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Abstract— We propose a formal method for feedback con-
troller synthesis using interactive computer programs with
graphical interface (in short, computer games). The main
theoretical tool used in this method is the concept of trajectory
robustness, which is established using the theory of approxi-
mate bisimulation. Approximate bisimulation has been used to
establish robustness (in ℓ∞ sense) of execution trajectories of
dynamical systems and hybrid systems, resulting in trajectory-
based safety verification procedures.

We define control autobisimulation function (CAF), which
is the analog of control Lyapunov function for approximate
bisimulation. CAF is used to characterize the family of all
feedback control laws, called admissible control laws, that result
in a close loop system with an autobisimulation function. A
computer game can then be used to construct safe and correct
execution trajectory for a nominal initial state, and use the
trajectory-robustness property to guarantee that the control
law is also safe for other initial states in a neighborhood of the
nominal initial state. As a result, a safe and correct feedback
control law for a compact noncountable set of initial states can
be obtained by playing finitely many games.

Keywords: hybrid system, trajectory based, controller syn-
thesis.

I. INTRODUCTION

The issue of safety/reachability is very important in the

theory of hybrid systems. The analysis part of this issue,

i.e. the investigation whether a given hybrid system model

with given initial conditions can reach a certain state, or

set of states has received a lot of attention from the hybrid

systems community. It has also resulted in a lot of practical

applications, for example in the safety analysis of air traffic

systems [1], design verification for electronic circuits [2],

design verification for synthetic biology (e.g. [3]), and model

analysis for biochemical processes [4]. The synthesis part of

the safety/reachability issue deals with the construction of

control laws/algorithms for systems with input that result in

safe executions. Some of the methods for safety/reachability

analysis can be extended for controller synthesis. For ex-

ample, the optimal control method in [5] and the simulation

based method in [6] directly characterize the influence of the

control input in the reachability formulation. The predicate

abstraction technique for systems with piecewise affine dy-

namics in polytope sets leads to a control procedure based

on the transversality of the vector field on the facets of the

polytopes [7], [8]. The technique for discrete-time system

presented in [9] utilizes partitioning of the state space by

polygonal approximation of the reachable set. For continuous

dynamical systems, the theoretical results presented in [10]

discuss some sufficient conditions for the existence of a
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controlled system trajectory that enters a prescribed Goal

set.

The class of safety/reachability analysis methods that is

closely related to this paper is the trajectory-based analysis.

These are methods that aim to assess the safety/reachability

based on the execution trajectories of the system, or the

simulations thereof. The main conceptual tool that we use

in this paper, the approximate bisimulation, was developed

by Girard and Pappas [11], and has been used for trajectory

based analysis of hybrid systems in [12], [13], [14]. The

notion of approximate bisimulation has previously been used

for controller synthesis for nonlinear dynamical systems

[15], [16]. In this case, the notion is used to establish a

quantization of the continuous state space, which can result

in a countable transition system approximation of the original

dynamics.

We introduced the notion of control autobisimulation

function (CAF) [17], to characterize a class of feedback

laws, called the admissible feedback laws, that result in

closed loop systems that admit an (auto)bisimulation func-

tion. Therefore, the control autobisimulation function can be

thought of as an analog of control Lyapunov function [18],

[19] for autobisimulation. We use the term ’autobisimulation’

to emphasize the fact that we are considering approximate

bisimulation between a system and itself, which is a special

case for the theoretical tool developed in [11] and subsequent

publications.

For any given initial condition, we use a computer game

to construct an admissible feedback law that results in a

”valid” execution trajectory1. The use of CAF enables us

to use trajectory robustness (a la approximate bisimulation)

to guarantee formally the validity of the control law for

a neighborhood around that initial condition. By repeating

this procedure for a finite set of initial conditions, we can

cover a compact set of initial conditions. The controller

design method presented in this paper therefore consists

of two steps. The first step is to characterize the class

of admissible feedback laws. The second step is to use a

computer game to construct an admissible feedback law for

each initial condition, that is guaranteed to result in a valid

trajectory. We present an example demonstrating that this is

achievable by playing only a few games. This approach can

thus be regarded as a highly parallelizable and lightweight

(no quantization of state space is required) complement to

the more formal approaches, such as [15], [16].

Furthermore, the structure of our approach enables the

integration of human-based computation, which can further

1What ”valid” means will be discussed later.
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enable ’crowdsourcing’ of controller synthesis for hybrid

systems. That is, the approach presented in this paper can

be further used to enable controller synthesis through (po-

tentially large scale) collaboration of multiple human players.

A recent work by Langbort et al that investigated the use of a

network of human players in a collaborative computer game

[20]. In this case, an online ouija board game is introduced.

This is a server-based game with the goal of driving a

token across an alphabetical board and spelling as many

words as possible in a given time by a team of agents. The

highly parallelizable nature of the trajectory-based approach

makes it ideal for this setup. Pioneering efforts in the area

of exploiting online computer games to construct reliable

human centered computation can be found in [21], [22], [23]

and the references therein.

II. THEORETICAL FOUNDATION

Consider a dynamical system with input

Σinp :
dx

dt
= f(x, u), x ∈ R

n, u ∈ U ⊂ R
m. (1)

where the function f(x, u) is locally Lipschitz in x and

continuous in u. Suppose that there is a given compact set of

initial states Init ⊂ R
n, where the state is initiated at t = 0,

i.e. x(0) ∈ Init. Also, we assume that there is a set of goal

states, Goal⊂ R
n, and a set of unsafe states Unsafe⊂ R

n. As

usual, a trajectory is deemed unsafe if it enters the unsafe set.

Suppose that we are given the following control problem:

Problem 1: Design a feedback control law u = k(x) such

that for any initial state x0 ∈ Init, the trajectory of the closed

loop system enters Goal before time t = Tmax, and remains

safe until it enters Goal.

Hereafter, any trajectory that satisfies the conditions above

is called a valid trajectory. We will discuss how the

notion of trajectory-robustness that can be established using

bisimulation function (see e.g. [13]) can also be used in

trajectory-based controller synthesis. The key concept in this

approach is the control autobisimulation function (CAF).

Definition 1: A continuously differentiable function ψ :
R
n × R

n → R+ is a control autobisimulation function of

(1) if for any x, x′ ∈ R
n,

ψ(x, x′) ≥ ‖x− x′‖ , (2)

and there exists a function k : R
n → U such that

∇xψ(x, x′)f(x, k(x)) + ∇x′ψ(x, x′)f(x′, k(x′)) ≤ 0. (3)

The control autobisimulation function is an analog of

the control Lyapunov function (CLF) [18], for approximate

bisimulation [11], [13]. While control Lyapunov function has

been used to construct control laws that guarantee stability

(e.g. [19]), we shall use the control autobisimulation function

to construct control laws that guarantee trajectory robustness.

The concept of approximate bisimulation was first in-

troduced in the seminal work of Girard and Pappas

[11]. For autonomous systems (i.e. systems without in-

puts/nondeterminism), approximate bisimulation is similar to

the notion of contraction metric coined by Lohmiller and

Slotine (see e.g. [24]).

Remark 1: One can compare the control autobisimulation

function with control Lyapunov function of the product of

the system (1) with itself

d

dt

[

x

x′

]

=

[

f(x, u)
f(x′, u′)

]

.

In this case, notice that unlike for CLF, for CAF we cannot

set u and u′ to be any functions of x and x′. Rather, the

inputs u and u′ must be the same function of their respective

states (x and x′). Therefore, in this aspect, the requirement

for CAF is more stringent than that for CLF.

Remark 2: In connection with Lyapunov stability theory,

CAF can be thought of as a control Lyapunov function

for incremental stability. However, the type of incremental

stability associated with CAF is weaker than that of δGAS

(incremental global asymptotic stability) in [25], in that CAF

does not imply asymptotic stability.

Definition 2: For a given dynamical system with input

Σinp and a control autobisimulation function ψ, the class

of all feedback control laws k(·) that satisfy (3) is called the

class of admissible feedback laws, η(Σinp, ψ).

A consequence of the existence of a CAF as in Definition

1 is the existence of a feedback control law

u = k(x), (4)

such that the closed loop system obtained from (1) and (4),

dx

dt
= f(x, k(x)), x ∈ R

n, (5)

has a trajectory-robustness property in the sense of auto-

bisimulation, which is defined as follows.

Notation 1: For a given dynamical system with input Σinp

and a feedback control law u = k(x), the closed loop

trajectory with initial condition x(0) = x0 is denoted by

ξk(t, x0).

Proposition 1: [13] Given a dynamical system with input

(1) and a feedback law k(·) such that (2) and (3) hold. For

any two initial states of the closed loop system (5), x0 ∈ R
n

and x′0 ∈ R
n, we have that

∀t ≥ 0, ‖ξk(t, x0) − ξk(t, x
′
0)‖ ≤ ψ(x0, x

′
0).

The controller synthesis paradigm in this paper can be

stated as follows.

Notation 2: For any x ∈ R
n and δ ≥ 0, we denote the

set {x′ ∈ R
n | ψ(x, x′) ≤ δ} as Bψ(x, δ).

We construct feedback controllers from the class of feasi-

ble feedback laws. Please refer to Figure 1. Suppose that for

a given initial state x0 ∈ Init, we can design a feedback law

u = k0(x) that results in a closed loop execution trajectory

ξk0(t, x0) satisfying

inf
0≤t≤T

dψ(ξk0 (t, x0),Unsafe) = δ0 > 0, (6)

ξk0(T, x0) ∈ Goal, (7)

dψ(ξk0(T, x0),GoalC) > δ0, (8)
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Fig. 1. An illustration for trajectory-based controller synthesis.

where T < Tmax and

dψ(ξk0(t, x0),Unsafe) := inf
x′∈Unsafe

ψ(ξk0 (t, x0), x
′),

dψ(ξk0 (T, x0),GoalC) := inf
x′ /∈Goal

ψ(ξk0 (T, x0), ξk0 ).

Then, we can obtain a neighborhood around x0, Bψ(x0, δ0)
consisting of other initial states for which the feedback law

u = k0(x) is guaranteed to result in execution trajectories

that are safe and meet the goal state (see e.g. [13]).

We can repeat the procedure for a different initial state, say

x1 ∈ Init. Suppose that we can then design a feedback law

u = k1(x) that results in a closed loop execution trajectory

ξk1(t, x1) that is safe and meets the goal set as shown in

Figure 1. As before, we also obtain a neighborhood around

x1 for which the feedback law u = k1(x) is guaranteed

to yield execution trajectories that are safe and meet the

goal state. As the result of this process, we now obtain

two feedback laws which are valid for two different subsets

of Init (not necessarily disjoint). The goal of the controller

synthesis procedure is then to cover the entire initial set Init

with different control laws as such. Note that this implies

that for some initial conditions, there can be more than one

control laws that will result in valid trajectories.

III. CONTROLLER SYNTHESIS FOR SYSTEMS WITH

AFFINE DYNAMICS

A. Two Stage Controller

Based on the exposition in the previous section, it is clear

that to implement the idea of trajectory-based controller syn-

thesis, we need to have a control autobisimulation function

(CAF) ψ, and the feedback control laws for each initial

condition that we evaluate. Moreover, each the feedback

control laws must belong to the class of admissible controller

η(Σinp, ψ).
In this paper, for simplicity, we restrict our attention to

systems with linear affine dynamics. In the future, we shall

explore the construction for systems involving nonlinear

dynamics, using ideas from previous work on verification

[26]. Systems with linear affine dynamics are systems of the

form

Σlin :
dx

dt
= Ax+ f +Bu, x ∈ R

n, u ∈ R
m, (9)

where A ∈ R
n×n, f ∈ R

n, and B ∈ R
n×m. For

such systems, we propose to construct CAF using quadratic

functions [11], [13], [26]. That is, we assume that

ψ(x, x′) =
[

(x− x′)TP (x− x′)
]

1
2 , (10)

where P ∈ R
n×n is a symmetric positive definite matrix.

From Definition 1, it follows that inequality (3) is equivalent

to

∀x, x′ ∈ R
n, (x−x′)TP (A(x − x′) +B(k(x) − k(x′))) ≤ 0.

(11)

We propose to construct a feedback law of the form

u(t) = k(x) = Kx+ v(t), (12)

where K ∈ R
m×n and v(t) ∈ R

m is a time-varying function,

both to be determined later. By substituting (12) into (11),

we obtain

∀x, x′ ∈ R
n, (x− x′)TP (A+BK) (x− x′) ≤ 0. (13)

Finding K that satisfies inequality (13) is equivalent to

finding K such that (A + BK) is Hurwitz. A well known

result in control theory (cf. [27], [28]) states that there exist

P and K such that (13) holds if and only if (A,B) is

stabilizable. In this case, there are well known methods to

synthesize the suitable P and K . For example, by solving

the following linear matrix inequality2 (LMI) [29]

AP̃ +DBT + P̃AT +BDT ≤ 0, P̃ > 0, (14)

for P̃ ∈ R
n×n and D ∈ R

m×n. The feedback gain K can

be computed from

KT = DP̃−1. (15)

From here, P can be obtained by solving the Lyapunov

equation

(A+BK)TP + P (A+BK) ≤ 0, P > 0. (16)

By applying the feedback control law (12) to Σlin, we

obtain a closed loop system

Σcl :
dx

dt
= (A+BK)x+ f +Bv, x ∈ R

n, v ∈ R
m. (17)

Given that (A + BK) is Hurwitz, we are still free to

design v(t). In other words, whatever v(t) is, the control

law is admissible (see Definition 2). The remaining task in

the controller design is therefore to use v(t) to steer the

trajectories of the closed loop system. The goal is to obtain

valid trajectories, i.e. steer any given initial state in Init to

the goal set in T time units, without entering the unsafe set.

We propose to generate v(t), for any given initial condition,

using human played computer game, as shown in Figure 2.

2We use the fact that A is Hurwitz if and only if AT is Hurwitz.
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Fig. 2. The block diagram of the proposed controller synthesis method.
Human player(s) will use the computer game interface to design v(t) for a
finite set of initial conditions.

B. Bounded Input Set

Consider the case where the input set is bounded, i.e. for

all t ∈ R+

‖u(t)‖ ≤M, (18)

for some positive bound M . We need to ensure that the

feedback law given in (12) satisfies this condition. The fact

that

‖u(t)‖ ≤ σ̄(K) ‖x‖ + ‖v(t)‖ , (19)

indicates that minimizing σ̄(K) can alleviate the difficulty

of designing v(t) that satisfies the control input bound. We

can approach this problem by modifying the LMI (14) into

the following semidefinite programming problem [30]

min σ̄(D) subject to (20)

AP̃ +BDT + P̃AT +DBT ≤ 0,

P̃ − I > 0.

It is clear that any (P̃ ,D) that is feasible for (14) can be

scaled so that it is feasible for (20). However, we also have

σ̄(K) ≤ σ̄(D)σ̄(P̃−1) ≤ σ̄(D), (21)

which shows that solving (20) effectively leads to the mini-

mization of an upper bound for σ̄(K).

Due to space limitation, we are not able to present a

prototypical implementation of a game in the final version

of this paper. An extended version of this paper showing an

example of a game and the user interface can be viewed at

the following website http://www.ecse.rpi.edu/˜agung.

IV. CONTROLLER SYNTHESIS FOR HYBRID SYSTEMS

The design paradigm presented in the previous section can

be also applied to hybrid systems. Consider a standard model

of hybrid systems, H = (X ,L, E, Inv,Σ), where X is the

continuous state space of the system, L is the finite set of

discrete states (locations), E is the set of transitions, Inv :
L → 2X is the invariant set of a location, and Σ is a family

of dynamical systems with input that defines the continuous

dynamics in each location. That is, for each location l ∈ L,

we define the continuous dynamics as

Σ(l) :
dx

dt
= fl(x, u), x ∈ X , u ∈ U . (22)

A transition e ∈ E is a 4-tuple (l, l′, g, r), where l ∈ L
is the origin of the transition, l′ ∈ L is the target of the

transition and that each location, g ⊂ ∂Inv(l) is the guard

of the transition, which is a subset of the boundary of the

invariant set of location l, and r : g → Inv(l′) is the reset

map that resets the continuous state at the new location. We

assume that the reset map r is continuous, the continuous

state space is R
n, the invariant sets are closed, fl(x, u) is

locally Lipschitz in x and continuous in u for all l ∈ L, the

transitions are deterministic in the sense that the guards of

all outgoing transitions from a location are disjoint, and that

the system does not deadlock or possess Zeno behavior. In

analyzing the safety of the system, we assume that there is

a subset Unsafe ⊂ X × L of unsafe states. A trajectory of

the hybrid system corresponds to an unsafe execution if it

intersects with the unsafe set.

A. Control Problem Formulation and Hierarchical Control

Synthesis

To define the control problem, we define a set of initial

state Init⊂ X × L, in which we assume the hybrid state

begins at t = 0. We also define a goal set, Goal⊂ X ×L in

which all executions must terminate. As before, the control

problem is defined as finding the feedback control strategy

that is guaranteed to bring any initial state in Init to the

goal set without entering the unsafe set. Without any loss

of generality, we can assume that the set Init is contained

in (the invariant set of) one location, called linit ∈ L. If

this is not the case, we can divide the problem into several

subproblems, each with an Init set contained in a specific

location. Similarly, we can assume the Goal is also entirely

contained in one location, called lgoal ∈ L.
We approach this problem with a hierarchical control

design, which can be described in the following steps:

Step 1: Discrete Synthesis. We compute a discrete trajectory

that starts in linit and ends in lgoal. By discrete trajectory, we

mean an alternating sequence of locations and transitions

linit = l0
e1→ l1

e2→ l2
e3→ · · ·

eN→ lN = lgoal. (23)

Each transition ei,i∈{1,...,N} is an element of E, originating

in li−1, and targeting li. Such a discrete trajectory is not

necessarily unique, but at this step we only need one. The

computation of a discrete trajectory like this, albeit formally

undecidable, is a standard procedure in formal verification

of discrete event systems [31].

Step 2: Continuous Synthesis. In this step, we synthesize

the continuous controller for each of the visited locations

(l0,1,...,N ) in order to implement the computed discrete

trajectory. Basically, in each location li, we define an initial

set based on how li is reached from li−1. We then formulate

the control problem of bringing the continuous state from this

initial set to the goal set, which is defined as a set beyond
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Fig. 3. An illustration for the definitions related to controller synthesis
for l0. The feedback controller is expected to guide any initial condition in
Init0 to the goal set, beyond the guard of e1, while avoiding the unsafe set
and other guards.

the guard of transition ei that will bring the state to location

li+1 without entering the forbidden set. The forbidden set

is defined as the union of Unsafe, and the guards of other

outgoing transitions from li. If we are able to construct a

continuous controller that implements the discrete trajectory,

then the hybrid control problem is solved. Otherwise, we go

back to Step 1, and compute another discrete trajectory.

Remark 3: Similar two-step approach to solve the control

problem with application in motion control synthesis for fully

actuated robots has been discussed in the literature (see [32]

and the references therein). The discrete part of the control

goal in [32] is expressed as a temporal logic formula, which

is richer than the one presented in this paper. However,

we would like to point out that the continuous synthesis

presented in this paper can also be applied to implement

the continuous part of the controller in [32].

B. Continuous Synthesis of the Hybrid Controller

Given the discrete trajectory (23), we can synthesize the

continuous controller in each location as follows.

Notation 3: We denote the set of all outgoing transitions

from a location l ∈ L as Out(l).
First Location (linit = l0). Define the Init as the initial set

(recall that we assume the Init is entirely contained in the

invariant set of linit), i.e. Init0 := Init. Define the initial

unsafe set as

Unsafe0 := Unsafe|linit

⋃

e∈Out(linit)\e1

Guard(e), (24)

where for l ∈ L,

Unsafe|l := {x ∈ Inv(l) | (x, l) ∈ Unsafe}, (25)

and Guard(e) refers to the guard set of transition e ∈ E.

Define as the goal set

Goal0 = Guard(e1) ∪ Inv(linit)
C . (26)

Essentially, this means that we define the guard set of ei and

beyond the invariant set of linit as our goal. These definitions

are illustrated in Figure 3.

We implement the controller synthesis discussed in Sec-

tion II to develop a feedback control for the dynamical

system Σ(linit) such that any initial condition in Init0 is

guaranteed to reach Goal0 without entering Unsafe0. If

Σ(linit) is an affine linear system, we can use the design

procedure discusses in Section III-A.

After we can successfully design and implement such

a controller, we define the subset of Guard(e1) that can

be reached by initial state in Init0 as Exit0. In practice,

we can use an overapproximation to compute Exit0. For

example, if xi, i∈{0,1,...,M−1} are M initial conditions that

we tested in order to cover Init0 (see Figure 1), and if we

define the continuous trajectories of the closed loop system

starting from those initial conditions as ξi, i∈{0,1,...,M−1}(t),
then Exit0 can be overapproximated by the intersection of

Guard(e1) with the union of all trajectory tubes around

ξi, i∈{0,1,...,M−1}(t).
Intermediate Locations (li, i ∈ {1, 2, · · · , N − 1}). Define

Initi = ri(Exiti−1), where ri is the reset map of ei. Define

the unsafe set as

Unsafei := Unsafe|li

⋃

e∈Out(li)\ei+1

Guard(e), (27)

and the goal set as

Goali = Guard(ei+1) ∪ Inv(li)
C . (28)

As before, the objective of the controller synthesis is to guide

any initial condition in Initi to reach Goali without entering

Unsafei. Once we obtain and implement such a controller,

we compute (or overapproximate) Exiti in the same way as

Exit0.

Final Location (lgoal = lN ). Define InitN = rN (ExitN−1),
where rN is the reset map of eN . Define the unsafe set as

UnsafeN := Unsafe|lgoal

⋃

e∈Out(lgoal)

Guard(e), (29)

and the goal set as

GoalN = Goal. (30)

Design a controller as before. For this location, we do not

need to compute the exit set.

C. Nonforcing Guard Conditions

We can generalize the result presented here by including

nonforcing guard conditions. That is, instead of assuming

that a transition happens when and only when the continuous

trajectory hits a guard, we can assume that there is a

flexibility in the timing of the transition. This means that the

guard set is ’fat’, and anytime the continuous state is within

this guard set, a controller-triggered transition is possible.

Continuous controller synthesis in this case is analogous

to what was discussed in the previous subsection, except that

we allow the human player to trigger the transition whenever

it is enabled. Such input can be delivered through a joystick

button or a mouse click during the game, for example. The

notion of exit set is then generalized as the intersection

between the robust neighborhood of the continuous state

where the transition happens, and the guard set.

V. DISCUSSION

An apparent limitation of our approach is the dimension

of the state space and control degree of freedom. After

all, computer graphic interface is practically limited to two

dimensional display. However, we foresee that this limitation

can be overcome in two ways. First, we can apply model
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abstraction in the sense of approximate bisimulation (c.f.

[33], [34], [35]). This approach will allow us to abstract

a higher dimensional model with a lower dimensional one.

Second, we observe that many computer game products that

are currently on the market can actually involve human

players in controlling complex systems, such as car simula-

tor, airplane simulator, sports simulator, etc. This means the

human cognitive capacity is able to grasp high dimensional

data and interaction through two dimensional display. We

therefore plan to explore the human cognitive aspect of this

work. Along the same line, we are interested in using this

approach in designing (sub)optimal controllers. In particular,

we are interested in finding how to best exploit the game

interface in order to maximize the players’ performance.

Finally, we would like to remark that the result presented

in this paper can be generalized by replacing the game

interface in Figure 2 with other means of obtaining valid

trajectories for given initial conditions. These include other

heuristics based methods, such as fuzzy control [36], or

expert system based methods (cf. [37]) that allow for in-

tegration of human operators’ experience into the control

strategy. The advantage offered by the theory of trajectory-

based analysis is that we can formally guarantee the safety

and correctness of the resulting controllers.
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