
Optimization of Human Generated Trajectories for Safety Controller Synthesis

Andrew K. Winn and A. Agung Julius

Abstract—The aim of the optimal safety controller synthesis
problem is to synthesize a feedback controller that results in
closed-loop trajectories that meet certain criteria, namely, the
state or output trajectories terminate in a goal set without
entering an unsafe set while optimizing some function. Our
previous work presented a method for using finitely many
human generated trajectories to synthesize a non-optimal safety
controller. We propose a formal method for optimizing the human
generated trajectories used to synthesize the controller. Our
method is based on the calculus of variations, but is different from
other similar algorithms in that it uses a gradient descent based
approach to directly solve the optimization problem without
formulating the optimality conditions given by the Pontryagin
Minimum Principle. This method provides a tool for improving
the performance of a controller synthesized using the methods
outlined in our previous work. We present an example of
optimizing a human generated trajectory for a nonlinear system,
specifically a quadrotor, and quantify the improvements it is able
to generate.

Keywords: hybrid systems, optimization, optimization algo-
rithms.

I. INTRODUCTION

Safety controller synthesis in this paper refers to the prob-

lem of designing a controller that ensures that:

(A1) the execution trajectories of the closed-loop system do

not enter a prescribed Unsafe set, and

(A2) these execution trajectories terminate in a prescribed Goal

set.

This problem is thus tightly related to the concept of

safety/reachability analysis. The results presented in this paper

are related to the trajectory-based approach in safety con-

troller synthesis. The key concept here is the assessment of

safety/reachability based on the execution trajectories of the

system, or the simulations thereof. To generalize the safety

property of a simulated execution trajectory to a compact

neighborhood around it, we use the concept of trajectory

robustness [1], [2] or incremental stability [3], [4]. Roughly

speaking, these properties can provide us with a bound on the

divergence of the trajectories (i.e. their relative distances in

L∞). The main conceptual tool that is used in this approach,

the approximate bisimulation, was developed by Girard and

Pappas [5], and has been used for trajectory based analysis of

hybrid systems in [6], [7], [8].

Our approach in using approximate bisimulation in safety

controller synthesis differs from others in the following sense.

In [3], [4], [9], the notion of approximate bisimulation is

established for incrementally stable systems. Then, it is pos-

sible to quantize the continuous state space, which results in

a countable transition system approximation of the original

Andrew Winn and Agung Julius are with the Department of Electrical,
Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy,
NY 12180, Email: winna@rpi.edu,agung@ecse.rpi.edu.

dynamics. Later works by Tabuada et al relax the incremental

stability assumption by achieving it using backstepping con-

troller design [10], or replacing it with incremental forward

completeness [11]. A recent work by Colombo and Del

Vecchio [12] also uses similar approach in designing safety

controller for differentially flat systems. In our approach, the

controller is synthesized using finitely many valid human-

generated trajectories [2], [13]. Also, we do not require the

open loop dynamics to have incremental stability property.

Instead, a part of the controller synthesis procedure is devoted

to establishing this property.

In the current paper, we extend our previous work [2], [13]

by adding a performance objective to the safety control prob-

lem. We seek to optimize a cost function while maintaining the

safety aspects, (A1) and (A2), above. We term this problem

the optimal safety control problem. For hybrid systems, opti-

mal control has been investigated by numerous researchers.

For example, Hedlund and Rantzer extended the dynamic

programming approach to hybrid systems [14], [15]. Xu and

Antsaklis solved the problem of switching time optimization in

hybrid systems by posing it as a finite-dimensional nonlinear

optimization with the switching time as the variables [16],

[17]. A recent work by Girard solved a time optimal control

problem for switched systems with an abstraction generated

by using approximate bisimulation [18]. Our approach differs

from the existing ones in that we use the human generated

trajectories as seeds in the optimization process. Subsequently,

we morph the human generated trajectories using a gradient

descent algorithm along a functional derivative of the cost

function.

II. PROBLEM FORMULATION

Consider a (possibly nonlinear) dynamical system

ẋ = f(x, u), x ∈ R
n, u ∈ R

m, (1)

where the function f(x, u) is locally Lipschitz in x and

continuous in u. Suppose that there is a given compact set of

initial states Init ⊂ R
n, where the state is initiated at t = 0,

i.e. x(0) ∈ Init. Also, we assume that there is a set of goal

states, Goal ⊂ R
n, and a set of unsafe states Unsafe ⊂ R

n.

A trajectory is deemed unsafe if it enters the unsafe set.

In [2], [13] we solve the safety controller synthesis problem

by first finding a feedback controller that bounds the deviation

between two system trajectories generated using the same in-

put reference signal but initiated from two different states. This

deviation defines a tube around a given trajectory that we shall

denote as the robustness tube. The robustness radius denotes

the largest tube around a trajectory for which the tube does

not intersect Unsafe, and the final state for every trajectory

within the tube terminates in Goal. We next have humans

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0176-0/$31.00 ©2013 AACC 4380

generate valid nominal trajectories such that the robustness

tubes around the initial states of the trajectories cover Init.

The resulting controller consists of determining the nominal

trajectory for which the initial state is within the trajectories

robustness tube, and applying the corresponding input, along

with the feedback that guarantees trajectory robustness. In the

ensuing analysis we aim to optimize these nominal trajectories

such that the nominal robustness radius is maintained.

The optimal safety control problem can be formulated as

choosing the input function u(t) to minimize the cost function

given by

J(u) , G(x(T)) +

∫ T

0

g(x(τ), u(τ)) dτ, (2)

subject to (1) and

x(0) = x0 ∈ Init, (3)

x(T) ∈ Goal, (4)

x(t) /∈ Unsafe, ∀t ∈ [0, T] (5)

Our goal is to synthesize a controller that solves this

problem for every x0 ∈ Init. Any trajectory (not necessarily

optimal) that satisfies the conditions (3) - (5) is called a valid

trajectory.

Remark 1: Notice that although the optimal safety control

problem as defined above is not formulated for hybrid systems,

a similar problem for hybrid systems can be reduced to the

above format by following the procedure that is outlined in our

earlier papers [1], [2]. Specifically, given a safety controller

for a hybrid system that uses a set of nominal trajectories,

our method would then allow the designer to optimize each

continuous state trajectory that drives the system from one

discrete state to the next.

III. TECHNICAL APPROACH

For an initial condition x0 ∈ Init, suppose that we can gen-

erate a valid trajectory from a human subject. This trajectory

corresponds to an input signal u0 : [0, T] → R
m, which is

generated by the human.

Notation 1: ξτ (u) is the state trajectory at time τ with initial

state x(0) = x0, under input signal u(·).
We term the trajectory ξ·(u0) the nominal trajectory for the

initial condition x0. Since we assume that this trajectory is

valid, it satisfies the constraints (3) - (5). However, for the

initial state x0, the nominal trajectory in general will not be

the optimal one w.r.t. the cost function (2). Subsequently, we

alter the input signal to optimize the cost while maintaining

the validity of the trajectory.

Remark 2: We are interested in improving a set of nominal

trajectories that cover Init relative to some cost function

J(u). As such, we will not optimize the trajectories over the

initial condition x0, since this may compromise the coverage

property of our solution. Furthermore, the optimized trajectory

will need to maintain some minimum robustness radius to

guarantee coverage; to this end, we bloat the unsafe set to

constrain the resulting trajectory to meet this bound. A similar

idea was used in [19]. This idea is illustrated in Figure 1.

Goal

Init

nominal trajectory

optimized trajectory

Unsafe

x0

Fig. 1: The nominal trajectory is a valid trajectory that is

obtained from a human subject. This is not necessarily optimal.

We further optimize the trajectory using gradient descent

method along the functional derivative of the cost function

in the input signal space.

A. Computation of the Functional Derivative

Our optimization method is based on a gradient descent

algorithm along the functional derivative of the cost function

J(u) in the input signal space. In this section, we will ignore

the safety constraints in the optimal control problem. Later, in

Section IV, we will discuss how we can handle the constraints

by modifying the cost function.

Consider again the scalar cost function in (2), where we

make use of Notation 1:

J(u) = G(ξT (u)) +

∫ T

0

g(ξτ (u), u(τ)) dτ.

We want to compute the functional derivative1

(Frechet/Gateaux derivative) of J at a given input signal u(t)
in the direction v(t) (see e.g. [20]).

dJ(u; v) , lim
δ→0

J(u+ δv)− J(u)

δ
. (6)

This derivative can be written as a scalar valued linear func-

tional of v, as follows:

dJ(u; v) , 〈q, v〉 ,

∫ T

0

q(τ)v(τ) dτ, (7)

where q(·) is an R
1×m-valued function that acts as the gradient

of J in the function space of u(·).
For brevity, We use the following notations

û,u+δv, ∂G(T)
∂x

, ∂G
∂x |ξT (u)

f(τ),g(ξτ (u),u(τ)),
∂g(τ)
∂x

, ∂g
∂x |(ξτ (u),u(τ))

∈R
1×n,

ĝ(τ),g(ξτ (û),û(τ)),
∂g(τ)
∂u

, ∂g
∂u |(ξτ (u),u(τ))

∈R
1×m,

f(τ),f(ξτ(u),u(τ)),
∂f(s)
∂x

, ∂f
∂x |(ξs(u),u(s))

∈R
n×n,

f̂(τ),f(ξτ(û),û(τ)),
∂f(s)
∂u

, ∂f
∂u |(ξs(u),u(s))

∈R
n×m.

The Taylor series expansion of ĝ(τ) at g(τ) and G(ξT (û)) at

ξT (u) is given by:

ĝ(τ) = g(τ) +
∂g(τ)

∂x
dξτ (u; v)δ +

∂g(τ)

∂u
v(τ)δ + o(δ), (8)

G(ξT (û)) = G(ξT (u)) + δ
∂G(T)

∂x
dξT (u; v) + o(δ). (9)

1We assume that the cost function and the dynamics are such that the
functional derivative exists.

4381

where dξτ (u; v) is the functional derivative of ξτ (u) with

respect to the input signal u(t). Hence,

dJ(u; v) =
∂G(T)

∂x
dξT (u; v)+

∫ T

0

(

∂g(τ)

∂x
dξτ (u; v) +

∂g(τ)

∂u
v(τ)

)

dτ. (10)

Suppose that

dξτ (u; v) = 〈pτ , v〉 =

∫ τ

0

pτ (s)v(s) ds, (11)

where pτ (t) is an R
n×m-valued function, which is nonzero

only if τ ≥ t. Then, we can obtain

dJ(u; v) =

∫ T

0

∂G(T)

∂x
pT (s)v(s) ds+

∫ T

0

(

∫ T

s

∂g(τ)

∂x
pτ (s) dτ

)

v(s)ds+

∫ T

0

∂g(τ)

∂u
v(τ) dτ.

(12)

Therefore,

q(t) =
∂G(T)

∂x
pT (t) +

∂g(t)

∂u
+

∫ T

t

∂g(τ)

∂x
pτ (t) dτ. (13)

Equation (13) suggests that we need to compute the func-

tional derivative pτ (t), in order to compute q(t). Observe that

dξτ (u; v) = lim
δ→0

1

δ

∫ τ

0

(

f̂(s)− f(s)
)

ds. (14)

Since

f̂(s)− f(s) =
∂f(s)

∂x
dξs(u; v) · δ +

∂f(s)

∂u
v(s) · δ + o(δ),

(15)

it follows that

dξτ (u; v) =

∫ τ

0

(

∂f(s)

∂x
dξs(u; v) +

∂f(s)

∂u
v(s)

)

ds. (16)

Combining (11) and (16), we obtain

pτ (t) =
∂f(t)

∂u
+

∫ τ

t

∂f(s)

∂x
ps(t) ds. (17)

We observe from (13) that q(t) can be written as

q(t) =
∂G(T)

∂x
pT (t) +

∂g(t)

∂u
+ q̂(t), (18)

where

q̂(t) ,

∫ T

t

∂g(τ)

∂x
pτ (t) dτ. (19)

We shall see that both q̂(t) and pT (t) can be computed as

state trajectories of a Linear Time Varying (LTV) system.

For each t, we define two new variables:

ξt(s) ,

∫ s

t

∂g(τ)

∂x
pτ (t) dτ ∈ R

1×m, (20)

ηt(s) , ps(t) ∈ R
n×m. (21)

Observe that these two variables satisfy the boundary (or

initial) conditions

ξt(t) = 0, ηt(t) =
∂f(t)

∂u
. (22)

Moreover, we also have

dξt(s)

ds
=

∂g(s)

∂x
ps(t) =

∂g(s)

∂x
ηt(s),

dηt(s)

ds
=

∂f(s)

∂x
ps(t) =

∂f(s)

∂x
ηt(s).

Therefore, ξt and ηt form an LTV system

d

ds

[

ξt
ηt

]

=

[

0 ∂g(s)
∂x

0 ∂f(s)
∂x

]

[

ξt
ηt

]

. (23)

Solving this LTV system with initial condition (22), we can

obtain both q̂(t) and pT (t), which are given by

q̂(t) = ξt(T), pT (t) = ηt(T). (24)

B. Gradient Descent Algorithm

The gradient descent algorithm that we use is the standard

gradient descent algorithm with an adaptive step size. This

method is not unlike the iterative techniques presented in [21].

Note that if we are not at a local minimum, the cost is guar-

anteed to decrease along the functional derivative for a small

enough step size, and if we are at a local minimum, then the

cost will not decrease, and we have converged. The initial iter-

ation is seeded with the human generated input. The algorithm

we used can be represented as

1: Generate initial trajectory ξτ (ui)
2: while λ > ǫ do

3: Generate q(τ) from ξτ (ui) and ui(τ)
4: Generate next iteration’s input ui+1(τ) = ui − λq(τ)
5: Generate next iteration’s trajectory ξτ (ui+1)
6: Calculate cost J(ξτ (ui+1), ui+1)
7: if J(ξτ (ui+1), ui+1) < J(ξτ (ui+1), ui) then

8: λ = αλ, α > 1
9: else

10: λ = βλ, 0 < β < 1
11: end if

12: i = i+ 1
13: end while

C. Remarks About the Technical Approach

Trajectory optimization is an active research area. Earlier

advances in this field were made in 1960’s, with applications

in the aeronautics and space flight (see the survey paper [22]).

The approach that we outline in this section differs from some

of the common ones. In the following, we present some (non-

exhaustive) comparison.

There are many trajectory optimization methods that are

based on the idea of converting the infinite-dimensional opti-

mization problem into a finite-dimensional nonlinear optimiza-

tion problem ([22], [23]). This can be done, for example by

approximating the continuous-time model with a discrete-time

one. Another approach is to constrain the (input or state or

4382

output) trajectories in a finite dimensional space, which can

be represented with finitely many parameters. For example,

splines or other basis functions can be used. This is an

attractive option, especially if the output or state trajectories

can be arbitrarily chosen in this space, such as the case of

differentially flat systems [24], [25], [26], [27].

Another class of methods is based on (random) sampling of

the state space to seek the optimal solution. Examples of this

family are the Rapidly exploring Random Trees (RRT) based

methods (see e.g. [28], [29], [30]).

For discrete-time hybrid systems, optimal control has also

been addressed in the context of model predictive control [31],

[32], [33].

The most common approach in directly solving the optimal

control problem as infinite-dimensional optimization problem

is by using the calculus of variation [20], [21]. Necessary (lo-

cal) condition for optimality is given the Pontryagin Minimum

Principle (PMP) [22], [25]. In many cases, the PMP results

in a two point boundary value problem (TPBVP). To find the

optimal solution, we need to solve the TPBVP, for which there

are various numerical techniques (see survey in [22]).

Our approach is also based on the calculus of variation.

However, instead of formulating the optimality condition using

Lagrange multipliers (i.e. PMP), we directly substitute the

constraint into the optimization problem, and apply a gradient

descent algorithm on the resulting unconstrained problem. As

is the case with any PMP based method, upon convergence of

the gradient descent algorithm, we can only guarantee local

optimality. However, because of the nature of the gradient

descent approach, we can guarantee that any solution to which

we converge is better than the (human generated) nominal

trajectory2. In fact, the same holds for any interim solution

prior to convergence.

IV. ILLUSTRATIVE EXAMPLE

A. Setup

For this example, we generate the nominal trajectories using

a joystick on a simulation of the system. As such, the input

signal to be a stepwise function of time, i.e., u(t) = u[k] for

kTs ≤ t < (k + 1)Ts. This transforms (11) to be

dξkTs
(u; v) =

k−1
∑

j=0

(

∫ (j+1)Ts

jTs

pkTs
(s)ds

)

v[j]. (25)

In light of this, we define our cost function to be one that

only applies to sampled states with a sampling time Ts, that

2We assume that the human generated trajectory is not optimal to begin
with.

is,

J(u, v) = G(ξNTs
(u)) +

N
∑

k=0

g(ξkTs
(u), u[k]) (26)

dJ(u; v) =
∂G(NTs)

∂x
dξNTs

(u; v)+

N
∑

k=0

(

∂g(kTs)

∂x
dξkTs

(u; v) +
∂g(kTs)

∂u
v[k])

)

, (27)

where the index NTs represents the terminal time.

Although our implementation becomes a finite-dimensional

nonlinear program, it is distinguished from the methods pre-

sented in [22] in that we do not approximate the system

dynamics with a discrete time model. For brevity we define

ρk[j] ,

∫ (j+1)Ts

jTs

pkTs
(s)ds. (28)

From (27) and (25) we find that the functional derivative of

the cost is given by dJ(u; v) = 〈q, v〉 where

q[j] = ∂G(NTs)
∂x

ρN [j]+
∑N

k=j

∂g(kTs)
∂x

ρk[j]+
∂g(jTs)

∂u
. (29)

We still require a method to calculate ρk[j]. To this end, we

define a new function,

βt(τ) =

∫ τ

t

pτ (s)ds. (30)

If we differentiate both sides with respect to τ and combine

it with (17) and (22) we find that

∂βt(τ)

∂τ
=

∂f(τ)

∂u
+

∂f(τ)

∂x
βt(τ). (31)

Since this is a linear time-varying system, we can represent β
at the sample times explicitly as

βjTs
((k + 1)Ts) = Φ((k + 1)Ts, kTs)βjTs

(kTs) +

Γ((k + 1)Ts, kTs)), (32)

where Φ(·, ·) can be interpreted as a state transition matrix,

∂Φ(τ, kTs)

∂τ
=

∂f(τ)

∂x
Φ(τ, kTs), (33)

∂Γ(τ, kTs)

∂τ
=

∂f(τ)

∂u
+

∂f(τ)

∂x
Γ(τ, kTs), (34)

with initial conditions

Φ(kTs, kTs) = I, Γ(kTs, kTs) = 0. (35)

Noting from (30) that βt(t) = 0 and using (32), we find that

ρj+1[j] = Γ(((j + 1)Ts, jTs,) (36)

ρk[j] = Φ((k + 1)Ts, kTs)ρk−1[j]. (37)

Thus, to find the gradient to use in our update law we use an

ODE solver to simultaneously simulate the dynamics of the

system as well as the two first order initial value problems

defined by (33)–(35) over each sample time period for the

input signal of the current iteration. The next iterations input

signal is then generated by

ui+1[j] = ui[j]− λq[j], (38)

4383

since we now have all of the required values from (29).

Remark 3: If we denote the number of states in our system

as nx and the number of inputs as nu, then we see that

in general for each iteration we will need to solve nx (the

dynamics) + nx × nx (Φ) + nx × nu (Γ) first order ODEs.

In practice, many of the elements in Φ and Γ will have a

derivative of zero, and can be removed from the computation.

For example, in Section IV-B nx = 6 and nu = 2, yet we

only need to solve 33 first order ODEs, rather than 54. The

computation time will subsequently depend on the choice of

ODE solver (we used MATLAB’s ode23) and the number

of iterations, which is influenced by the method of gradient

descent and the terminating condition.

We consider the problem of finding an input initialized to

a human generated input that generates the trajectory with

minimal terminal time that maintains a distance d from Unsafe

and whose endpoint is in the interior of Goal and is at least a

distance d from the boundary of Goal. Further, we require the

input to be both upper and lower bounded by some value.

Without loss of generality we can inflate the boundary of

Unsafe by the distance d+ ǫd, shrink the boundary of Goal by

the distance d+ ǫg , shrink the input bounds by ǫi and discuss

trajectories that avoid the modified Unsafe and terminate in

the modified Goal while meeting the modified input bounds.

To this end, we introduce three cost functions. The first is a

cost applied to the end point of the trajectory that is zero inside

Goal and increases monotonically with the distance away from

Goal. The second cost is integrated along the trajectory, whose

value is zero outside and on the boundary of Unsafe and whose

value increases inside Unsafe monotonically as a function of

distance from the boundary. Finally, we introduce a cost on the

input, whose value is zero between the lower and upper bound

and whose value increases monotonically as a function of the

distance from the closer bound. If the algorithm converges

to some ǫ close to zero that is determined by ǫu, ǫg , and ǫi,
then the converged trajectory is guaranteed to be outside of

the original Unsafe by d, the trajectory terminates inside the

original Goal by d, and the optimal input meets the input

constraints.

Remark 4: Note that for this example, the cost function is

zero for all trajectories that have the desired robustness radius,

and positive otherwise. Thus, the optimization strategy is used

to change infeasible trajectories into feasible ones. To find the

minimum time, we use a bisection search over all terminal

times for the smallest one for which the truncated trajectory

can be made feasible.

B. Simulation for 2D Control of a Quadrotor

Consider the task of controlling a quadrotor over a hill into

some goal region on the other side constrained to fly below

some ceiling and with its vertical thrust upper bounded by

14.9 N and lower bounded by 0 N . This example is examined

in our previous paper [13] and is inspired by a similar one used

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16
Optimized Trajectories for Different Terminal Times

T = 3.62s

T = 3.11s

T = 2.60s

T = 2.10s

Goal

Unsafe

UnsafeInit

Robustness
Bounds

Fig. 2: Initial, optimal, and intermediate feasible trajectories

generated by the bisection method. The rectangle to the left

represents the initial states to be covered, and the results are

shown for only one of the nominal trajectories. The circles

about the initial point show the robustness bounds, and the

markers along the trajectories are evenly spaced to give a sense

of velocity along each trajectory.

in [34]. The dynamics of the system are given by
[

Ẍ
Ÿ
θ̈

]

=

[

µ(wX−Ẋ)−
u1
m

sin θ

µ(wY −Ẏ)+
u1
m

cos θ
u2

]

(39)

where [wX , wY]
T is the velocity vector for the wind, µ is a

friction coefficient, [X,Y]T is the position of the quadrotor,

and θ is the pitch of the quadrotor.

For this system, we take the cost function associated with

the input to be a quadratic function of the form

g input(u) =

{

u2
1 u1<0
0 0≤u1<14.9

(u1−14.9)2 u1≥14.9
. (40)

We choose for this example to have the trajectory maintain a

robustness radius of 1.0. We define ModGoal to be the goal

region shrunk by a distance of 1.0. For the cost associated

with the end point, the cost function was taken to be

G(x(T)) =
{

0 x(T)∈ModGoal

r2 x(T)/∈ModGoal
(41)

where r is the shortest distance between x(T) and ModGoal.

Regarding the unsafe regions, note that in this case there

are two of them, Unsafe1 and Unsafe2. The cost for a given

point on the trajectory with respect to Unsafei is given by

gUnsafei
(x(τ)) =

{

0 x(τ)/∈Unsafei, ri>d

− log(ri−d)+
ri−d

d
x(τ)/∈Unsafei, ri≤d

∞ x(τ)∈Unsafei

(42)

where ri is the shortest distance between x(τ) and Unsafei.
The results for a given human generated input are shown in

Figure 2. Although this initial trajectory is feasible, it appears

to overshoot the hill and work its way back to the goal set at

the end. This trajectory also maintains an undesirably small

buffer with the unsafe set—a distance of 0.22 in the scale of

4384

the figure. The optimization algorithm is run on this trajectory,

and resultant trajectories at several intermediate iterations of

the bisection method where are shown. The optimal trajectory

is 42% faster, satisfies input constraints, and maintains the

desired distances from the unsafe regions and the boundary of

the goal region.

V. CONCLUSION AND DISCUSSION

We present a method for optimizing a human generated tra-

jectory with respect to some cost function such that the aim of

the underlying safety controller synthesis problem is still met.

Our method uses calculus of variations, but is distinguished

from other similar approaches in that it uses a gradient descent

approach to directly solve the optimization problem without

formulating the optimality conditions given by the Pontryagin

Minimum Principle. This approach guarantees that a solution

generated by our method will be an improvement over the

human generated trajectory.

We present a method for implementing the algorithm on

a continuous nonlinear system with discrete input signal,

and provided an example of its application to a quadrotor

system. The constraints and the desired robustness bound

were included via appropriately chosen cost functions, and

the corresponding unconstrained system was minimized. The

trajectory of (locally) minimal terminal time was found by

using a bisection method to determine where to truncate the

nominal trajectory and determine if it is feasible.

VI. ACKNOWLEDGEMENTS

The research reported in this paper is partially supported

by the NSF through grant CAREER CNS-0953976 and the

Department of Defense SMART Scholarship.

REFERENCES

[1] A. A. Julius, “Trajectory-based controller design for hybrid systems with
affine continuous dynamics,” in Proc. IEEE Conf. Automation Science

and Engineering, Toronto, Canada, 2010, pp. 1007–1012.
[2] A. A. Julius and S. Afshari, “Using computer games for hybrid systems

controller synthesis,” in Proc. 49th IEEE Conf. Decision and Control,
Atlanta, Georgia, 2010, pp. 5887–5892.

[3] P. Tabuada, “An approximate simulation approach to symbolic control,”
IEEE Trans. Automatic Control, vol. 53, no. 6, pp. 1406–1418, 2008.

[4] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10, pp.
2508–2516, 2008.

[5] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE Trans. Automatic Control, vol. 52, no. 5, pp.
782–798, 2007.

[6] A. G. and G. J. Pappas, “Verification using simulation,” in Hybrid

Systems: Computation and Control, ser. LNCS, vol. 3927. Springer
Verlag, 2006, pp. 272–286.

[7] A. A. Julius, G. Fainekos, M. Anand, I. Lee, and G. J. Pappas, “Robust
test generation and coverage for hybrid systems,” in Hybrid Systems:

Computation and Control, ser. LNCS, vol. 4416. Springer Verlag,
2007, pp. 329–342.

[8] F. Lerda, J. Kapinski, E. M. Clarke, and B. H. Krogh, “Verification
of supervisory control software using state proximity and merging,” in
Hybrid Systems: Computation and Control, ser. LNCS, vol. 4981, 2008,
pp. 344–357.

[9] J. Camara, A. Girard, and G. Goessler, “Safety controller synthesis for
switched systems using multi-scale symbolic models,” in Proc. IEEE

Conf. Decision and Control, Orlando, Florida, 2011.

[10] M. Zamani and P. Tabuada, “Backstepping design for incremental
stability,” IEEE Trans. Automatic Control, vol. 56, no. 9, 2011.

[11] M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada, “Symbolic models for
nonlinear control systems without stability assumptions,” IEEE Trans.

Automatic Control, vol. 57, no. 7, pp. 1804–1809, 2012.
[12] A. Colombo and D. Del Vecchio, “Supervisory control of differentially

flat systems based on abstraction,” in Proc. IEEE Conf. Decision and

Control, Orlando, Florida., 2011.
[13] A. A. Julius and A. K. Winn, “Safety controller synthesis using human

generated trajectories: Nonlinear dynamics with feedback linearization
and differential flatness,” in Proc. American Control Conference, Mon-
treal, Canada., 2012.

[14] S. Hedlund and A. Rantzer, “Optimal control of hybrid systems,” in
Proc. IEEE Conf. Decision and Control, 1999.

[15] S. H. and A. Rantzer, “Convex dynamic programming for hybrid
systems,” IEEE Trans. Automatic Control, vol. 47, no. 9, pp. 1536–1540,
2002.

[16] X. Xu and P. Antsaklis, “Optimal control of switched autonomous
systems,” in Proc. IEEE Conf. Decision and Control, 2002.

[17] X. X. and Panos Antsaklis, “Results and perspectives on computational
methods for optimal control of switched systems,” in Hybrid Systems:

Computation and Control, ser. LNCS, vol. 2623. Springer, 2003, pp.
540–555.

[18] A. Girard, “Synthesis using approximately bisimilar abstractions: time-
optimal control problems,” in Proc. IEEE Conf. Decision and Control,
Atlanta, Georgia., 2010, pp. 5893 – 5898.

[19] A. Girard, A. A. Julius, and G. J. Pappas, “Approximate simulation
relations for hybrid systems,” Int. J. Discrete Event Dynamic Systems,
vol. 18, pp. 163–179, 2008.

[20] D. G. Luenberger, Optimization by Vector Space Methods. New York,
NY: Wiley-Interscience, 1969.

[21] D. E. Kirk, Optimal Control Theory. Dover Publications Inc., 1970.
[22] J. T. Betts, “Survey of numerical methods for trajectory optimization,”

Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–
207, 1998.

[23] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.
[24] M. J. van Nieuwstadt and R. M. Murray, “Real-time trajectory generation

for differentially flat systems,” Int. Journal of Robust and Nonlinear

Control, vol. 8, no. 11, pp. 995 – 1020, 1998.
[25] M. B. Milam, “Real-time optimal trajectory generation for constrained

dynamical systems,” Ph.D. dissertation, California Institute of Technol-
ogy, 2003.

[26] I. M. Ross and F. Fahroo, “Pseudospectral methods for optimal motion
planning of differentially flat systems,” IEEE Trans. Automatic Control,
vol. 49, no. 8, pp. 1410–1413, 2004.

[27] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE. Trans. Robotics,
vol. 21, pp. 1077–1091, 2005.

[28] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan, “RRTs for
nonlinear, discrete, and hybrid planning and control,” in Proc. IEEE

Conf. Decision and Control, Hawaii, USA, 2003.
[29] A. Bhatia and E. Frazzoli, “Incremental search methods for reachability

analysis of continuous and hybrid systems,” in Hybrid Systems: Compu-

tation and Control, ser. LNCS, vol. 2993. Springer, 2004, pp. 142–256.
[30] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. Journal of Robotics Research, vol. 30, pp. 846–
894, 2011.

[31] A. Bemporad, F. Borrelli, and M. Morari, “Model predictive control
based on linear programming the explicit solution,” Automatic Control,

IEEE Transactions on, vol. 47, no. 12, pp. 1974 – 1985, dec 2002.
[32] F. Borrelli, M. Baoti, A. Bemporad, and M. Morari,

“Dynamic programming for constrained optimal control of
discrete-time linear hybrid systems,” Automatica, vol. 41,
no. 10, pp. 1709 – 1721, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109805001524

[33] A. Bemporad and S. Di Cairano, “Model-predictive control of discrete
hybrid stochastic automata,” Automatic Control, IEEE Transactions on,
vol. 56, no. 6, pp. 1307 –1321, june 2011.

[34] A. Donze, B. Krogh, and A. Rajhans, “Parameter synthesis for hybrid
systems with an application to Simulink models,” in Hybrid Systems:

Computation and Control, ser. LNCS, vol. 5469. Springer, 2009, pp.
165–179.

4385

