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Abstract— We present a method for identification of gene
regulatory network topology using a time series of gene ex-
pression data. The underlying assumption is that the regulatory
effects of a set of regulators to a gene can be described by a
multivariate function. The multivariate function is constrained
to be continuous, nonnegative and monotonic in each variable.
We present necessary and sufficient conditions for the validity
of the regulation hypothesis. Checking these conditions can be
expressed as a Linear Programming feasibility problem. This
paper builds on our previous work, where the regulation is
described by a summation of multiple regulator functions, one

function for each gene in the regulator set. Our procedure is
two phased; the first identifies the correct set of regulators,
the second uses the data and the regulator set to generate
an appropriate regulator function. This paper focuses on the
identification of the correct regulator set. As demonstration,
we run our main algorithm on some experimental data from a
synthetic gene network in yeast. We are able to show that the
correct set of regulators is picked by the algorithm.

I. INTRODUCTION

One of the main challenges in systems biology is to

identify the interaction topology among a set of genes based

on their expression activities data. Gene expression levels

are typically measured as transcript concentrations with

DNA microarray (c.f. [1], [2]). Due to the nature of the

measurements, the data are typically organized as genome

wide snapshots of gene expression activities.

Identification of Gene Regulatory Networks (GRNs) is a

difficult problem because of several reasons:

• The size of the network can be very large.

• The measurements are noisy.

• Although it is possible to have a large quantity of data

(genome-wide) for each snapshot, the number of snap-

shots is typically fairly small. This is because obtaining

a large number of snapshots is highly impractical, due

to logistical and cost considerations.

• The dynamics of the GRNs are highly nonlinear.

There are several families of methods for identification

of GRNs from gene expression profiles. They are based on

clustering (e.g. [3]), information theoretic networks (e.g. [4]),

Bayesian networks (e.g. [5]), and dynamical systems (e.g.

[6], [7], [8]). The method that we present in this paper falls

within the last category, and it is a generalization of our

earlier work in [9].
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With the availability of gene expression measurements, the

network can in principle be reconstructed by inverting the

data (c.f. [10]). However, as the measurements are noisy, the

reconstructed network tends to be populated with spurious

interconnections (i.e. false positives). This concern gives rise

to sparse identification or parsimonious identification that

aims at getting a network model with as few connections

as possible without losing the fitness to the data (c.f. [6],

[7], [1]).

Within the systems and control community, identification

of GRNs in general and sparse identification of GRNs in

particular are quite active research areas. For example, de

Jong et al developed a method for identification of GRNs

using the structure of piecewise affine dynamical systems

(c.f. [11], [12]). Papachristodoulou et al developed a model

for identification of sparse networks using Hill functions to

describe the dynamics of gene-gene interaction (c.f. [13]).

Earlier work by one of the authors of the current paper also

aimed at identifying sparse networks based on genetic per-

turbation data, assuming that the dynamics can be described

(locally) as a linear system (c.f. [14], [15]). A recent work

by Yuan et al [16] investigated handling sparsity by using

Akaike information criterion.

The method presented in this paper is a generalization

of our earlier work in [9], which proposed a different

approach from those in the above references. Although we

still use the dynamical system formulation, there is no

assumption made about the type of the functions used in the

regulation (e.g. linear, polynomial, Hill functions, etc.). The

only imposed assumption is that the interaction dynamics

can be represented as continuous nonnegative monotonic

functions (in short, CNM functions). The network structure

is built by identifying the set of regulators for each gene. The

regulators of a gene X are the genes that directly1 regulate the

expression activity of X. Our method is essentially based on

model invalidation, rather than model identification. Along

with a validation of a regulator set, this method can give

insight into how strong the regulator set fits the data.

A recent work by Porreca et al, published earlier in [17],

proposed a two-staged process in identifying a continuous-

time differential equation model for GRNs. In the first stage,

network topologies that are inconsistent with the data are

rejected. This first stage is very similar to our approach, in

the sense that it separates the issues of network topology

and the functional/parametric representation of the dynamics.

1Note that by directly we mean without going through other genes in the
network under study. Therefore, this is not necessarily a statement about
the binding of transcription factors to certain promoters.
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However, our approach differs from the one in [17] in that,

(i) we propose a discrete-time model structure that is directly

derived from the time series data, (ii) we prove that the

conditions that we use to reject some network topologies are

both necessary and sufficient (see Theorem 4), while in [17],

no such result is derived, (iii) we present some theoretical

analysis on irrefutable models and data.

The main result of this paper is as follows. For any pro-

posed set of regulators, we derive a necessary and sufficient

condition for the data to be compatible with the regulation

hypothesis. The major difference between this paper and

previous work [9] is that in the current paper, the regulator

functions can be any general multivariate CNM functions. In

[9], we restrict our attention to regulator functions that can

be written as sums of CNM functions (one for each variable).

The significance of this generalization can be demonstrated

by examining the regulator functions found in [18]. The

function represents the regulation of the lacZYA operon of

Escherichia coli, dependant on cAMP and isopropylβ-D-

thiogalactoside (IPTG). The regulator function from [19],

Fig. 1: Figure taken from [18], for the wild type regulator

function

[18] is of the form

f(x, y) = V1

1 + V2A(x) + V3R(y)

1 + V4A(x) + V5R(y)
(1)

where Vi are constant parameters, R(y) and A(x) are Hill

functions in cAMP and IPTG respectively. As Hill functions,

R(y) and A(x) are CNM functions. However, we can see

that the function f(x, y) cannot be expressed as the sum of

CNM functions in x and y. By taking the log of f(x, y),
we can also see that f(x, y) cannot be expressed as the

product of CNM functions in x and y either. Yet as can be

seen in Figure 1 the function is monotonic in both variables.

Therefore the method presented in this paper can allow for

a multivariate function similar to f , whereas the previous

method in [9] could not.

The conditions for the validity of a regulation hypothesis

in this paper is, as in previous methods, formulated as a Lin-

ear Programming feasibility problem (in the implementation,

we apply a quadratic cost on the slack variables), which is

computationally tractable. By verifying the compatibility of

the regulation hypothesis with the data, we can invalidate a

proposed model structure. Since the method isolates one gene

(and its regulators) from the rest of the network, it allows

for each individual gene’s regulator set to be determined in

parallel. Another departure from the previous work is that

determining a regulator set does not give the entire regulator

function(s). It is shown in Section IV that the method assigns

values in a grid for the regulator function, and further work

is required to ‘fill in’ the rest of the function. We also discuss

irrefutability results for certain network topologies and time

series data. This result can be used in, e.g. determining

whether the data is rich enough to separate different model

structures.

II. MATHEMATICAL MODELS FOR GENE-GENE

INTERACTION

Assume that the GRN we are working with consists of G

genes, and that there is a sequence of expression activity for

(N + 1) time points for every gene. Denote the expression

data for Gene i at time j as xi,j , 1 ≤ i ≤ G, 0 ≤ j ≤ N .

The (time) differential expression activity qi,j , 1 ≤ i ≤ G,

0 ≤ j ≤ N − 1, is defined as

qi,j , xi,j+1 − xi,j (2)

Remark 1: We implicitly assume that ∆t = tj+1 − tj
is the same ∀j. If this is not true, then some interpolation

technique can be used, for example by normalizing q(i) to

q(i)′ = q(i) ti+1−ti

∆t
, where ∆t is fixed and q(i) is from (2).

The interaction between genes can be captured by the

following model:

qi,j = −λixi,j + fi(xk1,j, xk2,j , . . . , xkK ,j) (3)

where λi ≥ 0 is the decay parameter of Gene i,

k1, · · · , kK ∈ GR
i ⊆ {1, . . . , G} are the K regulators of

Gene i, and fi is the function that describes the regulation

of Gene i based on the expression activities of all the genes

in GR
i . Both the λi and the fi are unknown, and the objective

of this paper is to identify them based on the experimental

data.

The following assumption for the regulatory function fi(·)
is adopted.

CNM Assumption: The function fi(xk1
, xk2

, . . . , xkK
) is

continuous, nonnegative and monotonic (CNM) in each

k1, · · · , kK ∈ GR
i .

If fi(·) is monotonically increasing in xk , then Gene k

is considered an activator of Gene i. Conversely, when fi(·)
is monotonically decreasing in xk, Gene k is considered a

repressor of Gene i. Thus, the set of regulators GR
i can be

split into two disjoint sets

GR
i = GR+

i ∪ GR−
i (4)

where GR+
i and GR−

i are the sets of activators and repressors

of Gene i, respectively. The number of regulators of a gene

is called the in-degree of the gene, a term taken from the

graph-theoretic interpretation of the GRN (see Figure 2).

Remark 2: The assumption that f is continuous, non-

negative and monotone is very general. Virtually all phe-

nomenological regulation models that have been proposed

to represent gene-gene interaction (Hill functions, sigmoid

functions, linear functions, piecewise affine functions, etc.,

2209
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Fig. 2: (From [9]) A simple GRN. The set of regulators of

Gene 1, GR
1 , is {2,3,4}. The set of activators of Gene 1,

GR+
1 , is {3,4}, while the set of repressors, GR−

1 is {2}. The

in-degree of Gene 1 is 3. Notice that self-loop is allowed.

For example, in this network, Gene 5 is a repressor of itself.

see references in Section I) are captured in this broad

class of functions. On the other hand, we can argue that

it is not possible to generalize this assumption further. For

example, without the monotonicity assumption, the notions

of activation and repression do not make any sense. The

nonnegativity assumption is adopted because virtually all

known gene-gene interaction models have this property. The

nonnegativity assumption can be replaced, if the λ term in (2)

is dropped. With this assumption of negative autoregulation

of Gene i the decay can be captured without the use of λ.

Remark 3: Notice that we do not preclude the possibility

of any gene acting as activator and repressor for two different

genes.

III. SPARSITY CONSIDERATION

The sparsity of a GRN will be characterized by the

in-degree of genes (nodes) of the network. The physical

interpretation is that the sparsity of the network corresponds

to the number of regulators for a gene in the network. The

total regulatory network interconnection is the sum of the in-

degrees of all the genes. The characterization of sparsity in

this paper is in line with prior work [14], where the sum of

in-degree’s would be equal to the cardinality of the A matrix

(5) from [14].

The sparsest regulator set for any gene in a GRN is

probably not unique. For instance, suppose that in a GRN

with X, Y, Z ∈ G, qX can be expressed as a function of

the expression activities of Y or Z . The regulator sets of

{Y } and {Z} are the smallest regulator set of Gene X . We

consider minimality of a set of regulators in the sense of

partial ordering of sets generated by set inclusion. A set of

regulators GR
i is considered smaller than another set GR′

i if

GR
i ⊂ GR′

i . For each gene the minimal sets of regulators

can be identified by performing a breadth-first search on the

lattice structure of the power set of all genes in the GRN

{1, 2, . . . , G}, as shown in Figure 3.

The lattice structure shows the set of regulators, but there

is also the added complication that each regulator can be

{}

{1} {2} {3} {G}

{1, 2} {2, 3}

{1, 2, 3}

{1, 3}

Search direction

Fig. 3: (From [9]) The lattice structure of the power set

of {1, . . . , G}. The arrows indicate set inclusion, and the

direction of the breadth-first search is given by the dashed

red line.

either an activator or a repressor. This yields added complex-

ity, e.g. the gene sets {1}, {1, 2} have two ({1+, 1−}), or

four
({

{1+, 2+}, {1+, 2−}, {1−, 2+}, {1−, 2−},
})

regu-

lation hypotheses. A simple way of verifying all regulation

hypotheses is to verify regulator sets in order of the breadth-

first search. Although in the worst case we need to verify all

sets, in practice this is not the case, because:

• Most GRN’s found in nature have a small in-degree for

all genes.

• If a subset GR
i ⊂ {1, . . . , G} is verified as a set of regu-

lators, all larger sets GR′

i , GR
i ⊂ GR′

i are also verifiable

regulator sets. This is because a CNM function in X is

also a CNM function in X and Y, where X and Y are

two disjoint sets of variables.

IV. MAIN RESULT

Given the expression activity data for each Gene i at time

j is given by xi,j , 1 ≤ i ≤ G , 0 ≤ j ≤ N the temporal

differential expression qi,j is computed using (2) for 1 ≤ i ≤
G, 0 ≤ j ≤ N − 1.

Regulation Hypothesis: A regulation hypothesis R is pa-

rameterized by (an ordered pair of) two disjoint subsets

GR+
k , GR−

k ⊆ {1, . . . , G}, which are the sets of activators

and repressors of Gene k, respectively. Thus, GR
k := GR+

k ∪
GR−

k is the set of regulators of Gene k.

Notation 1: Given a regulation hypothesis R =
(GR+

k , GR−
k ), we denote:

• the vector of expression activities of all activator genes

at time j as xa,j,

• the vector of expression activities of all repressor genes

at time j as xr,j ,

• the vector of expression activities of regulator genes at

time j as xR,j ,

The regulation hypothesis R is equivalent to the statement

that the temporal differential expression satisfies the follow-

ing relation:

qk,j = −λkxk,j + f(xa,j, xr,j), ∀j ∈ {0, · · · , N − 1} (5)
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for some λk ≥ 0, and a CNM function f(xa,j, xr,j) that

is monotonically increasing in the variables in xa,j and

monotonically decreasing in the variables in xr,j .

Before we proceed to the main result of this paper, let us

define the following

Definition 1: Given a regulation hypothesis R =
(GR+

k , GR−
k ), we define the partial ordering �R⊂ R

|GR

k
| ×

R
|GR

k
| as

xr,i �R xr,j :⇔

{

xa,i ≤ xa,j,

xr,i ≥ xr,j .
(6)

SR: = {(i, j) ∈ {0, . . . , N − 1}2 | xr,i �R xr,j}.
The following theorem is used to (in)validate the regula-

tion hypothesis above, based on the experimental data.

Theorem 4: The regulation hypothesis R is true, i.e. there

exist λk and a CNM function f(·) such that (5) is satisfied

if and only if there exist λk and q̂k,j , j ∈ {0, . . . , N − 1}
such that the following linear constraints are satisfied:

qk,j = −λkxk,j + q̂k,j , ∀j ∈ {0, . . . , N − 1}, (7)

λk ≥ 0, (8)

q̂k,j ≥ 0, ∀j ∈ {0, . . . , N − 1}, (9)

q̂k,j ≥ q̂k,i, ∀(i, j) ∈ SR. (10)

Note that xk,j and qk,j , j ∈ {0, . . . , N − 1}, are obtained

from experimental data.

Proof: Omitted because of space limitation.

Remark 5 (Complexity): The validation of the regulation

hypothesis, as described in Theorem 4, amounts to solving

a Linear Programming (LP) feasibility problem with (N +
1) variables, N equality constraints, and (N + 1 + |SR|)
inequality constraints. Here, |SR| denotes the cardinality of

the set SR.

The GRN identification algorithm provided in this paper

is summarized in Algorithm 1. Note that this algorithm

results in the minimum regulator set for a gene, and does not

explicitly compute the multivariate CNM regulator function

itself.

V. IMPLEMENTATION AND EXAMPLE

In the implementation, the experimental data are noisy.

We therefore modify the algorithm as follows. We introduce

slack variables ǫ, and instead of a feasibility problem as

described in Theorem 4, we solve a minimization problem.

The objective is to minimize the Frobenius norm ‖ǫ‖F ,

leading to a Linear Quadratic (LQ) programming problem,

as shown below:

min ‖ǫ‖F subject to (11)

qk,j = −λkxk,j + (q̂k,j + εk,j) , ∀j ∈ {0, . . . , N − 1},
(12)

λk ≥ 0, (13)

(q̂k,j + εk,j) ≥ 0, ∀j ∈ {0, . . . , N − 1}, (14)

(q̂k,j + εk,j) ≥ (q̂k,i + εk,i) , ∀(i, j) ∈ SR, (15)

with λk, ǫk,j , and q̂k,j , j ∈ {0, . . . , N − 1} as the optimiza-

tion variables. The optimal cost function can be interpreted

Algorithm 1 Computation of the sparsest gene network

based on gene expression data time-series

Require: Time-series data of gene expression activities xi,j .

1: Compute the time differential expression data qi,j .

2: for all k ∈ G , {1, . . . , G} do

3: Compute the lattice of the subsets of G as in Figure

3. Label every subset with ’unverified’.

4: repeat

5: Take a subset of GR
k ⊂ G with label ’unverified’.

6: for all possible activator-repressor partitioning of

GR
k do

7: Use Theorem 4 to verify whether GR
k is a set of

regulators for Gene k.

8: end for

9: if GR
k is a set of regulators for Gene k then

10: Label GR
k and all of its upper bounds in the lattice

with ’pass’.

11: else

12: Label GR
k with ’fail’.

13: end if

14: until all subsets are labeled with ’pass’ or ’fail’.

15: The possible sets of regulators for Gene k are all

subsets labelled with ’pass’. The minimal sets of

regulators are the minimal elements (in the sense of

set inclusion) of this set.

16: end for

as the least amount of perturbation of the time differential

expression data required to ‘fit’ the data with the regulation

hypothesis. The optimal cost function is zero if and only if

the LP problem of 4 is feasible. Due to the inherent noise in

the experimental data, we would allow for a small nonzero

cost in accepting the regulation hypothesis.

Remark 6 (Complexity): The numerical implementation

above involves solving an LQ problem with (2N + 1)
variables, a quadratic cost involving N variables, N equality

constraints, and (N + 1 + |SR|) inequality constraints.

We apply our algorithm on the experimental data of the

IRMA gene network [20]. The IRMA network consists

of five genes, with topology shown in Figure 4. It is a

synthetic network constructed in Saccharomyces cerevisiae.

Data from the IRMA network is generated from two different

perturbation experiments, the ‘switch-on’ and ‘switch-off’

experiments. In the ‘switch-on’ experiments the cells are

shifted from glucose to galactose, the ‘switch-off’ experi-

ment the cells are shifted opposite, from galactose to glucose.

The expression profiles of each gene were obtained from

quantitative real time PCR (RT-PCR) analysis. The ‘switch-

on’ experiments were sampled every 20 minutes for a period

of 5 hours, and the ‘switch-off’ experiments were sampled

every 10 minutes for a period of 3 hours. The expression data

was expressed by the ∆ct method, where the mean of the

times series is subtracted from each data point. We examine

the data from these two experiments separately, due to their

characteristic differences.
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Fig. 4: Network Topology of the IRMA Network, from [20]

We test our algorithm in the identification of the regulator

set of CBF1, one of the genes in the IRMA network. CBF1

is picked because it is the only gene in the network with

multiple regulators. The breadth-fist search is carried out

for the first two levels ( all single and pairwise regulator

sets) for both the ‘switch-on’ and ‘switch-off’ experiments.

The ‘on’ experiment has five replicates, the ‘off’ experiment

has four replicates. The minimization algorithm is run for

every replicate, and the average ǫ is taken, for the switch off

and switch on experiments. The regulator sets with the six

smallest errors for each experiment type are shown in Table

I

switch-on switch-off

Reg. Set ‖ε‖
F

Reg. Set ‖ε‖
F

( SWI5+,ASH1- ) 0.0071 ( SWI5-,ASH1+ ) 0.0342

( SWI5+,GAL4- ) 0.0074 ( ASH1+,GAL4- ) 0.0433

( SWI5+,GAL4+ ) 0.0078 ( SWI5-,GAL80+ ) 0.0508

( ASH1+,GAL4+ ) 0.0081 ( GAL4-,GAL80+ ) 0.0519

( SWI5+,GAL80+ ) 0.0093 ( ASH1-,GAL80+ ) 0.0523

( SWI5+,GAL80- ) 0.0103 ( ASH1+,GAL80+ ) 0.0523

TABLE I: Results from the identification of the IRMA

network. The correct regulator set is ( SWI5+, ASH1- )

The notation used in Table I for the regulator sets can

be explained as follows. Positive (+) sign denotes activator

gene, while negative (-) sign denotes repressor gene. For

example, the set (SWI5+, ASH1-) is the regulator set with

gene SWI5 acting as an activator and gene ASH1 acting

as a repressor. We can observe that the actual regulator set

(SWI5+, ASH1-) came out as the best regulation hypothesis

(corresponding to the smallest cost function ‖ε‖F ) when the

switch-on data set is used. The switch-off data set leads to

worse fit (corresponding to higher cost function, even in the

best hypothesis) and incorrect predictions.

Note that CBF1 does not appear in any of the regulator

sets, as it has been excluded from the computation from

self regulation. The reason for avoiding autoregulation as an

activator is given in the next section. We also avoid having

autoregulation as a repressor because a part of this type of

regulation can be absorbed into the λk term. Alternatively

the λk term could be dropped and the self repression added;

however this would require that the nonnegativity constraint

in the CNM function is dropped.

VI. REFUTABILITY OF REGULATION HYPOTHESIS

As discussed earlier, the method described is designed to

reject different regulation hypotheses for each gene in the

network. In this section we discuss irrefutable regulation

hypothesis, i.e. the conditions where: (i) the regulation hy-

pothesis is such that it cannot be refuted, regardless of the

data, or (ii) the expression activity patterns of some genes are

such that they cannot be refuted as regulators of any target

gene regardless of the target gene’s expression data. The

results that are presented here are generalization of similar

results presented in [9].

A. Autoactivation

Any regulation hypothesis involving a gene acting as its

own activator, in practice, cannot be refuted. To prove that

statement, we proceed with the following lemma.

Lemma 7: [9] Assume we have a data set consisting

of gene expression data xn, n ∈ {0, . . . , N} and the

corresponding time-differential expression data qn, n ∈
{0, . . . , N − 1} satisfying xn ≥ 0, and xi 6= xj if i 6= j.

There exist λ ≥ 0 and f(·) a CNM increasing function such

that

qn = −λxn + f(xn), n ∈ {0, . . . , N − 1}. (16)

The assumptions that we impose in this lemma, i.e. the

uniqueness and nonnegativity of the expression data are

always satisfied in practice. In particular, because of the

presence of measurement noise, the probability of having

two measurements with exactly the same number is zero.

Lemma 7 states that the regulation hypothesis consisting

of one regulator gene, namely a gene activating itself cannot

be refuted in practice. Using the last bullet in Section III,

we can extend this result to cover any regulation hypothesis

involving autoactivation.

B. Empty Constraint Set SR

The constraint set SR in Theorem 4 plays a crucial role

in (in)validating a regulation hypothesis.

Lemma 8: If the constraint set SR in Theorem 4 is empty,

then the regulation hypothesis is true (i.e. regardless of the

time differential expression data).

Proof: In this case, the constraint in (10) is satisfied

by default. Thus, we only need to show the existence of λk

and q̂k,j , j ∈ {0, . . . , N − 1} such that the constraints (7) -

(9) are met. For this, we can choose any λk ≥ 0 and pick

q̂k,j = qk,j + λkxk,j . (17)

An interesting consequence of this result is that when

the time series of the expression activities of two genes

are monotonic, they can be used as universal regulators.

That is, they cannot be refuted as regulators of any target

gene regardless of the target gene’s expression data. This

is because we can always construct a regulation hypothesis

R involving these two genes, corresponding to an empty

constraint set SR. To demonstrate this assertion, consider

2212



two genes A and B, whose expression activity data xA,n

and xB,n, n ∈ {0, . . . , N −1} are monotonically increasing.

Then, both regulation hypotheses (A+, B−) and (A−, B+)
result in an empty constraint set SR.

VII. CONCLUSION

We present some theoretical results that are applicable in

the identification of genetic regulatory network (GRN) based

on gene expression time series. Our goal is in obtaining

a discrete-time (nonlinear) dynamical system model of the

GRN. The core of our contribution lies in separating the

issue of identifying the network topology from identifying

the regulation functions.

The basis of our approach in identifying the topology of

the GRN lies in the formulation of the regulatory relation

between genes in an axiomatic manner. This is spelled out

in the CNM assumption in Section II. We also argue that the

CNM assumption that characterizes the regulatory relation is

very general and satisfied by virtually all existing dynamical

system models of GRN. Further, we show that for any

given regulation hypothesis and data set, the validity of the

CNM assumption can be checked as a Linear Programming

(LP) feasibility problem. To account for noisy data, we also

formulate a Linear Quadratic (LQ) optimization problem that

measures how far the data are from satisfying the regulation

hypothesis. The computational implementation of our results

is thus based on convex optimization. Another nice feature of

our approach is that the determination of the regulators of all

the genes in the network can be performed in a completely

parallel fashion.

Once the network topology is obtained, in principle, the

regulation functions can be determined by (i) interpolation of

the data points, or (ii) fitting the data points with functions

from a chosen class. In particular, the CNM assumption

guarantees the existence of CNM regulation functions that

interpolate the data. Because of space limitation, we do not

demonstrate the interpolation step in this paper.
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