.

conduct certain secondary optimization according to their
interests, i.e.

min./max. f(xSO,b) (26)

s.t. ∆k,lCi(x
SO,b) =

α

1− α
∆l,kTi(x

SO)

C(xSO,b) = min{c(xSO,b),Cmax}
0|A| ≤ b ≤ bmax.

6.2 Minimize the total bandwidth allocation

The objective function of the secondary optimization (26) is
defined by the system operators according to their interests.
Due to the limited budget on the deployment of the ve-
hicular communication network, we propose that the total
bandwidth allocated to the network should be minimized.
The secondary optimization problem can be formulated as,
for all i ∈ N ,

min.
∑
a∈A

ba (27a)

s.t. ∆k,lCi(x
SO,b) =

α

1− α
∆l,kTi(x

SO), ∀k, l ∈ Ki

(27b)

Ca(xSOa , ba) = min{ca(xSOa , ba), Cmaxa }, ∀a ∈ A
(27c)

0 ≤ ba ≤ bmaxa , ∀a ∈ A. (27d)

From (27c), the optimal communication cost of link a can
be either of the following two possibilities: (i) Ca(xSOa , ba),
given that the bandwidth allocation does not push the
communication cost to exceed the cap Cmaxa ; (ii) Cmaxa ,
if we force the bandwidth allocation of link a to be zero.
We can solve the secondary optimization problem for each
permutation of these possibilities over all links and choose
the best solution. Note that given one such permutation, the
secondary optimization (27) can be transformed to an equiv-
alent convex problem, which can be solved efficiently. The
equivalent convex formulation is shown in the appendix.

Consider case 2 in Section 5.3 as an example, the sec-
ondary optimization can be written as:

min. b1 + b2

s.t. C1 − C2 = −7.2628

C1 = min{ 51.2410

1− e−0.2626
b−11 , 150}

C2 = min{ 49.8038

1− e−0.2480
b−12 , 150}

0 ≤ b1 ≤ 4

0 ≤ b2 ≤ 4.

According to the analysis in Section 5, there is only
one feasibility set which is non-empty. We consider four
possible bandwidth allocation schemes, and analyze each
of them to obtain the final solution. Note that whenever the
communication cost of a link equals the maximum users’
perceived communication cost, the bandwidth allocated to
this link can be decreased to zero.

Possibility 1: C1 = Cmax1 = 150 and C2 = Cmax2 = 150.
The bandwidth allocation on route 1 and on route 2 can
be both pushed down to zero. Obviously, this is not the
solution, because Cmax1 − Cmax2 = 0 > −7.2628, which
violates the USO condition.

Possibility 2: C1 = Cmax1 = 150 and C2 = 49.8038
1−e−0.2480 b

−1
2 .

In order to satisfy the USO condition, we need C2 =
150 + 7.2628 = 157.2628 > Cmax2 = 150. This violates the
communication cost cap constraint on route 2.

Possibility 3: C1 = 51.2410
1−e−0.2626 b

−1
1 and C2 = Cmax2 = 150.

In this case, the bandwidth allocation on route 2 can be
pushed down to zero. In order to satisfy the USO condition,
we need C1 = 150 − 7.2628 = 142.7372, which gives
b1 = 1.3513 and b2 = 0.

Possibility 4: C1 = 51.2410
1−e−0.2626 b

−1
1 < Cmax1 and C2 =

49.8038
1−e−0.2480 b

−1
2 < Cmax2 . In this case, we can bound below

the bandwidth allocation on route 1 and on route 2 by
51.2410

150(1−e−0.2626) and 49.8038
150(1−e−0.2480) respectively, so the sec-

ondary optimization becomes:

min. b1 + b2

s.t.
51.2410

1− e−0.2626
b−11 −

49.8038

1− e−0.2480
b−12 = −7.2628 (28)

51.2410

150(1− e−0.2626)
≤ b1 ≤ 4

49.8038

150(1− e−0.2480)
≤ b2 ≤ 4.

Denote the coefficient of b−11 and b−12 in (28) by w1 and w2

respectively. The secondary optimization is equivalent to

min. b1 +
w2b1

w1 + 7.2628b1
(29)

s.t.
w1

150
≤ b1 ≤ 4 (30)

w2

150
≤ w2b1
w1 + 7.2628b1

≤ 4. (31)

The first derivative of the objective (29) is 1 + w1w2

(w1+7.2628b1)2
,

which is strictly greater than 0. Therefore, the objective
function (29) is increasing with b1. The minimum b1 that
satisfies the constraints (30) and (31) is b1 ≈ 1.5961, which
gives b2 ≈ 1.5876.
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We note that possibility 3 gives a lower total bandwidth
allocation than possibility 4. Therefore, the best bandwidth
allocation scheme is b1 = 1.3513 and b2 = 0.

7 CASE STUDY

In this section, we conduct a comprehensive case study,
where we apply the USE technique and the secondary
optimization on a real world transportation network. We
assume the trip cost is the weighted sum of the travel cost
and the communication cost. The weight towards the travel
cost is set to 0.6. To get the exact weight, comprehensive
surveys need to be conducted, which is beyond the scope of
our study. The trip cost function is given by

Ji,k = 0.6Ti,k + 0.4Ci,k.

From (16), it is necessary that for every route k that
connects the O-D pair i,

∆k,lCi(x
SO,b) = 0.25∆l,kTi(x

SO). (32)

Fig. 8 is obtained from Google Maps, which shows
part of the transportation network in the Capital District
around Albany, NY. The network under consideration is
the grid consisting of the grey and blue links. To simplify
the calculation, we assume that there are two O-D pairs in
this network: drivers from Latham (node A) either go to
Downtown Albany (node C) or Delmar (node E). Therefore,
all traffic on link 1 and link 4 is from node A. We also assume
that the drivers will only use the links that are indexed in
Fig. 8. The links marked as blue (links 1, 2, and 5, denoted
by 1-2-5) form a possible route from node A to node E.
There are two other routes between the O-D pair (A,E):
4-6, and 4-3-5. Similarly, there are two routes between the
O-D pair (A,C): 1-2 and 4-3. The lengths of the links are
approximately 6400m, 9700m, 11200m, 10600m, 8400m, and
6400m respectively. The transmission range and the caching
ratio are assumed to be 100m and 0.005 respectively.
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Fig. 8: A sample network in the Capital District, Albany, NY. The link index is in
the rectangular box next to each link, and the arrow indicates the direction of each
link. The intersections of the links are represented by the grey nodes A through
E.

We obtain the traffic flow data from the NYS Traffic Data
Viewer [39]. The Traffic Data Viewer (TDV) is a GIS web
application for viewing the annual average daily traffic.
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Fig. 9: Graph representation of the network topology of Fig. 8. The link travel
costs in terms of the link flows are written next to each link.

According to the data that the TDV averages over several
weeks in Spring 2005 and 2006, the traffic flow on link 1
and link 4 are 3786/h, and 4827/h respectively. There are
theoretical models and practical methods to estimate the trip
rate, but for ease of demonstration, we assume that half of
the drivers from node A are traveling to node C, and the
other half are traveling to node E. So the trip rates for O-D
pair (A,E) and (A,C) are both 4306.5/h. Fig. 9 shows a graph
representation of the network topology in Fig. 8. We assume
that the link travel cost depends on the traffic flow only on
that link.

We combine the first-order condition (11) with the flow
conservation constraints to solve for the SO:

(0.05 + 2x1

5∗104 ) + (0.09 + 2x2

105 ) = µ(A,C)

(0.11 + 2x4

105 ) + (0.09 + 2x3

5∗104 ) = µ(A,C)

(0.11 + 2x4

105 ) + (0.08 + 2x6

5∗104 ) = µ(A,E)

(0.11 + 2x4

105 ) + (0.09 + 2x3

5∗104 ) + (0.05 + 2x5

5∗104 ) = µ(A,E)

(0.05 + 2x1

5∗104 ) + (0.09 + 2x2

105 ) + (0.05 + 2x5

5∗104 ) = µ(A,E)

x1 + x4 = 8613, x5 + x6 = 4306.5

x4 = x3 + x6, x1 = x2

.

Solving the above linear system gives

{
x ≈ [3605 3605 1403 5008 702 3605]T

T ≈ [0.12 0.13 0.12 0.16 0.06 0.15]T
.

Substituting the above solution into (32) yields


∆1,2C(A,C) ≈ 0.045

∆1,2C(A,E) ≈ 0.045

∆1,3C(A,E) ≈ 0

, (33)

where route 1 and route 2 between O-D pair (A,C) are 1-2
and 4-3 respectively; route 1, route 2, and route 3 between
O-D pair (A,E) are 1-2-5, 4-3-5, and 4-6 respectively. The op-
erator can then use (33) to adjust the bandwidth allocation.
Suppose the bandwidth allocation cannot exceed 2000MHz
for all links and the link communication cost perceived
by the users is upper bounded by 10, then the following
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optimization problem needs to be solved:

min. b1 + b2 + b3 + b4 + b5

s.t. ∆1,2C(A,C) = 0.045

∆1,2C(A,E) = 0.045

∆1,3C(A,E) = 0

C1,(A,C) = min{6623

b1
, 10}+ min{9929

b2
, 10}

C2,(A,C) = min{11283

b3
, 10}+ min{11006

b4
, 10}

C1,(A,E) = C1,(A,C) + min{8423

b5
, 10}

C2,(A,E) = C2,(A,C) + min{8423

b5
, 10}

C3,(A,E) = min{11006

b4
, 10}+ min{6678

b6
, 10}

0 ≤ ba ≤ 2000, a = 1, 2, 3, 4, 5, 6.

Solving the above system gives:
b2 = b4 = b6 = 0

b1 ≈ 1144.2MHz
b3 ≈ 1964.5MHz
b5 = 2000MHz

. (34)

Therefore, allocating 1144.2MHz bandwidth to link 1,
1964.5MHz bandwidth to link 3, and 2000MHz to link 5
is the optimal bandwidth allocation policy that leads to the
SO-UE matching in this network.

8 SIMULATION RESULTS

In this Section, we first validate the proposed communica-
tion cost model by comparing the data throughput from the
simulation with the throughput from the model. Then we
consider a more realistic scenario where the V2V bandwidth
can only take on certain values, and show that the system
cost decreases if the bandwidth allocation is closer to the
optimal allocation policy. We use Veins [40] as the vehicular
network simulator. Veins is an open source framework
based on the network simulator OMNeT++ [41] and the
road traffic simulator SUMO[42]. We use 802.11p protocol
in the simulation, which is implemented in Veins.

8.1 Communication Cost
To validate the proposed model of the communication cost,
we construct a simple network that has only one road
with length 1000m. All vehicles enter the system from one
end and leave the system at the other end. We use the
empirical BPR function introduced in Section 5.3 in the
computation of the speed, which is then used to compute
the traffic flow in the model. As discussed in Section
3.2, communication cost is modeled as the inverse of the
throughput due to cache hit. Therefore, it is sufficient to
validate that the throughput from the proposed communi-
cation model matches the throughput from the simulation.
In the simulation, we record the throughput under different
traffic flows, and compare it with the prediction from the
proposed model. The cache hit ratio p is set to 0.05, and
the communication range r is set to 360m. Other relevant

parameters are shown in Table 3. For each data point (i.e.
flow), we average the throughput of 5 runs. In each run, we
simulate the system for 500s with a warm-up period of 50s.
As shown in the simulation result in Fig. 10, the proposed
communication cost model generally matches the simulated
throughput. Since we use a Poisson arrival process in the
simulation, it is more likely that a vehicle’s request cannot
reach any vehicle within the communication range when
the traffic flow is relatively small. Therefore, the model is
more optimistic than the simulated throughput under small
traffic flows. Since the proposed model is asymptotic, the
predicted throughput fits the simulated throughput better
under larger traffic flows.

Parameter Value Parameter Value
Transmission Power 20mW Sensitivity -86dBm

Content Size 128KB Request Interval 1s

TABLE 3: Relevant Parameters
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Fig. 10: Throughput from Simulation v.s. throughput from model. The shaded
area denotes the standard deviation of each data point.

8.2 V2V Bandwidth Allocation

In practice, the V2V bandwidth may only take certain val-
ues in vehicular communication networks. For example, in
802.11p the V2V bandwidth can take eight different values:
3Mbps, 4.5Mbps, 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps,
and 27Mbps. In this section, we show that the system cost
can be lowered when we change the V2V bandwidth allo-
cation closer to the optimal value under 802.11p protocol.
We use the same transportation network as in Section 5.3
(Fig. 11). When a vehicle enters the network, information
on the current throughput and the current travel time of
both routes is provided. Then the user chooses the route
with the smaller cost. Real time throughput is computed
by averaging the throughput recorded in the last 20s, and
the current travel time can be obtained directly from the
Veins simulator. The trip rate is set to 4000/h, and the V2V
bandwidth of route 1 is set to b1 = 3Mbps. After applying
the USO condition, we obtain the optimal bandwidth on
route 2 b2 = 2.89Mbps. However, the closest value to
2.89Mbps under 802.11p protocol is 3Mbps. We measure
the system cost and the traffic flow under three different
bandwidth allocation policies: b = [3 27]T , b = [3 9]T ,
and b = [3 3]T (with the unit of Mbps). As shown in
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Fig. 12, when b2 = 3Mbps, the system cost is the lowest
after around 500s. Fig. 13 shows the traffic flow on route 1
under the corresponding bandwidth allocation policies.

4000/h

Route 1: 1000m

Route 2: 500m

o d

Fig. 11: Topology of the transportation network in the simulation.
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Fig. 12: System cost under different V2V bandwidth allocation policies. Band-
width has the unit of Mbps, and is specified according to 802.11p protocol.
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Fig. 13: Traffic flow on route 1 under different V2V bandwidth allocation policies.
Bandwidth has the unit of Mbps, and is specified according to 802.11p protocol.

9 CONCLUSION
In this paper, we model the user trip planning when both
the traffic condition and the data communication influence
user trip decision. The necessary condition is derived for
the SO-UE matching, which provides a guideline on how
the system operator can adjust the network parameters to
achieve the optimal social welfare even if the users are
non-cooperative. The secondary optimization is discussed,
which can be utilized according to the system operator’s

interests. The proposed communication cost model is vali-
dated via Veins simulation, and the simulation results show
that the system cost can be lowered if the V2V bandwidth
allocation is closer to the optimal allocation policy under
802.11p protocol.
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