
Robust Temporal Logic Inference for Hybrid System Observation– An
Application on Occupancy Detection of Smart Buildings

Zhe Xu, Yi Deng and Agung Julius

Abstract— In modern smart buildings modeled as hybrid
systems, occupancy detection can be cast as observing the
discrete states of a hybrid system using the available discrete
and continuous system outputs. In this paper, we present
a method to construct observers of the hybrid system to
distinguish between different locations of the hybrid system
by inferring metric temporal logic (MTL) formulae from
the simulated trajectories. We first approximate the system
behavior by simulating finitely many trajectories with time-
robust tube segments around them. These time-robust tube
segments account for both spatial and temporal uncertainties
that exist in the hybrid system with initial state variations.
The inferred MTL formulae classify different time-robust tube
segments and thus can be used for classifying the hybrid system
behaviors in a provably correct fashion. We implement our
approach on a model of a smart building testbed to distinguish
two cases of room occupancy.

I. INTRODUCTION

In modern smart buildings, various continuous states such
as the temperature, humidity and discrete states such as the
air conditioning states have made the system a hybrid system.
In a hybrid system, the continuous state keeps flowing in a
location (also called a mode or discrete state) until an event
is triggered. Then it jumps to a target location and flows
continuously again according to possibly different dynamics.
As there are increasingly growing interest in finding ways to
accurately determine localized building or room occupancy
in real time, traditional methods seldom apply to multiple
dynamics in a hybrid system.

Presently, there are mainly two categories of approaches
for occupancy detection or estimation (e.g. detecting or
estimating the number of people in a room). The first
category relies on the learning-based techniques such as
decision trees [1] or support vector regression [2] to find
features of different occupancy states from data gathered
from various sensors. The second category relies on the
mathematical model of systems as they compare available
measurements with information analytically derived from the
system model [3]. For hybrid systems, the main challenge of
the model-based occupancy detection is due to the difficulty
in capturing the combined continuous and discrete measure-
ments.

In this paper, we propose an approach that utilizes both
the learning-based techniques and the model-based methods

Zhe Xu and Agung Julius are with the Department of Electrical,
Computer, and Systems Engineering, Rensselaer Polytechnic Institute,
Troy, NY, USA, E-mail: xuz8@rpi.edu, juliua2@rpi.edu. Yi Deng is with
East China Institute of Computing Technology, Shanghai, China, E-mail:
dengyi267@gmail.com. This research was partially supported by the Na-
tional Science Foundation through grants CNS-1218109, CNS-1550029 and
CNS-1618369.

for hybrid system occupancy detection. We mainly focus
on distinguishing between different occupancy states and
observing the location of the modeled hybrid system at any
time. For the learning aspect, there has been a growing
interest in learning (inferring) dense-time temporal logic
formulae from system trajectories [4], [5], [6], [7], [8], [9],
[10]. We infer dense-time temporal logic formulae from the
temperature and humidity sensor data as dense-time temporal
logics can effectively capture the time-related features in
the transient period when people enter a room. In the
meantime, we also utilize the model information so that
the MTL formula that classifies the finite trajectories we
simulated (or gathered) also classifies the infinite trajectories
that differ from the simulated trajectories by a small margin
in both space and time. In our previous work in [11], we
have performed classification for trajectories generated from
switched systems, which have spatial uncertainties due to
initial state variations. In this paper, we extend the results
to hybrid systems and we classify time-robust tube segments
around the trajectories so that the inferred MTL formula can
classify different system behaviors when both the spatial and
the temporal uncertainties exist due to initial state variations
in a hybrid system.

In inferring a temporal logic formula that classifies differ-
ent system behaviors, we can further design an observer for
determining the location of the hybrid system at any time.
Our previous work [12] results in a hybrid observer that
estimates both the discrete and continuous states constantly.
The observer only uses the discrete outputs generated by
the hybrid system’s observable events and their timing in-
formation as its input, and thus is referred to as the basic
observer in this paper. Based on [12], we utilize the inferred
MTL formula from the MTL classifier to refine the basic
observer and the obtained observer is referred to as the
refined observer.

II. PRELIMINARIES

A. Hybrid Automaton

A hybrid autonomous system is defined to be a 5-tuple
H = (L × X ,L0 ×X 0,F , E , Inv) [13]:
• L × X is a set of hybrid states (`, x), where ` ∈ L is

discrete state (location), and x ∈ X is continuous state.
• L0 ×X 0 ⊂ L× X a set of initial states.
• F = {f`|` ∈ L} associates with each location ` ∈
L the autonomous continuous time-invariant dynamics,
f` : ẋ = f`(x), which is assumed to admit a unique
global solution ξ`(τ, x0

`), where ξ` satisfies ∂ξ`(τ,x0
`)

∂τ =

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 610

f`(ξ`(τ, x
0
`)), and ξ`(0, x0

`) = x0
` is the initial condition

in `.
• Inv : L → 2X associates an invariant set Inv(`) ⊂ X

with each location. Only if the continuous state satisfies
x ∈ Inv(`), can the discrete state be at the location `.

• E is a set of events. In each location `, the system
state evolves continuously according to f` until an event
e = (`, `′, g, r), e ∈ E occurs. The event is guarded
by g ∈ Inv(`). Namely, a necessary condition for the
occurrence of e is x ∈ g. After the event, the state is
reset from (`, x) to (`′, r(x)), where r(x) is the reset
initial state of x.

When a hybrid system runs, the system state alternately flows
continuously and triggers events in E . For convenience, we
also define an initialization event e0 6∈ E . Then a trajectory
of the system can be defined as a sequence:

Definition 1 (Trajectory): A trajectory of a hybrid system
H is denoted as

ρ = {(em, `m, x0
`m , τ

m)}Nm=0,

where
• ∀m ≥ 0, (`m, x0

`m) ∈ L×X are the (reset) initial states;
• ∀m ≥ 0, τm ∈ R≥0 (nonnegative real), and ∀τ ∈

[0, τm], ξ`m(τ, x0
`m) ∈ Inv(`m);

• ∀m ≥ 1, em = (`m−1, `m, gm, rm), ξ`m−1(τm−1,
x0
`m−1) ∈ gm, x0

`m = rm(ξ`m−1(τm−1, x0
`m−1)),

i.e. (`m, x0
`m) is the reset initial state for

(`m−1, ξ`m−1(τm−1, x0
`m−1)).

Each event e ∈ E has an output symbol ψ(e) that can be
observable or unobservable. An unobservable output symbol
ψ(e) is specifically denoted as ε.

B. Robust Neighborhood Approach

In this section, we briefly review the robust neighborhood
approach [14], which is based on the approximate bisimula-
tion theory [15]. The robust neighborhood approach [14] is
to compute a neighborhood around a simulated initial state,
such that any trajectory initiated from the neighborhood will
trigger the same event sequence as the simulated trajectory,
and the continuous state always stays inside a neighborhood
around the continuous state of the simulated one.

Definition 2: Φ` : Inv(`)× Inv(`)→ R is an autobisim-
ulation function for the dynamics of hybrid system H at
location `, if it satisfies

Φ`(x, x̃) > 0,∀x, x̃ ∈ Inv(`), x 6= x̃,

Φ`(x, x) = 0,∀x ∈ Inv(`),

∂Φ`(x, x̃)

∂x
f`(x) +

∂Φ`(x, x̃)

∂x̃
f`(x̃) ≤ 0.

From Definition 2, Φ` can be used to bound the divergence
of continuous state trajectories. If we define the level set

B`(γ`, ξ`(τ, x
0
`)) , {x|Φ`(x, ξ`(τ, x0

`)) < γ`}. (1)

then we can easily conclude that the value of Φ` is nonde-
creasing along any two trajectories of the system at location

`, i.e. for any initial state x̃0
` ∈ B`(γ`, x

0
`) and τ > 0,

ξ`(τ, x̃
0
`) ∈ B`(γ`, ξ`(τ, x0

`)).
Let e = (`, `′, g, r) be an event triggered by a trajectory

initiated from x0
` . If we want all the trajectories initiated

from within B`(γ`, x0
`) to avoid triggering a different event

e′ = (`, `′′, g′, r′), then we can let

γ` ≤ inf
y∈g′

inf
τ∈[0,τ̄]

Φ`(ξ`(τ, x
0
`), y), (2)

where τ̄ is an upper bound of the time for trajectories
initiated from B`(γ`, x

0
`) to transition out of ` (for details

on methods for estimating τ̄ , see [14]). Then for any x̃0
` ∈

B(γ`, x
0
`), τ ∈ [0, τ], we have that ξ`(τ, x̃0

`) cannot reach g′

and thus trigger e′.
Let ρ = {(em, `m, x0

`m , τ
m)}Nm=0 denote the simu-

lated trajectory. We can compute robust neighborhoods
B`m(γ`m , x

0
`m) around the (reset) initial continuous states

x0
`m of ρ such that the property below holds.
Proposition 1: For any initial state (`0, x̃0

`0) ∈
{`0} × B`0(γ`0 , x

0
`0) and any trajectory ρ̃ =

{(em, `m, x̃0
`m , τ̃

m)}Nm=0 that triggers the same event
sequence with the simulated trajectory ρ, there exist
τmlead, τ

m
lag > 0 (0 ≤ m ≤ N − 1) such that

• for all 0 ≤ m ≤ N − 1, x̃0
`m ∈ B`m(γ`m , x

0
`m),

τ̃m ∈ [τm − τmlead, τ
m + τmlag], and Φ`m(ξ`m(t, x0

`m),
ξ`m(t, x̃0

`m)) ≤ γ`m for all t ∈ [0, τ̃m];
• x̃0

`N ∈ B`N (γ`N , x
0
`N), and Φ`N (ξ`N (t, x0

`N), ξ`N
(t, x̃0

`N)) ≤ γ`N for all t ∈ [0,min(τ̃N , τN)].
We simulate trajectories from the initial set L0 × X 0

and perform robust neighborhood computation. We denote
ρk = {(emk , `mk , x0

`mk
, τmk)}Nk

m=0 as the kth simulated trajec-
tory (k = 1, 2, . . .). The robust neighborhood around the
(reset) initial state for the segment m of ρk is the following:

B`mk (γ`mk , x
0
`mk

) = {x|Φ`mk (x0
`mk
, x) < γ`mk }, (3)

where Φ`mk is the bisimulation function in location `mk , and
γ`mk is the radius of the computed robust neighborhood. The
initial set can be covered by the robust neighborhoods around
the initial states of the finitely simulated trajectories if:

L0 ×X 0 ⊂
⋃
k

{`0k} ×B`0k(γ`0k , x
0
`0k

). (4)

III. ROBUST TEMPORAL LOGIC INFERENCE FOR
CLASSIFICATION WITH SPATIAL AND TEMPORAL

UNCERTAINTIES

In this section, we present the robust temporal logic
inference framework for classification that accounts for both
spatial and temporal uncertainties. According to our previous
work in [12], given a trajectory simulated from an initial
state, the possible discrete state (current location) can be
estimated at any time by an observer for any trajectory
initiated from a neighborhood around the simulated initial
state. There are two notions of time in [12], one is the
external time that can be read from an external timer and
is reset to zero every time the constructed observer updates
its states, the other one is the clock time that is associated
with each trajectory which is reset to zero every time the

611

trajectory enters a new location. In this paper, we use t
to denote the external time and τ to denote the clock
time. As different trajectories may reach the guards or leave
an invariant set at different times, the clock time that is
associated with each trajectory has temporal uncertainties.
As the clock time is reset to zero when the trajectory
enters a new location, the clock time is also associated with
each location the trajectory enters. It can be seen that τ in
ξ`mk (τ, x0

`mk
) is the clock time associated with location `mk

(the location corresponding to the mth segment of the kth
trajectory ρk). We denote s as the set of possible observer
states at the current time. At the external time t, we denote
(k,m)[ā, b̄] ∈ s if `mk is possible as the current location and
the clock time τ in location `mk has temporal uncertainty
τ ∈ [t + ā, t + b̄] (see Proposition 2 in [12]). For example,
if the observer state s1 = {(1, 1)[10, 12], (2, 1)[−6, 2])},
s2 = {(2, 1)[2, 10], (2, 2)[−8, 0])}, and the observer state

update is s1 ε[8]−−→ s2 (here ε[8] means no event is observed for
8 time units), then at external time t ∈ [0, 8), the state could
be in location `11 or `12, the clock time τ1

1 for location `11 has
temporal uncertainty τ1

1 ∈ [t+ 10, t+ 12], the clock time τ1
2

for location `12 has temporal uncertainty τ1
2 ∈ [t − 6, t + 2].

The external time t is reset to 0 when s1 is updated by
s2 and at the new external time t, the state could be in
location `12 or `22, the clock time τ1

2 for location `12 has
temporal uncertainty τ1

2 ∈ [t + 2, t + 10], the clock time
τ2
2 for location `22 has temporal uncertainty τ2

2 ∈ [t − 8, t].
In sum, after an observation is made, the external time
t has no temporal uncertainties, while the clock time τ
has temporal uncertainties.

Note that when ā in (k,m)[ā, b̄] is negative, it actually
represents “latent” states that are currently in other locations.
For example, (2, 2)[−8, 0] means at the external time t (t <
8), the hybrid system state may have already been at location
`22 for τ time units (τ is the positive clock time in location
`12, τ ∈ [0, t]), but may also be at location `12 and will enter
location `22 at the next (−τ) time unit (τ is the “virtual”
negative clock time in location `22, τ ∈ [t−8, 0]). To account
for the negative times, we allow τ in the notation ξ`m(τ, x0

`m)
to be negative (the valuation of ξ`m(τ, x0

`m) when τ < 0 can
be any vector in Rn) to represent the “virtual” negative clock
time when the state is not in location `m at the current time
but will enter location `m at a future time (−τ).

The basic syntax and semantics of the Metric Temporal
Logic can be found in [16]. We use r̂(ξ`m(τ, x0

`m), φ, c)
to denote the extended robustness degree of a trajectory
segment ξ`m(τ, x0

`m) with respect to a classification label c
(c ∈ {1,−1}) and an MTL formula φ evaluated at a certain
external time corresponding to the clock time τ for the ith
trajectory (τ can be positive or negative). r̂(ξ`m(τ, x0

`m), φ, c)
is defined recursively via the following extended quantitative
semantics:

r̂(ξ`m(τ, x0
`m), µ, c) =


Distd(ξ`m(τ, x0

`m),O(µ)), if τ ≥ 0,

∞, if τ < 0 and c = 1,

−∞, if τ < 0 and c = −1,

r̂(ξ`m(τ, x0
`m),¬φ, c) = −r̂(ξ`m(τ, x0

`m), φ,−c),
r̂(ξ`m(τ, x0

`m), φ1 ∧ φ2, c) = min(r̂(ξ`m(τ, x0
`m), φ1, c),

r̂(ξ`m(τ, x0
`m), φ2, c)),

r̂(ξ`m(τ, x0
`m), φ1UIφ2, c) = max

τ ′∈(τ+I)
min{r̂(ξ`m(τ ′, x0

`m),

φ2, c), min
τ ′′∈[τ,τ ′)

r̂(ξ`m(τ ′′, x0
`m), φ1, c)}.

where

Distd(x,O(µ)) ,

{
−inf{d(x, y)|y ∈ cl(O(µ))}, if x 6∈ O(µ),

inf{d(x, y)|y ∈ X \ O(µ)}, if x ∈ O(µ),

is the signed distance from x to the set O(µ) (the set of states
that satisfy the atomic proposition µ), d is a metric on X and
cl(O(µ)) denotes the closure of the set O(µ). It can be seen
that for atomic predicate µ, the extended robustness degree
of the trajectory ξ`m(τ, x0

`m) with respect to µ evaluated at
a negative clock time (when τ < 0) always has the same
sign as the classification label, which is consistent with our
purpose of classification as the classification result should
not be affected by a state that does not appear yet at the
evaluation time.

Definition 3: The time-robust tube segment at external
time t corresponding to location `mk and an interval [t +
ā, t+ b̄], denoted as Rtube(k,m, [t+ ā, t+ b̄]), is defined as
follows:
Rtube(k,m, [t+ ā, t+ b̄]) = {

(
τ, ξ`mk (τ, x̃0

`mk
)
)
| τ ∈ [t+ ā,

t+ b̄], ξ`mk (τ, x̃0
`mk

) ∈ B`mk (γ`mk , ξ`mk (τ, x0
`mk

)) if τ ≥ 0},

As B`mk (γ`mk , ξ`mk (τ, x0
`mk

)) is obtained through the robust
neighborhood approach, the time-robust tube segment can
be also expressed as

Rtube(k,m, [t+ ā, t+ b̄]) = {
(
τ, ξ`mk (τ, x̃0

`mk
)
)
|

τ ∈ [t+ ā, t+ b̄], x̃0
`mk
∈ B`mk (γ`mk , x

0
`mk

)},
Definition 4: Given a labeled set of trajectory segments

{(ξ`mi
ki

(τi(t), x
0
`
mi
ki

), ci)}Ni=1 (the external time t flows from

0 to T , τi(t) is the corresponding clock time for the ith
trajectory, τi(t) can be positive or negative) from a hybrid
system H, ci ∈ {1,−1} is the classification label, an MTL
formula φ evaluated at external time 0 perfectly classifies
the trajectory segments with label ci = 1 and the trajectory
segments with label ci = −1 if the following condition is
satisfied:
r̂(ξ`mi

ki

(τi(0), x0
`
mi
ki

), φ, ci) > 0, if ci = 1; r̂(ξ`mi
ki

(τi(0),

x0
`
mi
ki

), φ, ci) < 0, if ci = −1.
Problem 1: Given a labeled set of time-robust tube seg-

ments S̃ = {(Rtube(ki,mi, [t + āi, t + b̄i]), ci)}Ni=1 (the
external time t flows from 0 to T) from a hybrid system H,
find an MTL formula φ such that φ evaluated at external time
0 perfectly classifies the trajectory segments with label ci =
1 and the trajectory segments with label ci = −1 in S̃, i.e.
if
(
τi(t), ξ`mi

ki

(τi(t), x̃
0
`
mi
ki

)
)
∈ Rtube(ki,mi, [t + āi, t + b̄i])

for any t ∈ [0, T], then r̂(ξ`mi
ki

(τi(0), x̃0
`
mi
ki

), φ, ci) > 0, if

ci = 1; r̂(ξ`mi
ki

(τi(0), x̃0
`
mi
ki

), φ, ci) < 0, if ci = −1.

612

If for each location `, the continuous dynamics is
affine and stable, then there exists a quadratic autobisim-
ulation function Φ`(ξ`(τ, x

0
`), ξ`(τ, x)) = [

(
ξ`(τ, x

0
`) −

ξ`(τ, x)
)T
M`

(
ξ`(τ, x

0
`)− ξ`(τ, x)

)
]
1
2 , where M` is positive

definite. To solve problem 1, we first give the following three
propositions:

Proposition 2: For any MTL formula φ and γ` > 0,
if Φ`(ξ`(τ, x̃

0
`), ξ`(τ, x

0
`)) = [

(
ξ`(τ, x

0
`) − ξ`(τ, x̃

0
`)
)T
M`(

ξ`(τ, x
0
`)− ξ`(τ, x̃0

`)
)
]
1
2 < γ` for any τ ≥ 0, then for any τ

(here τ can be positive or negative), r̂(ξ`(τ, x0
`), φ, c)− γ̂` ≤

r̂(ξ`(τ, x̃
0
`), φ, c) ≤ r̂(ξ`(τ, x

0
`), φ, c) + γ̂` holds, where c is

a classification label, γ̂` = γ` ‖M`‖−
1
2 .

Proposition 3: For any MTL formula φ that only con-
tains one variable xj (j = 1, 2, . . . , n) and γ` > 0,
if Φ`(ξ`(τ, x̃

0
`), ξ`(τ, x

0
`)) = [

(
ξ`(τ, x

0
`) − ξ`(τ, x̃

0
`)
)T
M`(

ξ`(τ, x
0
`) − ξ`(τ, x̃

0
`)
)
]
1
2 < γ` for any τ ≥ 0, and if

there exists z`,j > 0 such that z2
`,jeje

T
j � M` (ej is a

canonical unit vector), then for any τ (here τ can be positive
or negative), r̂(ξ`(τ, x0

`), φ, c) − γ̃`,j ≤ r̂(ξ`(τ, x̃
0
`), φ, c) ≤

r̂(ξ`(τ, x
0
`), φ, c) + γ̃`,j holds, where c is the classification

label, γ̃`,j = γ`/z`,j .
Proposition 4: Given the settings of Problem 1, an MTL

formula φ evaluated at external time 0 perfectly classifies
the trajectory segments with label ci = 1 and the trajectory
segments with label ci = −1 in S̃ if the following condition
is satisfied:
MG(ki,mi, āi, b̄i, φ, ci) > 0, if ci = 1; MG(ki,mi, āi, b̄i,
φ, ci) < 0, if ci = −1, where MG(·) is a margin function
defined as follows:

MG(k,m, ā, b̄, φ, 1) = min
τ∈[ā,b̄]

r̂(ξ`mk (τ, x0
`mk

), φ, 1)− γ̂`mk ,

MG(k,m, ā, b̄, φ,−1) = max
τ∈[ā,b̄]

r̂(ξ`mk (τ, x0
`mk

), φ,−1) + γ̂`mk ,

(5)

where γ̂`mk = γ`mk
∥∥M`mk

∥∥− 1
2 , γ`mk is obtained from (2) in

each location `mk .
According to Proposition 4, we can solve Problem 1 by

minimizing the following cost function:

J(S̃, φ) =

N∑
i=1

G(ki,mi, āi, b̄i, φ, ci), (6)

where G(·) is defined as follows:

G(k,m, ā, b̄, φ, c) =

{
0, if c ·MG(k,m, ā, b̄, φ, c) > 0,

ζ, otherwise,

where the margin function MG(·) is defined in (5), ζ is a
positive constant. When the MTL formula φ only contains
one variable xj , γ̂` can be replaced by γ̃`,j in (5).

The core of the classification process is a non-convex
optimization problem for finding the structure and the param-
eters that describe the MTL formula φ, which can be solved
through particle swarm optimization [17]. The search starts
from a basis of candidate formulae in the form of �[τ1,τ2]π or
♦[τ1,τ2]π and adding Boolean connectives until a satisfactory
formula is found.

Once the optimization procedure obtains an optimal for-
mula φ∗ that perfectly classifies the labeled set of time-
robust tube segments S̃ in each time period before the basic
observer updates its states, we can use the obtained φ∗ to
refine the basic observer. The refinement procedure is to
shrink the observer’s state (i.e., the state estimate for H) and
the subsequent transitions based on satisfaction or violation
of a MTL formula. For a given φ, we can shrink the observer
state as soon as φ is satisfied or violated, while not resetting
the timer. Then the subsequent states and transitions can be
modeled in the same way as the basic observer as constructed
in [12].

IV. IMPLEMENTATION

In this section, we implement our occupancy detection
method to distinguish between two cases in the simulation
model of a smart building testbed [18]: (i) one person
enters an empty room after the door opens; (ii) two people
enter an empty room after the door opens. We assume that
we can observe the event when the door opens. The air
conditioning is programmed to increase the mass flow rate
of the cooling air when the temperature reaches certain
thresholds (e.g. 290.6K, 290.7K). The system is modeled as
a hybrid system H with 6 locations, as shown in Fig. 1. The
state x = [T,w, Q̇gen, Ẇgen] represents the temperature and
humidity ratio of the room, heat and humidity generation
rate within the room (i.e. from the humans) respectively
(we choose the units of Q̇gen and Ẇgen to be W and
mg/s, respectively). Q̇gen and Ẇgen are added as two
pseudo-states to account for the variations of the heat and
humidity generation rates by different people [19]. The
continuous dynamics in the 6 locations are given as follows:

For location `0 (room unoccupied):
Cẋ1 = ṁ`0Cp(Ts − x1) + βG(x2 − w∞)−K(x1 − T∞);

Mẋ2 = ṁ(ws − x2)−G(x2 − w∞);

ẋ3 = 0; ẋ4 = 0.

For the other 5 locations `mk (`11, `21, `12, `22, `32, room
occupied with one or two people):
Cẋ1 = ṁ`mk

Cp(Ts − x1) + βG(x2 − w∞)−K(x1 − T∞)

+ x3 − 10−6βx4;

Mẋ2 = ṁ`mk
(ws − x2)−G(x2 − w∞) + x4;

ẋ3 = 0; ẋ4 = 0.

where ṁ`mk
is the mass flow rate of the air conditioning in

location `mk (we set ṁ`0 = ṁ`11
= ṁ`12

= 0.5Kg/s, ṁ`21
=

ṁ`22
= 0.6Kg/s, ṁ`32

= 0.8Kg/s), C is the thermal ca-
pacitance of the room, M is mass of air in the room, G
is the mass transfer conductance between the room and
the ambient, ws, Ts are the supply air humidity ratio and
temperature respectively, w∞, T∞ are the ambient humidity
ratio and temperature respectively, Cp is specific heat of air
at constant pressure, β is latent heat of vaporization of water,
K is the wall thermal conductance.

613

We set T∞ = 303K (29.85◦C), Ts = 290K (16.85◦C),
w∞ = 0.0105, ws = 0.01. As shown in Fig. 2, as human
can generate both heat and moisture, the room temperature
and humidity ratio will increase towards the new equilibrium
after people enter the room. As the mass flow rate of the air
conditioning may change in different locations, when two
people enter the empty room, the temperature first increases
to 290.7K, then starts to decrease as the mass flow rate is
increased to 0.8Kg/s. It can be seen that the steady state
values of the temperatures in the two cases are almost
the same, therefore a temporal logic formula is needed to
distinguish their temporal patterns in the transient period.

One person enters empty room

Two people enter empty room

Fig. 1. Locations of hybrid system H for the smart building model
describing the series of events of the two cases.

The invariant sets are

Inv(`0) = R4,

Inv(`11) = Inv(`12) = {x|290.4 ≤ x1 ≤ 290.6},
Inv(`21) = Inv(`22) = {x|290.5 ≤ x1 ≤ 290.7},

Inv(`32) = {x|290.6 ≤ x1 ≤ 290.8}.

The events are modeled as follows:
• e1

1 = (`0, `11, g
1
1 , r

1
1), where g1

1 = R4, r1
1(x) = x +

[0, 0, 300, 80];
• e1

2 = (`0, `12, g
1
2 , r

1
2), where g1

2 = R4, r1
2(x) = x +

[0, 0, 600, 160];
• e2

1 = (`11, `
2
1, g

2
1 , r

2
1) = e2

2 = (`12, `
2
2, g

2
2 , r

2
2), where g2

1 =
g2

2 = {x|x1 = 290.6}, r2
1(x) = r2

2(x) = x;
• e3

2 = (`22, `
3
2, g

3
2 , r

3
2), where g3

2 = {x|x1 = 290.7},
r3
2(x) = x.

The events e1
1 and e1

2 are non-deterministic, i.e. the events
can happen anywhere in Inv(`0); the events e2

1, e2
2 and e3

2

are deterministic, i.e. the events are forced to occur whenever
the states leave the invariant sets (reach the guards). The
output symbols of events e1

1 and e1
2 are observable (door

Fig. 2. The temperature state of the two simulated trajectories (blue
represents the trajectory when one person enters the empty room, red
represents the trajectory when two people enter the empty room) and the
corresponding locations.

(1, 1)

ε

door

τ := 0

13 ≤ τ ≤ 19.5
τ := 0

e22

29.1 ≤ τ ≤ 47.6
τ := 0
ε

ε

end of

τ = 247.3
τ := 0

(2, 2) (2, 3)

EoS

simulation

ε

(2, 1)
e21

(1, 2)
opens

τ = 262.4
τ := 0
ε

27.8 ≤ τ ≤ 47.3

e32

τ := 0

Fig. 3. A timed abstraction of the hybrid automaton H. τ is the clock
time that is associated with each trajectory which is reset to zero every
time the trajectory enters a new location. For instance, the transition from
(1, 1) to (1, 2) means that any trajectory of H initiated from B`11

(γ`11
, x0

`11
)

will reach B`21
(γ`21

, x0
`21

) within 29.1 to 47.6 time units by triggering an
unobservable event.

(1, 1)[0, 0]

(2, 1)[0, 0]

(1, 1)[13, 13]

(2, 2)[−6.5, 0]
(2, 1)[13, 13]

ε[13] (1, 1)[19.5, 19.5]

ε[9.6]

(1, 1)[40.8, 40.8]

(2, 2)[21.3, 27.8]

(2, 2)[0, 6.5]

(2, 3)[−19.5, 0]

ε[6.5]

ε[6.8](1, 2)[0, 18.5]

(2, 3)[−12.7, 6.8]

ε[12.7]
(1, 2)[12.7, 31.2]

(2, 3)[0, 19.5]

(1, 1)[29.1, 29.1]

(1, 2)[−18.5, 0]

(2, 2)[9.6, 16.1]

ε[11.7]

(1, 2)[−6.8, 11.7](2, 2)[28.1, 34.6]

door
opens

Fig. 4. The basic observer is driven by observed events and an external
timer. Each block represents the observer state and it is updated to the
next block at the time when an unobservable event becomes possible to be
triggered, or an unobservable event is deduced to have been triggered, or an
observable event is not possible to occur anymore [12]. When the observer
state is s, the external time is t, the clock time and the state of H should be
in {(τmk , `mk , x)|(τmk , x) ∈ Rtube(k,m, [t+ ā, t+ b̄]), (k,m)[ā, b̄] ∈ s}.

opening) while the output symbols of events e2
1, e2

2 and e3
2

are unobservable.
The reset initial state at location `11 lies in the following

set:

L1
1 ×X 1

1 = {`11} × {x | x1 = 290.4976, x2 = 0.01,

280 ≤ x3 ≤ 320, 60 ≤ x4 ≤ 100}.
The reset initial state at location `12 lies in the following set:

L1
2 ×X 1

2 = {`11} × {x | x1 = 290.4976, x2 = 0.01,

560 ≤ x3 ≤ 640, 120 ≤ x4 ≤ 200}.

We use the MATLAB Toolbox STRONG [20] to simulate
two trajectories for the two cases. As the variation range of
the temperature is much smaller than the variation ranges
of the humidity and heat generation rates, in order to cover
the reset initial sets L1

1×X 1
1 and L1

2×X 1
2 , we optimize the

matrix M` in each location ` (geometrically change the shape
of the level set ellipsoid) so that the outer bounds of the level
set ellipsoid B`(γ`, x0

`) in the dimension of the temperature
variation is much smaller than the outer bounds in the other
dimensions. Besides, according to Proposition 3, we use
the tighter bound γ̃`,1 = γ`/z`,1 for the optimization for
MTL classification (we use the data of the simulated room
temperature to infer the MTL formula and the case for the
room humidity ratio can be done in a similar manner), and
by maximizing z`,1 thus minimizing γ̃`,1, we can obtain the
tightest bound γ̃∗`,1 = γ`/z

∗
`,1. The combined optimization to

obtain both M∗` and z∗`,1 is as follows:

614

¬φ∗[5]

(1, 1)[0, 0]

(2, 1)[0, 0]

(1, 1)[13, 13]

(2, 2)[−6.5, 0]
(2, 1)[13, 13]

ε[13]
door

(1, 1)[18, 18]

ε[11.1]

φ∗[5]

ε[21.3]
(2, 2)[21.3, 27.8]

(1, 1)[29.1, 29.1]

(1, 2)[−18.5, 0](2, 2)[−1.5, 5]
(2, 1)[18, 18]

ε[1.5]

(2, 2)[0, 6.5]
(2, 3)[−19.5, 0]

opens

ε[18.5]

(1, 2)[0, 18.5]

(2, 3)[0, 19.5]

ε[19.5]

Fig. 5. The refined observer shrink the basic observer’s states by adding
the inferred MTL formula φ∗ in (8) (φ∗ is evaluated at external time 0, i.e.
at the time instant the basic observer updates its states). The satisfaction
and violation of φ are modeled as transition labels φ∗[5] and ¬φ∗[5]
respectively, where 5 is the minimal time needed for evaluating the truth
value of φ∗.

min.− z2
`,1

s.t. M` � 0, AT` M` +M`A` ≺ 0,

eT3 M`e3 ≤ η3, e
T
4 M`e4 ≤ η4,

eT1 M`e1 ≥ η1,M` − z2
`,1e1e

T
1 � 0.

(7)

where A` is the state (or system) matrix in location `, e1 =
[1, 0, 0, 0]T , e3 = [0, 0, 1, 0]T , e4 = [0, 0, 0, 1]T , η1 = 30,
η3 = η4 = 10−7 (η1, η3 and η4 are tuned manually for
covering the reset initial sets L1

1 ×X 1
1 and L1

2 ×X 1
2).

The optimal solution is computed as z∗`,1 = 30. Based
on the two simulated trajectories, we construct a timed
abstraction (timed automaton) as shown in Fig. 3 (for details
of constructing the timed automaton, see the content of timed
abstraction in [12]). All the events are unobservable except
ψ which represents the door opening. We construct a basic
observer as in Fig. 4 (for details of designing the basic
observer, see [12]), where the two occupancy states are never
distinguished to the end of the simulation time.

Next we infer an MTL formula that classifies the time-
robust tube segments corresponding to the basic observer’s
states. The observer’s initial state s1 contains (1, 1)[0, 0] and
(2, 1)[0, 0]. We first classify the time-robust tube segment
Rtube(1, 1, [t, t]) and Rtube(2, 1, [t, t]) (t flows from 0 to 13)
but does not find any MTL formula that can achieve perfect
classification. Then we move on to state s2 which contains
(1, 1)[13, 13], (2, 1)[13, 13] and (2, 2)[−6.5, 0]. We find the
following formula that perfectly clasifies Rtube(1, 1, [t, t])
from Rtube(2, 1, [t, t]) and Rtube(2, 2, [t − 6.5, t]) (t flows
from 0 to 6.5):

φ∗ = �[1.7717,5](x1 ≥ 290.6006). (8)

The optimization takes 36.7 seconds on a Thinkpad laptop
computer with Intel Core i7 and 8GB RAM.

With the inferred MTL formula φ∗, we construct the
refined observer as shown in Fig. 5. It can be seen that
once φ∗ is satisfied, the two cases are distinguished in
18 seconds. Compared with the basic observer which can
never distinguish the two occupancy states, the refinement
has achieved the result in 18 seconds by only adding one
temperature sensor.

REFERENCES

[1] E. Hailemariam, R. Goldstein, R. Attar, and A. Khan, “Real-time
occupancy detection using decision trees with multiple sensor types,”
in Proc. Symposium on Simulation for Architecture and Urban
Design, ser. SimAUD ’11. San Diego, CA, USA: Society for
Computer Simulation Int., 2011, pp. 141–148. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2048536.2048555

[2] Q. Hua, H. B. Chen, Y. Y. Ye, and S. X. D. Tan, “Occupancy detection
in smart buildings using support vector regression method,” in Proc.
Int. Conf. on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), vol. 02, Aug 2016, pp. 77–80.

[3] R. Tomastik, S. Narayanan, A. Banaszuk, and S. Meyn, Model-Based
Real-Time Estimation of Building Occupancy During Emergency
Egress. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
215–224.

[4] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifi-
cation of temporal properties,” in Proc. Int. Conf. Runtime Verification,
Berlin, Heidelberg, 2012, pp. 147–160.

[5] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric
temporal logic properties in model-based design for cyber-physical
systems,” Int. Journal on Software Tools for Technology Transfer,
Feb 2017. [Online]. Available: http://dx.doi.org/10.1007/s10009-017-
0447-4

[6] X. Jin, A. Donze, J. V. Deshmukh, and S. A. Seshia, “Mining
requirements from closed-loop control models,” in Proc. Int. Conf.
Hybrid Systems: Computation and Control, 2013, pp. 43–52.

[7] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning
and detection of anomalous behavior,” IEEE Trans. Autom. Control,
vol. 62, no. 3, pp. 1210–1222, March 2017.

[8] Z. Xu, M. Birtwistle, C. Belta, and A. Julius, “A temporal logic
inference approach for model discrimination,” IEEE Life Sciences
Letters, vol. 2, no. 3, pp. 19–22, Sept 2016.

[9] Z. Xu and A. A. Julius, “Census signal temporal logic inference for
multiagent group behavior analysis,” IEEE Trans. Autom. Sci. and
Eng., Early Access on IEEE Xplore.

[10] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal
logic,” in Proc. Int. Conference on Hybrid Systems: Computation and
Control, ser. HSCC ’16. New York, NY, USA: ACM, 2016, pp. 1–10.
[Online]. Available: http://doi.acm.org/10.1145/2883817.2883843

[11] Z. Xu, S. Saha, and A. Julius, “Provably correct design of observations
for fault detection with privacy preservation,” in Proc. IEEE Conf.
Decision and Control (CDC), Melbourne, Australia, 2017.

[12] Y. Deng, A. D’Innocenzo, and A. A. Julius, “Trajectory-based observer
for hybrid automata fault diagnosis,” in Proc. IEEE Conf. Decision and
Control (CDC), Dec 2015, pp. 942–947.

[13] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
pp. 3–34, 1995.

[14] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas,
“Robust test generation and coverage for hybrid systems,” in Proc.
Hybrid Syst.: Computat. Control. Springer, 2007, pp. 329–342.

[15] A. Girard, “Approximately bisimilar finite abstractions of stable linear
systems,” in Proc. Hybrid Syst.: Comput. and Control, Pisa, Italy,
2007.

[16] Z. Xu, A. Julius, and J. H. Chow, “Energy storage controller synthesis
for power systems with temporal logic specifications,” IEEE Systems
Journal, Early access on IEEE Xplore.

[17] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Networks, vol. 4, Nov 1995, pp. 1942–1948
vol.4.

[18] C. C. Okaeme, S. Mishra, and J. T. Wen, “A comfort zone set-based
approach for coupled temperature and humidity control in buildings,”
in Proc. IEEE Int. Conf. Automation Science and Engineering (CASE),
Aug 2016, pp. 456–461.

[19] A. TenWolde and C. L. Pilon, “The effect of indoor humidity on water
vapor release in homes,” in Proc. Int. Conf. Thermal Performance of
the Exterior Envelopes of Whole Buildings X, Dec 2007.

[20] Y. Deng, A. Rajhans, and A. A. Julius, “Strong: A trajectory-based
verification toolbox for hybrid systems,” in Quantitative Evaluation of
Systems, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, vol. 8054, pp. 165–168.

615

