arXiv:1603.02650v1 [cs.SY] 8 Mar 2016

An MILP Approach for Real-time Optimal Controller Synthesis

with Metric Temporal Logic Specifications

Sayan Saha and A. Agung Julius

Abstract

The fundamental idea of this work is to synthesize reactive controllers such that closed-loop execution trajectories of the
system satisfy desired specifications that ensure correct system behaviors, while optimizing a desired performance criteria. In our
approach, the correctness of a system’s behavior can be defined according to the system’s relation to the environment, for example,
the output trajectories of the system terminate in a goal set without entering an unsafe set. Using Metric Temporal Logic (MTL)
specifications we can further capture complex system behaviors and timing requirements, such as the output trajectories must pass
through a number of way-points within a certain time frame before terminating in the goal set. Given a Mixed Logical Dynamical
(MLD) system and system specifications in terms of MTL formula or simpler reach-avoid specifications, our goal is to find a
closed-loop trajectory that satisfies the specifications, in non-deterministic environments. Using an MILP framework we search
over the space of input signals to obtain such valid trajectories of the system, by adding constraints to satisfy the MTL formula
only when necessary, to avoid the exponential complexity of solving MILP problems. We also present experimental results for
planning a path for a mobile robot through a dynamically changing environment with a desired task specification.

Keywords: temporal logic, reactive controller, mixed integer linear programming.

I. INTRODUCTION

At a high level, we synthesize a controller, by optimizing a desired cost function that provides inputs to a system, such that
the behavior of the output satisfies some given requirements, such as the system avoids some unsafe behaviors and eventually
terminates at some desired safe conditions. In recent years, a lot of attention has been given to temporal logic constraints,
which have been used extensively for expressing reach-avoid specifications, safety requirements, and sequencing of tasks to be
performed. These allow the designer to specify time-dependent constraints; for example, we may require that some property
will eventually hold, or that some property holds until some other property is true. Using temporal logics allows much greater
expressivity in defining desired system behaviors than their non-temporal counterparts, but at the cost of additional difficulty
in satisfying the constraints.

A common approach to synthesize controllers to satisfy Linear Temporal Logic (LTL) properties is to create a finite abstraction
model of the dynamical system which can be then used to synthesize controllers using an automata-based approach [1]], [2],
[3l], [4]. This approach, however, results in high computational complexity due to quantization of the finite abstraction model
and the size of the automaton may also be exponential in the length of the specification. In [3] the authors focus on coarse
abstractions of the state-space to alleviate the increasing complexity problems as state-space dimension increases and also
synthesize controllers for satisfying reactive tasks. A fine abstraction model for systems with complex dynamics is presented
in [6] to synthesize reactive controllers by planning paths for a finite horizon, at the cost of completeness of the approach. Path
planning using iterative sampling-based approach, while optimizing a certain cost and guaranteeing temporal logic specifications
are presented in [7], [8]]. Recently, researchers have been using mixed integer-linear programming to solve an optimal control
problem by encoding LTL specifications [9], [[1O], [11]], Metric Temporal Logic (MTL) specifications [12]], and Signal Temporal
Logic (STL) specifications [13]] as mixed integer-linear constraints on the optimization variables. Reactive controller synthesis
satisfying temporal logic specifications using receding horizon control has been considered in [14], [15], [16].

In this paper we consider MTL specifications, which augment the temporal operators with a metric interval or time bounds
over which the operator is required to hold [[17], [18]], [19]. We consider the task of determining an input signal for a Mixed
Logical Dynamical (MLD) system such that the system’s output satisfies a given MTL specification. We address this problem
by casting it as a Mixed Integer Linear Program (MILP). This concept has been previously applied by [13]], [16] by encoding
an STL specification ¢ in terms of an MILP, where a variable is associated with each time step and predicate, indicating the
degree by which that predicate is satisfied by the associated output trajectory point of the system. The temporal operators and
logical operators in the given specification are then broken down into a set of boolean operators, each of which are assigned
a boolean variable along with a set of constraints that guarantee the variable is true when the boolean operator is satisfied,
and the boolean variable is false when the operator is not satisfied. In all, this formulation introduces O(N - |¢|) boolean
variables and constraints, where |¢| denotes the number of operators in the STL specification and N is the horizon length
over which the input signal is to be determined. We expect that linearly increasing the length of the trajectory or length of the
STL specification will cause the time-complexity to grow exponentially since solving a MILP is exponential in the number of
binary decision variables in the worst-case scenario [20]. This can quickly render the MILP intractable even for the relatively

Both the authors are with the Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, Email:
sahas3, julia2@rpi.edu.

small problems. This paper is motivated to circumvent this issue, such that the controller synthesis problem can be solved in
real-time and can be applied in practical applications of robot motion path planning with temporal specifications. We propose
a method whereby we dynamically identify the critical time-points over the simulation horizon, where the system trajectory
violates the given MTL specifications most and introduce boolean variables and constraints only for those critical time-points
iteratively and resolve the problem till the system trajectory satisfies the specification. This leads to a much smaller MILP
problem to be solved leading to a significant reduction in the time required to generate the input signal. This approach is very
closely related to the formulation presented in [21] for generating trajectories to avoid obstacles. We show the effectiveness
of our algorithm by running experiments on a m3pi robot to plan a trajectory through a dynamically changing environment in
real-time, so as to not hit any obstacles and reach a desired location within a given time limit.

II. PRELIMINARIES

We consider discrete-time systems of the form
Tp1 = F(xk, uk), 1)

where, z;, € X C R™ x{0,1}"™ are the continuous and binary/logical states, and u, € U C R™e x {0, 1}™ are the continuous
and binary/logical control inputs at the time indices £ = 0, 1,.... We denote the system trajectory at time index k under the
control input u* = {uy, ug, - - ,u;} starting from a given initial condition zq € X, by z(u*) = {xg, 1, -+ , 21 }. This system
model provides a set of constraints for the optimization procedure, such that at any time index & the resulting trajectory z(u*)
satisfies the system dynamics given in (I)). These constraints can be easily formulated in terms of mixed integer-linear program
if the system under consideration belongs to the class of mixed-logical dynamical systems [22], that includes linear hybrid
systems, constrained or unconstrained linear systems, piece-wise affine systems. Differentially flat and feedback linearizable
systems [23]], [24] can also be considered if the temporal logic specifications are in terms of the flat and observable outputs
respectively.

An MTL formula is a formal language, that can be used to express desired properties that a system must satisfy with certain
timing requirements. We consider the temporal operators eventually (O(z)), always (Ojz)) and until (U|z)), and logical operators,
such as, conjunction (M), disjunction (V), negation (—), and implication (—), that can be used to combine atomic propositions
to form the MTL formula. We associate a set O(p) C X’ with each atomic proposition p, such that p is true at time index k
if and only if x, € O(p).

For example, using MTL one can easily express a desired system behavior that “the system trajectory should never enter
some unsafe set O(Pynsase) and terminate in some desired set O(pgoa1) within time ¢35 to t4 and should pass through the set
O(pw) within the time frame ¢; to ¢5 and must stay in O(pyy) once the trajectory enters it for s units of time” as

¢ = U-Ppunsate N <>[t3,t4]pGoal A O[tl,tQ]D[O,s]pW~

Definition 1. We define a system trajectory that satisfies the dynamics given in (I) to be an (in)feasible trajectory if it
(falsifies)satisfies the given MTL specification.

The robustness measure, pg of a system trajectory defines how robustly a system trajectory satisfies or falsifies the given
MTL specification. The measure takes positive values if the trajectory satisfies the specification, and negative values otherwise.
Intuitively, the robustness degree of an (in)feasible trajectory z:(u*) is the largest distance that we can independently perturb
the points along the trajectory and maintain (in)feasibility. This defines a tube around the original trajectory such that any
trajectory within this tube is guaranteed to satisfy (or falsify) the specification.

This concept is demonstrated in Fig. |1} In this figure we consider the MTL specification

¢" = Oitg,t2)7p8 A O rypa,

which states that between times ¢y and ¢, the trajectory should avoid the set 3 and at time T the trajectory is in set .A. Two
trajectories are shown:

x(u}) an infeasible trajectory;

r(uk) a feasible trajectory.
Note that the trajectory x(uf) has a large negative robustness, denoted by p}ﬁ, and determined by the distance between the
trajectory at time to, i.e., Tk, (k; represents the time index corresponding to the time ¢), and the boundary of the predicate
B. We call this time to the crifical time and the predicate B the critical predicate. By moving the critical point xy, on the
trajectory by any amount greater than this distance, we can push it outside of B in order to satisfy the specification. Analogously,
trajectory z(uk) has a smaller positive robustness, denoted by pi, and determined by the distance between the trajectory at
time ¢; and the boundary of the predicate B. This is because the trajectory at ¢; is closest to falsifying the specification, and
would need to be moved by at least this amount in order to do so.

The tool TaLiRo [25] can be used to calculate the robustness, critical time, and critical predicate for a trajectory and
MTL specification. The latter two values will be used to determine which constraints to add at each iteration of our method,
presented in Section

x(uf): ph, <0
tz/\
7 T

Figure 1. Illustration of robustness degree for MTL specification.

Finally, we assume that the set O(p) associated with each predicate p is polyhedral, defined by f faces. In this case, we
can represent the set of points in the set uniquely by O(p) = {z | Az <b, A € R/*" n =n.+mn;, bec RS}, with rows of
A normalized to unit vectors. Further, we assume the MTL formula is expressed in negation normal form, which requires that
the formula be transformed such that all negations, —, only appear immediately before a predicate. If we require predicate p to
be true at time index k, that is, the trajectory at time index k has to be in O(p), then we can represent this via the constraints

This requires the trajectory point xzj to lie in the intersection of all of the half-spaces of the faces of the predicate set O(p),
which by definition is polyhedron.

Conversely, if we require predicate p to be false at time index k, that is, the trajectory at time k is not in O(p), then we
can represent this via the constraints using the big-M formulation method by introducing a new binary decision vector z as

Az + Mz>b M eR,, z€{0,1}7, (3)
Som<f-1,)
[

where M is a value large enough to make the corresponding constraint hold for any allowable value of x. This requires the
point z, to lie outside of at least one half-space defining the polyhedron, which is both necessary and sufficient for the point
x, to lie outside of the polyhedron.

III. CONTROLLER SYNTHESIS

Problem 2. Given an MLD system of the form (), initial state xy € X, trajectory length N, correct system behavior defined
in terms of an MTL specification ¢, a desired robustness measure pg and a performance objective J, find

argmin J(z(u),u)
ulv

subject to py(x(ulV)) > pi.

We propose a heuristic approach given in Algorithm [I]to solve the controller synthesis problem. The basic idea is to run the
MILP first with only the system dynamic constraints (i.e. without MTL constraints). This formulation only contains boolean
variables associated with the system dynamics in (I). If the MTL constraints are already satisfied, then we are done. Otherwise,
we find the point that in some sense corresponds to the largest violation of the specification, and require this point to satisfy
the corresponding predicate, and repeat. If the point is required to lie inside the polyhedron, then only the linear constraints
(@) need to be added. If the point is required to lie outside of the polyhedron, then the f binary variables z and the linear
constraints (3) need to be added. However, note that the solution of the MILP problem can satisfy the constraints given by (2)
or (3)) at equality and hence the resulting system trajectory though a feasible one, will have robustness measure p¢(at(uN)) > 0.
Hence, in order to obtain a system trajectory with a desired robustness measure pg, we resize the predicate sets O(p) by pﬂf).
If the predicate p is such that it is a safe (unsafe) predicate, or in other words, the system can (never) visit the predicate, we
shrink (bloat) the size of the predicate such that the new predicate set is given by

@(p) = {ac | Az < lN)}, b= b:l:pilf, (5)

where, 1 is a column vector of ones of size f. Identifying the safe and unsafe predicates can be done easily by parsing
through the given MTL specification and marking the predicates with a negation (—) in front of them to be unsafe and the rest
to be safe predicates.

The motivating idea behind this approach is that we do not require to put the constraints given by (2)-(3) at every time
points of the trajectory; constraining only a few critical time points will result in the whole system trajectory to satisfy the
MTL specifications in most cases. For instance (see Fig. , if we want the infeasible trajectory z(u¥) to satisfy the MTL
specification ¢’ we first identify that the critical time and predicate are the time ¢y and B respectively by running TaLiRo as
in Step 3 of Algorithm |l} The critical constraint corresponding to the time ¢y is then added to the MILP formulation, such
that the trajectory point at ¢y is now constrained to lie outside the critical predicate B and the new MILP is solved as in

Algorithm 1 Open Loop Controller Synthesis
1: Initialize MILP with continuous state and input variables and constraints enforcing the linear dynamics in

argmin J(z(u),u)
MILP-cur := u?
st zpg1 =F(zp,ug), z(u) = {z;}Y,

2: Solve MILP-cur
3: Run TaLiRo on resulting trajectory to determine robustness, critical time, and critical predicate.
4: while robustness < 0 do
5: if critical predicate is a safe predicate then
6:
MILP-cur,
MILP-cur :=
s.t. Axy, < b.
else
MILP-cur
st. Az + Mz2>0b
MILP-cur := kRt Mz 20,
Z Zg S f —1.
i
9: end if
10: Resolve MILP-cur
11: if MILP-cur is an infeasible problem then
12: Return “No feasible trajectory exists.”
13: else
14: Rerun TaLiRo
15: end if
16: end while
17: Return z(u™V), u’v
z(u}) z(uf,) to i ta x(uf)
to
\ t2/\ \/@\“ tz/\ T \/%\ T
< N\
A A A
(a) Initial infeasible trajectory x(u’f): (b) Infeasible solution trajectory (c) Feasible solution trajectory
critical constraint corresponds to t. x(u’f,) after solving the MILP first x(u’f,,) after solving the MILP
time: critical constraint corresponds to second time.
t1.

Figure 2. [Illustration of iterative addition of critical constraints in MILP formulation.

steps 5 and 6 of Algorithm [1} Assume, the solution of the MILP is z(u¥,). Since this resulting trajectory is still infeasible
as found in Step 7, we repeat the process once again by adding constraints corresponding to the time ¢;. After resolving the
newer MILP, assume we obtain the trajectory z(u¥,), which turned out to be a feasible trajectory and hence the Algorithm
terminates. Note that we only added constraints for two time instances and do not need to introduce the additional binary
variables associated with the trajectory point at time t2. The goal is to reduce the computation time by iteratively solving much
smaller MILPs, rather than the one large MILP.

However, iteratively adding critical constraints to the MILP problem in this way will result in an additional overhead in
terms of encoding the MILP problem each time a new constraint is added. To circumvent this issue, we introduce a new scalar
binary parameter o(; ;) for each predicate 7 and each time index j and modify the linear constraints given in and for

safe and unsafe predicates respectively as
A.’ﬂkd(.7k) S EO’(.JC), (6)
(Axy + MZ)O’(.JG) > ZN)O'(.JC).

Note that if o(.) = 0, then the constraint is trivially satisfied and hence relaxed. Only when o (. ;) = 1 the constraint is required
to hold. Using this modification, we encode the linear constraints for all the predicates at all the time indices k£ = {0,1,--- , N}

based on whether the predicate is safe and unsafe right at the beginning. We also set all {o(; ;)} to zero. Afterwards, as we
proceed through the steps of Algorithm |I} we set one of {o(; ;)} to 1 corresponding to the critical predicate and the critical
time for that iteration. In this way, we add the new constraints to the MILP problem iteratively without having to encode the
problem at each step.

In general, this method is not guaranteed to find a feasible solution if one exists, and is not guaranteed to return the optimal
trajectory, even if a feasible solution is found. However for a fragment of MTL specifications we have the following result.

Theorem 3. If the MTL specification consists of only conjunctions (A\) and the globally operator (O), then if Algorithm
finds a feasible trajectory then it is the optimal trajectory. If Algorithm [I| fails to find any feasible trajectory, then Problem 2]
is infeasible.

Proof: A full-scale optimization approach for solving Problem [2] with such MTL specifications will require constraints
given in either or to hold at all the time indices for all the predicates in the specification. Whereas, Algorithm |l|requires
only a subset of those constraints to hold. Let us denote the search-spaces explored in full-scale optimization and in the final
iteration of Algorithm [1|by U* and U’ respectively. Since, any feasible trajectory for the full-scale optimization problem is
also a feasible trajectory for Algorithm [1| we have that, U* C U’. Now, if Algorithm [I| returns a feasible solution optimal over
U’, it should also be a feasible solution in the U* space, according to construction of Algorithm [I} implying it is also the
optimal solution. However, if the MTL specification involves disjunction or other temporal operators that can be broken down
in terms of disjunction (either this holds or that holds), then not all feasible trajectories of full-scale optimization problem are
feasible for Algorithm [I] If some disjunction is the critical portion of the specification that defines the robustness, Algorithm [I]
will require the trajectory to satisfy one particular predicate in the disjunction, however the full-scale optimization will require
the trajectory to satisfy any of the predicates in the disjunction and hence U* ¢ U'. []

For our numerical examples, presented in Section [V| we consider the performance criteria

N
J =Y |diag(R)uxll; , (7)
k=1

to minimize the control effort, where diag(R) is a diagonal matrix consisting of the elements of the non-negative weighting
row-vector R. Introducing slack variables sy ;, with K =1,...,N, j =1,...,m, m = m.+my, the objective function can be
reformulated as

N
J = Ry, (8)
k=1
with an added set of constraints,
—Skj < Ukj < Skj)

where, u; denotes the j-th component of the control input uy, at time index k£, resulting in a linear optimization problem.
The trajectory length N depends on the bound of a bounded-time temporal specification (does not contain any unbounded
operator), which is computed to be the “maximum over the sums of all nested upper bounds on temporal operators™ [13].

IV. REACTIVE CONTROLLER SYNTHESIS

In this section, we present a receding horizon controller (RHC) framework to make the MILP controller presented in Section
I, reactive to dynamically changing predicate sets. At each step ¢ = {1,2,--- , N} of the RHC computation, we keep track
of the system trajectory for time indices {0,1,--- , (¢ — 1)} and search for a system trajectory of length (N — i+ 1), starting
from the initial condition x;_1, such that the combined system trajectory satisfies the given MTL specification with the desired
robustness measure. While computing for the system trajectory at step 6 of the Algorithm [2, we use the open loop controller
presented in the Algorithm [I| with one slight modification: searching for the critical time and critical predicate is based on the
combined system trajectory {xq, - ,T;i—2,Ti—1, i, - ,&N—i+1}. Also since, each predicate set can be defined uniquely in
terms of the (A, b) pair as given in , the MILP controller takes the (A, b) pair as arguments, instead of constant matrices,
to account for any predicate sets that might change through the execution of the whole control plan.

As the end goal of this work is real-time controller synthesis, ideally it is desired that the steps 3 to 8 of the Algorithm
be executed within the time-step of the system dynamics, such that at each time-step the system has a control input signal to
execute. However, this is usually not the case in the experiments we have performed. Step 6 is the rate limiting step of the
process, since it involves iteratively solving an MILP problem if the predicate sets are dynamically changing and the upper
bound to the number of iterations required to find a feasible system trajectory is O(N - |p|), where |p| is the number of predicate
sets in the MTL specification, in the worst-case scenario. But the incremental nature of Algorithm (1| allows us to execute the
steps 3 to 8 only for the duration of the time-step of the system dynamics. Consider the example presented in Fig. [f] where
instead of waiting for a feasible trajectory to be found in a single iteration (time for which may exceed the time-step), the
controller iteratively finds a system trajectory that approaches towards a feasible one and requires 3 iterations to find a feasible

Algorithm 2 Receding Horizon Controller Synthesis
1: Run Algorithm [I] for trajectory length N.
2: Set initial condition to be: xg.
3:fori={1,--- ,N+1} do
4 Set past system trajectory: {zq, - ,2;—1}.
5: Compute the (A, b) pair defining the predicate sets.
6
7
8

Obtain new system trajectory by running Algorithm [I| for trajectory length (N — i+ 1): {zj—1,35 - ,EN—it1}-
Set initial condition for the next iteration to be: ;.
: end for

trajectory after a new unsafe region was introduced in the workspace. Thus, obtaining a feasible trajectory with the desired
robustness may take a few iterations, but the Algorithm [2| can essentially be run in real-time for this example.

V. EXAMPLES
A. Numerical Example

For numerical simulations, we consider two different MTL specifications for motion planning of a mobile robot with unicycle
dynamics, and compare our results by running the same examples with the BluSTLE] toolbox developed using the ideas in
[13], [16]. All the simulations were performed on a computer with a 3.4 GHz Intel core i7 processor with 16 GB of memory
using GurobiE] solver through YALMIP [26].

We first consider a simple reach-avoid scenario (see Fig. [3), where the system has to avoid an unsafe area in its workspace
at all times and reach the goal area and stay there from 8.5 to 10 seconds. These requirements can be represented using MTL
specifications as,

= (D_‘pUnsafe) A (D[&S,IO] pGoal) .

For the second example we consider both the eventually and globally operator in a nested fashion to show that our approach
can handle complex task specifications as well. In this scenario the requirement is still to avoid the unsafe region always and to
eventually reach the goal region sometime within 5.5 to 7.5 seconds and stay there for 1.5 seconds. Formally, the specification
is

$2 = (O-Punsaze) A Q55,75 (Dj0,1.5] Peoat) -

In order to implement our approach we first feedback linearize (see Section the unicycle dynamics to obtain double
integrator dynamics in X and Y directions, governing the evolution of the position of the mobile robot. We then discretize the
continuous system dynamics with a 0.5 second sample time, resulting in a trajectory length of N = 20 for the cases considered
here.

Thttps://github.com/BluSTL/BIuSTL/
Zhttp://www.gurobi.com/

Figure 3.

y-position

x-position

Illustration of path planning of mobile robot with the simple reach-avoid specification. The unsafe and the goal regions are colored red and green

respectively. The unsafe set is bloated and the goal set is shrunk by the desired robustness degree, chosen to be 0.5 (trajectory points should not be inside
the bloated unsafe set and outside of the shrunk goal set at the relevant time-instants). The system starts from the cyan colored position on the left side of
the figure. Both BIuSTL and our approach produce the same solution trajectory.

Figure 4.

Method MTL spec ~ YALMIP Time (s) Open Loop Time (s) RHC Time (s)
Our Approach o1 3.12 £ 0.49 0.98 £+ 0.13 10.02 £ 0.004
b2 3.02 £ 0.78 0.84 £+ 0.04 10.02 £ 0.001
BluSTL b1 38.22 £ 2.16 5.83 £ 0.21 60.62 £+ 1.06
b2 39.21 £ 2.52 77.63 £+ 2.15 1401.37 £ 19.50
Table I

TIME TAKEN TO SOLVE THE PATH PLANNING PROBLEM.

—4—Proposed Method
—e—BIuSTL Method

24

y-position

2 4 6 8 10

0
X-position

Path planning solutions of the mobile robot with complex task specifications. The workspace is same as before.

As expected, based on Theorem [3| both BLuSTL and our approach produce the same optimal path for the specification ¢; as
shown in Fig. [3] However, for the task specification ¢, because of the presence of the eventually operator in the specification
B1uSTL provides a more optimal path than our approac even though both the solutions satisfy the specification ¢o with the
desired robustness as shown in Fig.] In Table [, we present the results obtained for the path planning problems in mean +
standard deviation’ format obtained over 10 independent runs of the same problem. YALMIP Time represents the time taken to
encode the controller and Open Loop Time and RHC Time are the times required to generate the feasible path in the open loop
fashion and by using the receding horizon controller approach respectively using the Gurobi solver. Note that, the RHC Time
represents the time taken for planning the path over NV = 20 time-steps each of which is of duration 0.5 seconds. The timing
results clearly shows that our approach is much faster in obtaining the solution trajectory as compared to BLuSTL, specifically
in the case of the more complex specification ¢,. As our end goal is to implement this controller synthesis procedure in a
practical situation, being able to plan the path in a short amount of time is of a great importance.

B. Practical Example

Experimentally, we determine the efficacy of our MILP approach for reactive controller synthesis using a m3pi robot with
a differential drive system dynamics. The m3pi robot consists of a 3pi robot base connected to a m3pi expansion board that
allows us to communicate with the robot using XBee wireless communication module to send control input signals from a
workstation to the robot.

Denoting the position of the robot in a 2D plane to be (z,y), the equations of motion governing the system dynamics are

i=" _2'_ kL cos(f) = v cos(6),

U= Ur ;_ vl sin(f) = vsin(9), (10)
o Uy — Uy
T 2d Y

where, 6 denotes the orientation of the robot with respect to the coordinate frame of reference and v, and v; are the wheel
speeds of the right and left wheels respectively and are the control input signals to the robot. Linear and angular velocities of
the robot are denoted by v and w respectively for ease of notation and d is the distance of any one wheel from the center of the
robot base. To design a controller for the unicycle agents we utilize a well-known theory from nonlinear control called feedback
linearization [23]] so that the nonlinear dynamics presented in (I0) can be represented by second order particle dynamics in
two dimensions. Choosing the position of the robot as the system output notice that,

| _ |cos(d) —sin(0)] |0
| [sin(0) cos(d) | |vw]| "
Then, by choosing the intermediate control inputs to the robot to be, v and vw such that,
0] | cos(d) sin(0)| |ug (11
vw| |—sin(g) cos(0)| |uy|’
where, u, and u,, are the new control inputs to be determined, leads to the input-output feedback linearized system corresponding
to second order particle dynamics in the form of a chain of integrators as,

z U
=17 12
s &
These new control inputs u, and u, are then generated using the MILP approach presented in Section Using @) one
can derive the control inputs v and w, and then the original control inputs
v, =v+dw and v; =v— dw,

so that the resulting system trajectory of the system satisfies the given MTL specification.

30pen loop and closed loop receding horizon implementation in the BIuSTL toolbox actually produced different trajectories even with the exact same
system parameters and specifications; closed loop trajectory obtained was non-optimal.

Figure 5. Experimental Setup for path planning of m3pi robot

The workspace environment for running the experiments is shown in Fig. [5] We use an overhead webcam to obtain images
of the environment, which are then processed to determine the locations of the predicates, represented by the papers laid on the
floor. The OptiTrack system is used to track the position of the m3pi robot accurately. A video of three different experiments,
as well as an user-interactive example are uploaded fhere El Here, we present a simulated version of one of the practical
experiments in Fig. [§] The desired task specification is again a reach-avoid criteria

¢3 = (D_‘pUnsafel) A (D[17.5,20] pGoal))

where Unsafe; is a previously known unsafe region in the workspace of the robot as shown in Fig. [fa] We assume that the
workspace is changing dynamically such that as the robot is navigating through the workspace towards the goal region, it might
come across another unsafe region all of a sudden. With this knowledge we encode our MILP controller with one safe predicate
and two unsafe predicates as detailed in Section Since, we pass the (A, b) pair defining any predicate as parameters to the
MILP controller we do not need to know the exact location of the Unsafes at the beginning of the path planning problem.
When the system becomes aware of the new unsafe region it updates the corresponding (A, b) pair values and solves for a
new feasible trajectory from its current position using Algorithm 2] As shown in Fig. [6] a previously unknown unsafe area
pops up at 7.5 seconds and as can be seen from Fig. [6c| - Fig. [6¢] the robot finds a feasible trajectory in 3 time-steps, due to
the reason that we limit the duration of steps 3 to 8 of the Algorithm [2] to time-step of 0.5 seconds.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of optimizing the inputs to an MLD system such that it satisfies an MTL specification.
We do this by finding the trajectory points that most violate the specification, constraining them to satisfy the corresponding
predicate, and resolving the resulting MILP optimization problem. Although this problem can be fully formalized as an MILP
optimization problem and solved directly, this introduces a number of binary variables and constraints that are linear in the
length of the trajectory and size of the MTL specification. Our approach iteratively adds constraints, and require solving MILPs
multiple times rather than once but can yield a low-cost feasible solution much faster by considering the smaller MILPs, instead
of one large MILP.

We present the efficacy of our approach by finding feasible trajectories corresponding to two different MTL specifications
by solving the optimization problem for a mobile robot in a few seconds. The numerical results show that this approach can
generate feasible trajectories by adding only a few of the binary variables and constraints that would otherwise have been
added. This motivates the current use versus the full MILP, as is usually done, which would have included hundreds of binary
variables and constraints. We also show the reactiveness of the proposed approach by implementing the controller in real-time
on a m3pi robot in a dynamically changing environment. Future work involves exploring heuristic approaches so as to use a
linear combination of the time-points at which the MTL specification is violated to add the constraint, rather than just using
the critical time-points.

“http://tinyurl.com/sahaResearch#MILP-MTL

http://tinyurl.com/sahaResearch#MILP-MTL

TIME =0sec

TIME =7.5sec

(a) Known environment configuration.

TIME =8sec

(b) New unsafe region appears.

TIME =8.5sec

(c) Due to limited computational time a
feasible trajectory is not found yet.

TIME =9sec

(d) Still searching for a feasible trajectory.

TIME =20sec

(e) A feasible trajectory is found at the
third time-step after the new unsafe region
appeared.

Figure 6. Real-time path planning in a dynamically changing environment.

(f) Final path taken by the robot to execute
its task specification.

VII. ACKNOWLEDGMENTS

The research reported in this paper is partially supported by the NSF through the grants CAREER CNS-0953976 and
CNS-1218109. The authors would like to thank Andrew Winn for some very constructive discussions.

REFERENCES

[1] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp.

971-984, 2000.

[2] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2, pp.

343-352, 2009.

[3] M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems from temporal logic specifications,” Automatic Control, IEEE

Transactions on, vol. 53, no. 1, pp. 287-297, 2008.

[4] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers for path planning: A temporal logic approach,” in Decision and Control, 2005

and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on.

IEEE, 2005, pp. 4885-4890.

[5]

[6]

[7]

[8]

[9]
[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]

J. DeCastro and H. Kress-Gazit, “Synthesis of nonlinear continuous controllers for verifiably-correct high-level, reactive behaviors,” International Journal
of Robotics Research Accepted, 2014.

H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive, high-level robot control,” Robotics Automation Magazine, IEEE, vol. 18, no. 3,
pp. 65-74, Sept 2011.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning with deterministic p-calculus specifications,” in American Control
Conference (ACC), 2012. 1EEE, 2012, pp. 735-742.

S. C. Livingston, E. M. Wolff, and R. M. Murray, “Cross-entropy temporal logic motion planning,” in Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control. ACM, 2015, pp. 269-278.

S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing with applications to multi-uav mission planning,” International Journal of Robust
and Nonlinear Control, vol. 21, no. 12, pp. 1372-1395, 2011.

E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajectory generation with linear temporal logic specifications,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on. I1EEE, 2014, pp. 5319-5325.

S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed logical dynamical systems with linear temporal logic specifications,” in Decision
and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, 2008, pp. 2117-2122.

S. Karaman and E. Frazzoli, “Vehicle routing problem with metric temporal logic specifications,” in Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on. 1EEE, 2008, pp. 3953-3958.

V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, S. Seshia et al., “Model predictive control with signal temporal logic
specifications,” in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on. 1EEE, 2014, pp. 81-87.

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon temporal logic planning,” Automatic Control, IEEE Transactions on, vol. 57, no. 11,
pp. 2817-2830, 2012.

A. Ulusoy, M. Marrazzo, and C. Belta, “Receding horizon control in dynamic environments from temporal logic specifications.” in Robotics: Science
and Systems, 2013.

V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive synthesis from signal temporal logic specifications,” in Proceedings of the
18th International Conference on Hybrid Systems: Computation and Control. ACM, 2015, pp. 239-248.

G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for continuous-time signals,” Theoretical Computer Science, vol. 410,
no. 42, pp. 4262-4291, 2009.

R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time systems, vol. 2, no. 4, pp. 255-299, 1990.

G. E. Fainekos and G. J. Pappas, Robustness of temporal logic specifications. Springer, 2006.

M. R. Garey and D. S. Johnson, “Computers and intractability: a guide to the theory of NP-completeness. 1979,” San Francisco, LA: Freeman, 1979.
M. G. Earl and R. D’Andrea, “Iterative milp methods for vehicle-control problems,” Robotics, IEEE Transactions on, vol. 21, no. 6, pp. 1158-1167,
2005.

A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics and constraints,” Automatica, vol. 35, no. 3, pp. 407-427, 1999.

H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

A. A. Julius and A. K. Winn, “Safety controller synthesis using human generated trajectories: Nonlinear dynamics with feedback linearization and
differential flatness,” in Proc. American Control Conference, Montreal, Canada., 2012, pp. 709-714.

Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, S-taliro: A tool for temporal logic falsification for hybrid systems. Springer, 2011.

J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Computer Aided Control Systems Design, 2004 IEEE International
Symposium on. 1EEE, 2004, pp. 284-289. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

http://users.isy.liu.se/johanl/yalmip

	I Introduction
	II Preliminaries
	III Controller Synthesis
	IV Reactive Controller Synthesis
	V Examples
	V-A Numerical Example
	V-B Practical Example

	VI Conclusion and Future Work
	VII Acknowledgments
	References

