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Abstract— Given a hybrid automaton and a desired precision,
we aim at constructing an approximate abstraction by means
of a timed automaton, whose discrete state trajectories approx-
imate the discrete state trajectories of the original system, with
the desired precision on switching times. We show that using the
Euclidian metric on reals it is not always possible to construct a
timed automaton that is close to a hybrid automaton with finite
precision. For this reason, we motivate and introduce relative

metrics on reachability time, external language and simulation
relation to quantify the precision of our abstraction. Our main
result is to propose a novel algorithm to construct a timed
automaton that is an approximate timed abstraction of a hybrid
automaton with desired precision, and study its convergence
properties. For an extended version of this paper refer to [11].

I. INTRODUCTION

Systems characterized by discrete and continuous aspects

in their dynamics are called hybrid systems. Hybrid systems

are very general as they include continuous and discrete sys-

tems as special cases. They are very useful in the analysis of

embedded system, to design a digital controller so that a con-

tinuous plant satisfies prescribed specifications. Applications

of hybrid systems range from biological systems to air traffic

management systems, from automotive to communication

systems. Their great expressive power has to be paid by the

lack of strong theoretical results about their behavior, and

consequent difficulties in verifying the properties of a closed

loop system. In fact, formal verification (e.g. model checking

[7]) of properties where the state space is semi–exhaustively

searched are complicated by the very large dimensions of the

state space. Reachability verification [13], [16], observability

verification [5], [8], [10] and model checking [4], [18] for

hybrid systems are intensely studied in the automatic control

and computer science societies.

One important technique that people use to cope with this

problem is abstraction. By abstraction, we create a system

with smaller state space (even finite) that is equivalent to

the original systems. System equivalence is usually defined

by the notions of language equivalence and bisimulation [3],

[25]. The classical exact notions of language equivalence and

bisimulation are very restrictive, since they require perfect

equivalence of trajectories. Recently, approximate notions

of system equivalence [14], [15], [17], [20], [21] were
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developed to relax the abstraction problem, where a metric

is introduced to quantify the distance between the original

system and the abstraction. Other results in approximation

theory for timed systems can be found e.g. in [6], [12].

To analyze temporal properties of hybrid automata, it is

reasonable to consider as abstracting system the class of

timed automata, that can generally be abstracted into finite

state systems [3]. For this reason, verification algorithms

are generally decidable for timed automata: model checking

tools for timed automata are available (e.g. UPPAAL [23]

and KRONOS [27]).

A procedure to translate a hybrid automaton into a rectan-

gular automaton was proposed in [26]. The authors proposed

in [10] an algorithm to construct a durational graph G from

a hybrid automaton H, and used the abstraction G to verify

observability. However, no analysis of the distance between

the timed executions of the discrete state of H and G was

performed. On the basis of the approximation metrics defined

in [15], [20], the main contribution of this paper is translating

a hybrid automaton into a timed automaton whose discrete

state trajectories approximate the discrete state trajectories of

the hybrid automaton, with arbitrary desired precision ε on

switching times. Our abstraction can be used to model check

hybrid automata. It is well known that classical temporal

logics such as CTL and LTL [7] are preserved by bisim-

ulation relations, while simulation relations preserve their

universal fragment (properties addressed to all executions).

For temporal logics such as TCTL [1], that explicitly add

time constraints in the formulae, it was proved in [17] that

TCTL is robust w.r.t. approximate bisimulation relations.

Namely if the abstraction satisfies a TCTL formula, then the

original system satisfies an ε–close formula (and viceversa),

with ε the precision of the abstraction. We use as abstract

system a subclass of timed automata: the durational graphs.

It was discussed in the literature that model checking for

durational graphs is more efficient than for timed automata

[22].

The paper is organized as follows. In section II, we

introduce the reader to basic definition of non deterministic

hybrid automata, timed automata and durational graphs. In

section III, we introduce the framework of metric transition

systems which enables us to model both hybrid automata and

timed automata. We introduce a relative metric on positive

reals, reachability time, external language and simulation

relation to quantify the precision of our abstraction. Our

metric is relative and not absolute, in the sense that it

depends on the elapsed time: i.e. the distance between 1 and

2 seconds is considered the same as the distance between

100 and 200 seconds. A motivation for this choice is that
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using Euclidian metric it is not always possible to construct

a timed automaton that is close to a hybrid automaton with

finite precision. Moreover, in practical applications it is often

required to construct an approximation of a plant for a finite

horizon analysis. In section IV, we propose a novel algorithm

to construct a durational graph that is an approximate timed

abstraction of a hybrid automaton. We study the convergence

properties of the algorithm, and prove that the generated

durational graph is approximately bisimilar to the hybrid

automaton.

II. BASIC DEFINITIONS

One prominent theoretical framework that is used to model

hybrid systems is proposed by Lygeros [24], where the

discrete part consists of a labeled oriented graph, and the

continuous part is described by a dynamical continuous

system associated to each discrete state. The interaction

between the continuous and discrete part is described by

invariant, guard, and reset conditions. We consider here

hybrid automata, that are hybrid systems characterized by

dynamics without control input.

Definition 1 (Hybrid automaton): A hybrid automaton is

a tuple H = (Q × X,Q0 × X0, U, E , E, Inv, G, R) such

that: Q × X is the hybrid state space, where Q is a finite

set of discrete states {q1, q2, · · · , qN}, and X ⊆ R
n is the

continuous state space; Q0×X0 ⊆ Q×X is the set of initial

discrete and continuous conditions; {Eq}q∈Q associates to

each discrete state the continuous time–invariant dynamics

Eq : ẋ = fq(x,w), where x ∈ R
n and w ∈ R

p is a

disturbance that takes value in a bounded set U . Given

an initial condition x(t0) = x0 and a disturbance signal

w : R+ ∪ {0} → U , we define the solution at time t > t0
according to fq by x(t) = xfq

(t, w|tt0 , x0). The solution

is unique with the assumption that fq is assumed to be

continuous with respect to time and Lipschitz continuous

with respect to the dependent variables; E ⊆ Q × Q is a

collection of edges; each edge e ∈ E is an ordered pair of

discrete states, the first component of which is the source

and is denoted by s(e), while the second is the target and is

denoted by t(e); {Invq}q∈Q associates to each discrete state

an invariant set Invq ⊆ X; {Ge}e∈E associates to each edge

a guard set Ge ⊆ Invs(e); {Re}e∈E associates to each edge

a reset map Re : Invs(e) → 2Invt(e) .

Notice that this class of hybrid automata is generally non

deterministic. The continuous state evolves following non

deterministic dynamics, and the discrete state evolution de-

pends only on the continuous state according to the guards,

that we assume non–intersecting. We denote inc(q) the set

of incoming edges to q and out(q) the set of outgoing edges

from q. An execution of a hybrid automaton [24] is a time

evolution of the discrete and continuous states satisfying

the continuous and discrete dynamics, and their interactions

(invariant, guard and reset).

We call durational graph a timed automaton [2] charac-

terized by only one clock that is reset to 0 for all edges:

Definition 2 (Durational graph): A durational graph is a

hybrid automaton (Q × X,Q0 × X0, E , E, Inv, G, R) such

that: X = R+ ∪ {0} is the continuous state space of the

clock variable v; for each q0 ∈ Q0, the initial condition is

given by (q0, 0); for each q ∈ Q, the continuous dynamics

are defined by Eq : v̇ = 1; for each q ∈ Q, the set Invq is a

rectangular set1; for each e ∈ E, the set Ge is a rectangular

set and Re(v) = {0}.

By this definition, a durational graph can be defined as a

tuple G = (Q,Q0, E, Inv,G).

III. APPROXIMATION METRICS FOR TIMED

ABSTRACTIONS

We introduce the framework of metric transition systems

[15], which enable us to model both hybrid automata and

timed automata:

Definition 3 (Metric transition system): A labeled met-

ric transition system with observations is a tuple T =
(Q,Q0, Σ, E, Ω, ω) that consists of a possibly infinite set

Q of states, a possibly infinite set Q0 ⊆ Q of initial

states, a possibly infinite set Σ of labels, a transition relation

E ⊆ Q×Σ×Q, a possibly infinite set Ω of observations, an

observation map ω : Q → Ω and metrics dΣ, dΩ on Σ and

Ω.

In what follows, we write q
σ
→ q′ to denote that (q, σ, q′) ∈

E. We assume that the systems we consider are non–

blocking, i.e. for all q ∈ Q there exists at least an outgoing

transition q
σ
→ q′. We say that a transition system T is

deterministic, if for all q ∈ Q,σ ∈ Σ there exists at most a

unique transition q
σ
→ q′, and the set Q0 contains a single

element.

We use the framework of metric transition systems to

analyze properties of hybrid automata and timed automata

in the same mathematical setting. We are interested in timed

abstractions, thus we consider in the rest of the paper

transition systems where Σ = R+ ∪ {0} represents the

continuous time basis. In this setting, a transition q
t
→ q′

models that state q′ can be reached from state q in time t.

A state trajectory of T is an infinite sequence of transitions

q0
t0→ q1

t1→ q2 · · · , where q0 ∈ Q0. An external trajectory

of T is a sequence of elements of Ω × Σ × Ω of the form

ρ = ω0
t0→ ω1

t1→ ω2 · · · if there exists a state trajectory of

T such that ∀i ∈ N, ω(qi) = ωi. We define the language

generated by T as the set of all external trajectories of T ,

and denote it as LT .

Given a set W ⊂ Ω, we define the set ΛT (W ) ⊆ 2R+∪{0}

of all time instants t such that there exists an execution of

T that generates an observation in the set W at time t:

ΛT (W ) =
{

t ∈ R+ ∪ {0} : ∃{ωi
ti→ ωi+1}i∈N ∈ LT ,

∃j ∈ N, ωj ∈ W, t =

j−1
∑

k=0

tk

}

.

1a rectangular set in R
n is any subset that can be defined by a finite

union of cartesian products of intervals.
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Let h−→
Σ

and hΣ denote the directed and undirected Hausdorff

distance associated to the metric dΣ. We define directed and

undirected reachability metrics as follows:

d−→
R

(T1, T2,W ) = h−→
Σ

(

ΛT1(W ), ΛT2(W )
)

,

dR(T1, T2, W ) = hΣ

(

ΛT1(W ), ΛT2(W )
)

.

The properties of Hausdorff distance imply that the reach-

ability metrics are pseudo–metrics on the set of metric

transition systems, and

d−→
R

(T1, T2,W ) = 0 ⇔ cl(ΛT1(W )) ⊆ cl(ΛT2(W )),

dR(T1, T2,W ) = 0 ⇔ cl(ΛT1(W )) = cl(ΛT2(W )).

Let X (Σ, Ω) be the set of external trajectories with labels in

Σ = R+ ∪ {0} and observations in Ω. Given ρ1 = {ω1
i

t1i→

ω1
i+1}i∈N, ρ2 = {ω2

i

t2i→ ω2
i+1}i∈N ∈ X (R+ ∪ {0},Ω), we

define an undirected distance dX :

dX (ρ1, ρ2) =







sup
i∈N

dΣ

(

i
∑

j=0

t1j ,
i

∑

j=0

t2j
)

if ∀i ∈ N, ω1
i = ω2

i

+∞ otherwise

Proposition 1: dX is a metric on the set of external

trajectories X (R+ ∪ {0}, Ω).

Let h−→
X

and hX denote the directed and undirected Hausdorff

distance associated to the metric dX . Since LT1 and LT2 are

subsets of X (R+∪{0}, Ω), we can define a language metric

as the Hausdorff distance between two languages:

d−→
L

(T1, T2) = h−→
X

(LT1 ,LT2)

dL(T1, T2) = hX (LT1 ,LT2)

The directed distance between two languages LT1 ,LT2 is ε

if for any trajectory of T1, we can find an ε–close trajectory

of T2 according to the metric dX . A consequence of the

properties of the Hausdorff distance is the following:

d−→
L

(T1, T2) = 0 ⇔ cl(LT1) ⊆ cl(LT2)
dL(T1, T2) = 0 ⇔ cl(LT1) = cl(LT2)

We use the definition of approximate simulation and

bisimulation relations proposed by Julius and Pappas in

[20]. Let T1 = (Q1, Q
1
0, Σ1, E1, Ω1, ω1) and T2 =

(Q2, Q
2
0, Σ2, E2, Ω2, ω2) be two labeled metric transition

systems with the same set of labels (Σ1 = Σ2 = Σ =
R+∪{0}) and the same set of observations (Ω1 = Ω2 = Ω).

Let dΣ be defined as above, and let dΩ be a metric on Ω.

Definition 4 (Approximate simulation relation): [20] A

relation Γ ⊆ Q1 × Q2 is called a (ε, δ) approximate

simulation relation of T1 by T2, if for all (q1, q2) ∈ Γ:

1) dΩ(ω1(q1), ω2(q2)) ≤ δ,

2) for all q1
σ
→ q′1, there exists q2

σ′

→ q′2 such that

(q′1, q
′
2) ∈ Γ, dΣ(σ, σ′) ≤ ε.

A relation Γ is called a (ε, δ) approximate bisimulation

relation when it is both a (ε, δ) approximate simulation

relation of T1 by T2, and a (ε, δ) approximate simulation

relation of T2 by T1.

Definition 5 (Approximate simulation): [20] T2 is a (ε, δ)
approximate simulation of T1 (denoted T1 ¹(ε,δ) T2) if there

exists Γ, a (ε, δ) approximate simulation relation of T1 by

T2, such that for all q1 ∈ Q1
0, there exists q2 ∈ Q2

0 such that

(q1, q2) ∈ Γ.

If T1 ¹(ε,δ) T2 and T2 ¹(ε,δ) T1, then we say that T1 and T2

are (ε, δ) approximately bisimilar, and write T1 ≈(ε,δ) T2.

For the intent of this paper, we require from the trajec-

tories of the abstraction the following properties: (1) exact

replication of discrete states (δ = 0) and (2) approximate

synchronization on switching times with precision (ε > 0).
For this reason, we will consider in the rest of the paper

(ε, δ) simulation and bisimulation relations where δ = 0.

We can define a simulation metric, as the tightest precision

ε such that T1 ¹(ε,0) T2:

d−→
S

(T1, T2) = inf{ε : T1 ¹(ε,0) T2}

We can also define a bisimulation metric, as the tightest

precision ε such that T1 ≈(ε,0) T2:

dB(T1, T2) = inf{ε : T1 ≈(ε,0) T2}

The following diagram summarizes the classical relations

between reachability, language and simulation metrics, for

all W ⊂ Ω:

dB(T1, T2) ≥ dL(T1, T2) ≥ dR(T1, T2,W )
≥ ≥ ≥

d−→
S

(T1, T2) ≥ d−→
L

(T1, T2) ≥ d−→
R

(T1, T2,W )

The diagram above is very interesting: given T1 and an

abstraction T2, the following hold:

ΛT1(W ) ⊆ B
(

cl(ΛT2(W )), d−→
R

(T1, T2)
)

⊆ B
(

cl(ΛT2(W )), d−→
L

(T1, T2)
)

⊆ B
(

cl(ΛT2(W )), d−→
S

(T1, T2)
)

,

where B(A, r) is the r neighborhood of the set A. The

computation of ΛT2(W ) for a simple system T2 can be

used to characterize ΛT1(W ) for a complex system T1. If

the transition systems are deterministic, then the following

classical result holds:

d−→
S

(T1, T2) = d−→
L

(T1, T2), dB(T1, T2) = dL(T1, T2)

The aim of this paper is to construct a timed abstraction

of a hybrid automaton H by means of a timed automaton.

We show here that with the classical Euclidian metric d̄Σ on

positive reals it is not always possible to construct a timed

automaton (and thus not even a durational graph, that is a

subclass of timed automata) that is ε–close to H, with ε

finite: namely such that the discrete state trajectories of G
approximate the discrete state trajectories of H, with a finite

desired precision on switching times according to the metric

d̄Σ. The following example shows by a counterexample that

given a hybrid automaton H, there does not always exist a
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durational graph G and a finite precision ε ≥ 0, such that

dL(H,G) ≤ ε.

Example 1: Consider the hybrid automaton H that con-

sists of Q = Q0 = {q},X = R
2, X0 = {1} × [0, 2],

Eq : ẋ1 = x1, ẋ2 = 0, E = {e = (q, q)}, Invq =
{(x1, x2) : x2 > x1 − 2}, Ge = {(x1, x2) : x2 = x1 − 2},

Re(x1, x2) = (1, x2).
We first propose an abstraction G1 with only one discrete

state, with a self loop and a guard Ge = [t′1, t
′
2], and prove

that ∀ε ∈ R+ ∪ {0}, dL(H,G1) > ε. Then, we prove that

any timed automaton with a finite number of discrete states

and clocks is affected by the same pathology of G1.

We will consider the languages of external trajectories LH

and LG1 of transition systems that model a hybrid automaton

H and a timed automaton G1. Since we are interested in

reproducing the discrete state trajectories of H, we consider

as observation the current discrete state, i.e. Ω = Q. The

external language generated by H is given by

LH = {q
t∗
→ q

t∗
→ q · · · : t∗ ∈ [t1, t2]},

with t1 = ln 2, t2 = ln 4. The external language generated

by G1 is given by

LG1 = {q
t1
→ q

t2
→ q · · ·

tn

→ q · · · : ∀i ∈ N, ti ∈ [t′1, t
′
2]},

Consider the following external trajectory of G1:

ρ′ = q
t′1→ q

t′2→ q
t′1→ q

t′2→ q · · ·

Consider the distance d̄X (ρ, ρ′) between any execution ρ ∈
LH and ρ′ ∈ LG1 , according to the Euclidian metric on

positive reals d̄Σ(t1, t2) = |t2 − t1|:

d̄X (ρ, ρ′) = sup
i∈N

⌊i/2⌋
∑

j=0

(

|t′1−t∗|+|t′2−t∗|
)

+|t′1−t∗|·i(mod2)

Unless t1 = t2 = t′1 = t′2 = t∗ (that is not the case in our

example), it is clear that dX (ρ, ρ′) = ∞. Thus, for any ε ≥ 0
the following holds:

∀ε ∈ R+ ∪ {0}, dB(H,G1) ≥ dL(H,G1) > ε.

Increasing the number of discrete states of the timed

q1

[t ,t ]1 2

1 1

q2

[t ,t ]1 2

2 2

qK

[t ,t ]1 2

K K

...e1 e2 eK

Fig. 1. Timed automaton GK .

automaton is useless: in fact, one can construct an abstraction

GK with a finite number K of discrete states with self

cycles associated to non–singleton guards Gek
= [tk1 , tk2 ],

such that
K
⋃

i=1

Gek
= [t1, t2] (see Figure 1). In this case,

we get the same problem of the case with just one discrete

state. Otherwise, one can construct an abstraction G∞ with

an infinite number of discrete states with self cycles, and

add cycles with singleton guards Gei
= {tk} such that

∞
⋃

i=1

Gei
= [t1, t2]. In this case, the system has infinite discrete

states and thus it is not a timed automaton.

Increasing the number of clocks and introducing clocks

that do not reset is also useless, since it is not allowed in

a timed automaton to define a guard as a function of clock

variables, i.e. guards are rectangular sets. The same reasoning

discussed above yields to the necessity of an infinite number

of clocks or to non–rectangular guards, that is outside the

expressive power of timed automata. Thus, the result follows.

Another important limitation of the Euclidian metric is that

in practical applications it is often required to construct an

approximation of a plant for a finite horizon analysis. In this

case, it is necessary to construct an abstraction that tightly

reproduces the plant behavior for the time interval of interest,

and not for all time instants. For the motivations above, we

define a relative distance dΣ on Σ = R+ ∪ {0}:

dΣ(t1, t2) =

{

0 if t1 = t2 = 0
|t1−t2|
t1+t2

otherwise

Proposition 2: dΣ(t1, t2) is a metric on Σ.

This metric is relative and not absolute, in the sense that it

depends on the elapsed time: i.e. the distance between 1 and

2 seconds is considered the same as the distance between 100

and 200 seconds. Roughly speaking, it specifies the region of

times where we are interested to define a tight approximation

(short time horizon) and where we just need a more relaxing

one (long time horizon).

IV. ABSTRACTION ALGORITHM

Given a hybrid automaton H = (Q × X, Q0 ×
X0, U, E , E, Inv, G,R) and a desired precision ε, we pro-

pose a novel algorithm to construct a durational graph G such

that dB(H,G) ≤ ε. Define a relation γ ⊆ Q×
(

Q×(E∪Q0)
)

as follows:

γ = {(q, (q, l)), q ∈ Q : either l ∈ inc(q) or l = q ∈ Q0}

Intuitively, γ relates each discrete state q to a pair (q, l) where

l is either an incoming edge in q, or l = q if q is an initial

discrete state. In the following, we use the notation:

ℜl ,

{

X0(q0) if l = q0 ∈ Q0

Im(Re) if l = e ∈ E

where X0(q0) is the set of initial continuous conditions

associated to the initial discrete state q0, and Im(Re) is the

image of the reset Re. Let ReachI(X0) denote the set of

states reachable from X0 at time t ∈ I .

Algorithm 1: Let a hybrid automaton H = (Q×X, Q0 ×
X0, U, E , E, Inv, G,R) and ε ∈ R+ be given. We define a

durational graph G = (Q′, Q′
0, E

′, Inv′, G′) as follows:

1) Define Q′ , {(q, l) : (q, (q, l)) ∈ γ} and Q′
0 ,

{(q, l) ∈ Q′ : l = q ∈ Q0};
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2) For each
(

(q1, l1), (q2, l2)
)

∈ Q′ × Q′ such that l2 =
(q1, q2), define finite partitions {ℜl1,i}

m1
i=1, {ℜl2,j}

m2
j=1 of the

sets ℜl1 ,ℜl2 , such that for each element ℜl1,i there exists

ti ∈ R+ that satisfies the following:

(i) {t ∈ R+ ∪ {0} : ∃w|t0,∃x0 ∈ ℜl1,i, xfq1
(t, w|t0, x0) ∈ Gl2}

⊆ [ti(1 −
2ε

1 + ε
), ti(1 +

2ε

1 + ε
)] , B(ti, ε),

(ii) ∃!e ∈ out(q) : ReachB(ti,ε)(ℜl1,i) ∩ Ge 6= ∅

and at least one of the following conditions holds:

(iii) ∀x0 ∈ ℜl1,i, ReachB(ti,ε)(ℜl1,i) ⊆ ReachB(ti,ε)(x0)

(iv) ∃ℜl2,j : Rl2

(

ReachB(ti,ε)(ℜl1,i)
)

⊆ ℜl2,j

Split the discrete states (q1, l1), (q2, l2) respectively

in m1,m2 states {(q1, l1, i)}
m1
i=1, {(q2, l2, j)}

m2
j=1. If

Rl2

(

ReachB(ti,ε)(ℜl1,i)
)

∩ ℜl2,j 6= ∅, then add

e′ ,
(

(q1, l1, i), (q2, l2, j)
)

to E′ and define G′
e′ , {ti};

Algorithm 1 is guaranteed to converge if the discrete layer

contains cycles, or if a disturbance is present. If the hybrid

model contains cycles and the disturbance is not present, then

the convergence is not guaranteed: in fact, if the limit trajec-

tories of the system converge to a boundary of a partition,

the algorithm might not reach a fixed point in finite time.

However, the presence of a disturbance on the continuous

dynamics guarantees convergence also in presence of cycles:

in fact, the algorithm stops when each element of the parti-

tion {ℜl1,i}
m1
i=1 either has only one outgoing edge, or it is so

small that for any initial continuous condition the disturbance

allows to trigger all outgoing edges. As the partition classes

become smaller and smaller a fixed point is reached in finite

time, since the reach set due to the disturbance includes the

equivalence class. Notice that the presence of a disturbance

on the continuous dynamics is a point of strength and not

a limitation, since it provides robustness to the analysis of

the system behavior. In addition to this, notice that many

applications can be described by hybrid automata that do

not contain cycles, see e.g. hybrid models proposed in [8],

[9] for air traffic management procedures.

q QÎ 0

e1 e2

e4 e3

e4 e3

(q,q) QÎ 0’

e2

e4 e3

(q,e ) Q2 0Ï ’
e1

e4 e3

(q,e ) Q1 0Ï ’

Fig. 2. Split induced by the relation γ.

The intuition behind the algorithm is the following: we

first split each discrete state depending on the number of

incoming edges and initial conditions (Figure 2). Notice that

the first split ensures that any discrete state has only one

incoming edge. Then, a further split is performed according

(q,l) QÎ ’

Im(R )ei

Geo

[1]
[2] [m]

I(t , )1 e

(q,l,[1])
ei,1

G = teo,1 1

eo,1
(q,l,[m])

ei,m eo,m...

eoei

I(t , )2 e

I(t , )m e

G = teo,m m

Fig. 3. Split induced by the arrival time to the guards.

to a partition of the image of the reset associated to the

incoming edge (Figure 3). Because of condition (i), the

following holds:

Proposition 3: For all e′ =
(

(q1, l1, i), (q2, l2, j)
)

∈ E′

and for any equivalence class ℜl1,i:

∀x0 ∈ ℜl1,i,∀w|t
∗

0 , dΣ(t∗, ti) ≤ ε

where w|t
∗

0 is a disturbance signal and t∗ is the arrival time

to the guard Gl2 , namely such that xfq1
(t∗, w|t0, x0) ∈ Gl2 ,

and ∀t ∈ [0, t∗), xfq1
(t, w|t0, x0) ∈ Invq1 .

Roughly speaking given a partition {ℜl1,i}
m1
i=1, the arrival

time to a guard set starting from all continuous states

in an equivalence class ℜl1,j belongs to the set B(tj , ε).
The partition obtained by Algorithm 1 is not uniform, and

is smart in the sense that it depends on the continuous

dynamics. Because of conditions (iii) and (iv), the following

holds:

Proposition 4: For each discrete state (q1, l1, i) gener-

ated by the partition {ℜl1,i}
m1
i=1, let out

(

(q1, l1, i)
)

=
{e1, · · · , ek}. Then either k = 1, or for all j ∈ {1, · · · , k}
the following holds:

∀x0 ∈ ℜl1,i,∃t∗,∃w|t
∗

0 : xfq1
(t∗, w|t

∗

0 , x0) ∈ Gej

Roughly speaking each discrete state (q1, l1, i) generated by

the second split either has only one outgoing edge, or every

continuous trajectory starting from ℜl1,i can trigger all the

outgoing edges.

Theorem 1: Given a hybrid automaton H, a required

precision ε ∈ R+, and G constructed by Algorithm 1, then

dB(T ,H) ≤ ε.

It is clear that dL(H,G) ≤ dB(H,G) ≤ ε, and that if H is

deterministic, then dB(H,G) = dL(H,G). We conclude this

section by applying our algorithm to the system H defined

in Example 1.

Example 2: Consider H as defined in Example 1 and

a desired precision ε = 0.02, we can use Algorithm 1

to construct a durational graph G. The discrete layers of

H and G are depicted in Figure 4. Following Algorithm
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Fig. 4. System H of Example 2 and abstraction G.

1, we construct a partition of the set ℜe = {1} × [0, 2].
More precisely, we partition the rectangular interval [0, 2] as

follows:

{[0, 0.16], [0.16, 0.33], [0.33, 0.52], [0.52, 0.72], [0.72, 0.94],

[0.94, 1.17], [1.17, 1.42], [1.42, 1.71], [1.71, 2]}.

The partition contains 9 equivalence classes and is not

uniform, i.e. it is finer when close to 0 and coarser when

close to 2. The guard of each edge e′i, i ∈ {0, · · · , 9} is

given by the average arrival time of each interval, e.g.,

Ge′

2
= t2 = ln(0.16+2)+ln(0.33+2)

2 = 0.807s. Theorem 1

implies that dB(T ,H) ≤ 0.02.

V. CONCLUSIONS

We proposed a novel algorithm to construct a durational

graph that is an approximate timed abstraction of a hybrid

automaton. To define the precision of the approximation, we

motivated and introduced a relative metric on reachability

time, external language and simulation relation. The discrete

state trajectories of our abstraction approximate the discrete

state trajectories of the hybrid automaton, with a desired

precision on switching times. We guaranteed the convergence

of our algorithm for a general class of hybrid automata with

disturbance in the continuous dynamics. Our abstraction can

be useful for automatic verification of properties of hybrid

automata. Current work aims to automatize the algorithm,

using the computational framework developed in [19]. As a

future extension, we aim to establish a relation between the

number of discrete states of the abstraction and the number

of discrete states and continuous dynamics of the hybrid

automaton.
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