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Abstract— In this paper, we present a coordinated control
method for wind turbine generator and energy storage system
for frequency regulation with provable probabilistic guarantees
in the stochastic environment of wind power generation. The
regulation requirement is specified in the form of metric tempo-
ral logic (MTL). We present the stochastic control bisimulation
function, which bounds the divergence of the trajectories of
the stochastic control system and the diffusionless deterministic
control system in a probabilistic fashion. We first design a
feedforward controller by solving an optimization problem
for the nominal trajectory of the deterministic control system
with robustness against initial state variations and stochastic
uncertainties. Then we generate a feedback control law from
the data of the simulated trajectories. We implement our control
method on a four-bus system and test the effectiveness of
the method with a generation loss disturbance. We also test
the advantage of the feedback controller over the feedforward
controller when unexpected disturbance occurs.

I. INTRODUCTION

With the increasing penetration of renewable energy into
the power grid, the stochastic nature of the renewable energy
such as wind energy makes the planning and operation of
power grid more challenging. Energy storage systems such as
battery energy storage systems can be utilized to compensate
the volatility brought by the renewable energy and regulate
the grid frequency within the allowable range [1], [2], [3],
[4]. On the other hand, the renewable energy can also be
utilized for the frequency regulation when disturbances such
as generation loss or line failure occurs. For example, it has
been shown that wind turbine generators can adjust its power
output for restoring the grid frequency after a disturbance [5].

As different generators and energy storage systems have
different response time, the regulated frequency could have
different temporal properties. Therefore, temporal logics can
be utilized to provide time-related specifications such as
“after a disturbance, the grid frequency should be restored to
60Hz±0.5Hz within 2 seconds and to 60Hz±0.3Hz within
20 seconds”. There is much research on the control of wind
turbine generators or energy storage systems for economic
or stability purposes, while incorporating temporal logic
constraints into the controller synthesis problem is still a
novel approach.

There have been various methods on how to design
controllers to meet temporal logic specifications in stochastic
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environment [6], [7]. For discrete-time temporal logic spec-
ifications such as linear temporal logic (LTL) specifications,
the usual approach is to abstract the system as a Markov De-
cision Process (MDP), then the control design is transformed
to a problem of finding the control strategy that maximizes
the probability of producing a sequence of states in the
MDP satisfying the LTL specification [8]. For dense-time
temporal logic specifications, the system can be abstracted
as a timed automaton [9], [10] and the design process
reduces to reachability analysis after the timed automaton
is constructed.

In this paper, we present a controller synthesis approach
for metric temporal logic specifications with stochastic en-
vironment by designing the controller for the trajectory
of the diffusionless version of the process with robustness
against initial state variations and stochastic uncertainties.
Our work is motivated by the works of probabilistic testing
for stochastic systems in [11], [12]. We present the stochastic
control bisimulation function, which bounds the divergence
of the trajectories of the stochastic control system and the
diffusionless deterministic control system (nominal system)
in a probabilistic fashion. Thus all the controller synthesis
methods for the deterministic system can be used for de-
signing the optimal input signals, and the same input signals
can be applied to the stochastic system with a probabilistic
guarantee. To account for unexpected disturbances, we gen-
erate a feedback control law from the data of the simulated
trajectories to form a feedback controller. We apply the
controller synthesis method in regulating the grid frequency
of a four-bus system by the coordinated control of wind
turbine generators and energy storage systems. We test the
effectiveness of the controllers with the stochastic wind
generation after a large generation loss disturbance, and
also the case when unexpected disturbances are added
to the situation. Simulations have shown that the trajecto-
ries with the feedforward and the feedback controllers can
satisfy the MTL specification with a probabilistic guarantee.
Besides, simulations show that when even unexpected distur-
bances occur, the feedback controller has better performance
in comparison with the feedforward controller.

II. STOCHASTIC CONTROL BISIMULATION FUNCTION

A. Stochastic Control Bisimulation Function

We consider the following general stochastic control sys-
tem

dx = F (x, u)dt+G(x, u)dw, (1)
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where the state x ∈ X ∈ Rn, the input u ∈ U ∈ Rp, w is an
Rm-valued standard Brownian motion.

Note that our modeling framework is essentially the same
as that in [11] when the input signal u(·) is given and
bounded, where the existence and uniqueness of the solution
of (1) can be guaranteed with the conditions given in [11].

We also consider the nominal system of (1) as the
diffusionless deterministic version:

dx∗ = F (x∗, u)dt, (2)

The trajectories generated by the nominal system are
referred to as the nominal trajectories. For the nominal sys-
tem (2), a control autobisimulation function can be formed
[13].

Definition 1: A continuously differentiable function ψ :
Rn × Rn → R>0 is a control autobisimulation function
of the nominal system (2) if for any x, x̃ ∈ Rn (x 6= x̃)
there exists a function u : Rn × R → Rp such that
ψ(x, x̃) > 0, ψ(x, x) = 0 and ∇xψ(x, x̃)F (x, u(x, t)) +
∇x̃ψ(x, x̃)F (x̃, u(x̃, t)) ≤ 0.

In the following, we extend the concept of control auto-
bisimulation function to the stochastic setting.

Definition 2: A twice differentiable function φ : X×X →
R>0 is a stochastic control bisimulation function between
(1) and its nominal system (2) if it satisfies

φ(x, x̃) > 0,∀x, x̃ ∈ X , x 6= x̃,

φ(x, x) = 0, ∀x ∈ X ,
(3)

and there exist µ, α > 0 and a function u : Rn × R → Rp
such that

∂φ

∂x
F (x, u(x, t)) +

∂φ

∂x̃
F (x̃, u(x̃, t))

+
1

2
GT (x, u(x, t))

∂2φ

∂x2
G(x, u(x, t)) ≤ −µφ+ α,

(4)

for any x, x̃ ∈ X .
The stochastic control bisimulation function establishes a

bound between the trajectories of system (1) and its nominal
system (2). We denote Bψ(x, r) , {x̃ ∈ X |ψ(x, x̃) ≤ r}.

B. Stochastic Control Bisimulation Function for Linear Dy-
namics

In this subsection, we consider the stochastic control
system with linear dynamics described as below:

dx = (Ax+Bu)dt+ Σdw, (5)

where A ∈ Rn×n, B ∈ Rn×p, Σ ∈ Rn×m.
If the system is stable, i.e. A is Hurwitz, we can construct

a stochastic control bisimulation function of the form

φ(x, x̃) = (x− x̃)TM(x− x̃),

where M is a symmetric positive definite matrix. In order for
this function to qualify as a stochastic control bisimulation

function, we need to have M � 0, and
∂φ

∂x
(Ax+Bu) +

∂φ

∂x̃
(Ax̃+Bu)+

trace(
1

2
ΣT (

∂2φ(x, x̃)

∂x2
)Σ)

=2(x− x̃)TMA(x− x̃) + trace(ΣTMΣ)

≤− µ(x− x̃)TM(x− x̃) + α.

(6)

for some µ, α > 0. If we pick α = trace(ΣTMΣ), the
inequality (6) becomes a linear matrix inequality (LMI)
ATM + MA + µM � 0. We denote the system trajectory
starting from x0 with the input signal u(·) as ξ(·;x0, u).
It can be seen that (6) holds for any input signal u(·),
so u(·) is free to be designed. It can also be seen that
the matrix M that satisfies ATM + MA + µM � 0 also
satisfies ATM + MA � 0. Thus it can be verified that
ψ(x, x̃) = φ(x, x̃) = (x − x̃)TM(x − x̃) is also a control
bisimulation function of the nominal system

dx∗ = (Ax∗ +Bu)dt. (7)

We denote the nominal system trajectory starting from x0
with the input signal u(·) as ξ∗(·;x0, u).

Proposition 1: If φ is a stochastic control bisimulation
function between the stochastic system (5) and its nominal
system (7), then for any T > 0,

P{ sup
0≤t≤T

φ(ξ∗(t;x0, u), ξ(t;x0, u)) < γ} > 1− αT

γ
. (8)

It can be seen from (8) that φ provides a probabilistic
upper bound for the distance between the states of the
stochastic system and its nominal system in a finite time
horizon.

III. STOCHASTIC CONTROLLER SYNTHESIS

A. Feedforward Controller Synthesis

The syntax and semantics of the Metric Temporal Logic
are described in [2]. We denote the set of states that satisfy
the predicate p as O(p) ⊂ X , where X is the domain of
the state x. In this paper, we consider a fragment of MTL
formulae in the following form:

ϕ =�[τ1,Tend]p1 ∧�[τ2,Tend]p2 ∧ · · · ∧�[τq,Tend]pq (9)

where τ1 < τ2 < . . . τq ≤ Tend, Tend is the end of the
simulation time, O(pq) ⊂ O(pq−1) ⊂ · · · ⊂ O(p1), each
predicate pk is in the following form:

pk ,

(
nk∧
ν=1

aTk,νx < bk,ν

)
, ak,ν ∈ Rn, bk,ν ∈ R, (10)

where ak,ν and bk,ν denote the parameters that define the
predicate, nk is the number of atomic predicates in the k-th
predicate. We constraint ‖ak,ν‖2 = 1 to reduce redundancy.

The MTL formulae in the above-defined form is actu-
ally specifying a series of regions to be entered before
certain deadlines and stayed thereafter, with larger regions
corresponding to tighter deadlines. The MTL formulae in
this form is especially useful in power system frequency
regulations as discussed in Section IV.
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The δk,ν-robust modified formula ϕ̂δ is defined as follows:

ϕ̂δ ,�[τ1,Tend]p̂1 ∧�[τ2,Tend]p̂2 ∧ · · · ∧�[τq,Tend]p̂q (11)

where each predicate p̂k is modified from (10) as follows:

p̂k ,

(
nk∧
ν=1

aTk,νx < bk,ν − δk,ν

)
, ak,ν ∈ Rn, bk,ν ∈ R,

(12)
We use [[ϕ]] (s, t) to denote the robustness degree of the
trajectory s with respect to the formula ϕ at time t.

Theorem 1: If for every k ∈ {1, . . . , q} and ν ∈
{1, . . . , nk}, there exist zk,ν , ε > 0 such that z2k,νak,νa

T
k,ν �

M and
[[
ϕδ̂
]]

(ξ∗(·;x∗0, u), 0) ≥ 0, where ϕδ̂ is the δ̂k,ν-
robust modified formula of ϕ, δ̂k,ν = (

√
r +
√
γ̂)/zk,ν ,

γ̂ = αTend
ε , then for any x0 ∈ Bψ(x∗0, r), the trajectory

ξ(·;x0, u) satisfies MTL specification ϕ with probability at
least 1− ε, i.e. P{[[ϕ]] (ξ(·;x0, u), 0) ≥ 0} > 1− ε.

From Theorem 1, if we can design the input signal u(·)
such that the nominal trajectory ξ∗(·;x∗0, u) of the nominal
system (2) satisfies the δ̂k,ν-robust modified formula of ϕ
(δ̂k,ν , (

√
r +
√
γ̂)/zk,ν), then all the trajectories of the

stochastic system (1) starting from the initial set Bψ(x∗0, r)
are guaranteed to satisfy the MTL specification ϕ with
probability at least 1 − ε. To make the robust modifica-
tion as tight as possible, for every k ∈ {1, . . . , q} and
ν ∈ {1, . . . , nk}, we compute the maximal zk,ν such that
z2k,νak,νa

T
k,ν �M . We denote the maximal value of zk,ν as

z∗k,ν , δ̂∗k,ν , (
√
r +
√
γ̂)/z∗k,ν , and the δ̂∗k,ν-robust modified

formula as ϕδ̂∗ (the predicates in ϕδ̂∗ are denoted as p̂∗k).
The optimization problem to find the optimal input signal

such that the nominal trajectory satisfies the δ∗k,ν-robust
modified formula ϕδ̂∗ is formulated as follows:

arg min
u(·)

J(u(·))

subject to
[[
ϕδ̂∗
]]

(ξ∗(·;x∗0, u), 0) ≥ 0.

The performance measure J(u(·)) can be set as the control
effort ‖u(·)‖2 or ‖u(·)‖1. For linear systems, the above
optimization problem can be converted to a linear program
(LP) problem [14], [15] and it can be solved efficiently by LP
solvers. As we only focus on the time horizon [0, Tend] (e.g.
the most critical time period in the transient response of
the power system), we assume that some other controllers
that make O(p̂∗q) a control invariant set for the nominal
trajectories will take over after Tend.

B. Feedback Controller Synthesis

In this section, we design a feedback control law to replace
the optimal input signals of the feedforward controller. The
advantage of a feedback controller is that it is more robust
to unexpected disturbances. When the states and inputs of
the trajectories are calculated using numeric simulators such
as ODE or CVODE, the data are discrete and therefore in
the following we use ξ∗` [j] , ξ∗` (j;x∗0,`, u`) and u`[j] (` =
1, 2, . . . , N , j = 0, 1, . . . , Nt) to denote the flow solution
and the input of the `th nominal trajectory of the nominal
system (2) at the jth time instant, respectively. As we have

assumed in Section III-A, we extend each signal u`(·) after
Tend and when t[j] > Tend, u`[j] is a control input that makes
O(p̂∗q) a control invariant set for the `th nominal trajectory.

The algorithm to generate the feedback law is shown in
Algorithm 1. We apply the following feedback law χu(x, t)
which depends both on the current state x and the current
time instant j:

χu(x, t[j]) ,



u1[0], if (x, t[j]) ∈ X0,1[j]× [0, t[0]],
...

...
uN [0], if (x, t[j]) ∈ X0,N [j]× [0, t[0]],

...
...

u1[i], if (x, t[j]) ∈ Xi,1[j]× [0, t[i]],
...

...
uN [i], if (x, t[j]) ∈ Xi,N [j]× [0, t[i]],

...
...

u1[Nt], if (x, t[j]) ∈ XNt,1[j]× [0, Tend],
...

...
uN [Nt], if (x, t[j]) ∈ XNt,N [j]× [0, Tend],

uˆ̀[ĵ], otherwise,
(13)

where t[j] is the time at the jth time instant, each region
Xi,`[j] is changing with time and defined as follows:

Xi,`[j] =


X̂i,` \

⋃
i′>i

X̂i′,`, if ` = ˆ̀[j],

Bψ(ξ∗` [i], r) \
((⋃

i′
X̂i′,ˆ̀

)
∪
( ⋃
`′>`

⋃
i′

(ξ∗`′ [i
′], r)

)
∪
( ⋃
i′>i

Bψ(ξ∗` [i′], r)
))
, if ` 6= ˆ̀[j].

(14)
where ˆ̀ is initially assigned as min{`|x0 ∈ Bψ(x∗0,`, r)}
and then assigned according to lines 5-9 of Algorithm 1, ĵ is
initially assigned as 0 and then assigned according to lines 5-
9 of Algorithm 1, X̂i,` = {x|φ(x, x̃) ≤ γ̂, x̃ ∈ Bψ(ξ∗` [i], r)}
is defined as the stochastic robust neighbourhood with
probability (1− ε), where γ̂ = αTend

ε .

Algorithm 1 Feedback law generation.

1: j ← 0, ĵ ← 0
2: ˆ̀[1]← min{`|x0 ∈ Bψ(x∗0,`, r)}
3: For every i, `, obtain Xi,`[1] according to (14)
4: while j < Nt do
5: if there exists `′ 6= ˆ̀[j] and i ≥ j such that x ∈
Xi,`′ [j] then

6: ˆ̀[j + 1]← `′, ĵ ← i+ 1
7: else
8: ˆ̀[j + 1]← ˆ̀[j], ĵ ← ĵ + 1
9: end if

10: Obtain χu(x, t[j]) according to (13)
11: j ← j + 1
12: For every i, `, obtain Xi,`[j] according to (14)
13: end while
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We use ξ(j;x0, χu) to denote the flow solution of the
trajectory of the stochastic system starting from x0 at the
jth time instant when the feedback control law χu(x, t) is
applied. As shown in Fig. 1, for the two possible trajec-
tories (realizations) of the stochastic system, the trajectory
(realization) in Fig. 1 (a) stays within the stochastic robust
neighbourhoods around the nominal trajectory ξ∗` [·] through-
out the time while the trajectory (realization) in Fig. 1 (b)
exits the stochastic robust neighbourhoods around ξ∗` [·] and
enters Xi,`′ [j] at time instant j, thus ˆ̀, ĵ and the following
inputs are changed according to Algorithm 1 such that the
trajectory stays within the stochastic robust neighbourhoods
around the nominal trajectory ξ∗`′ [·] with probability (1− ε)
since time instant j.

Theorem 2: If for every `,
[[
ϕδ̂∗
]]

(ξ∗(·;x∗0,`, u`), 0) ≥ 0

(ϕδ̂∗ is the δ̂∗k,ν-robust modified formula, where δ̂∗k,ν =

(
√
r +

√
γ̂)/z∗k,ν , γ̂ = αTend

ε ), then for any x0 ∈
N⋃
`=1

Bψ(x∗0,`, r) the trajectory x(ξ(·;x0, χu)) satisfies the

MTL specification ϕ with probability at least 1 − ε, i.e.
P{[[ϕ]] (ξ(·;x0, χu), 0) ≥ 0} > 1− ε.

While Theorem 2 gives provable probabilistic guarantees
when there is no unexpected disturbance, the following
theorem considers the situation when unexpected disturbance
occurs.

Theorem 3: Assume that for every `,
[[
ϕδ̂∗
]]

(ξ∗(·;x∗0,`, u`), 0) ≥ 0 (ϕδ̂∗ is defined in the same

way as in Theorem 2). For any x0 ∈
N⋃
`=1

Bψ(x∗0,`, r), if at

any time instant j, unexpected disturbances can perturb the

state x to another state x′ ∈
N⋃
`=1

Bψ(ξ∗` [i], r), where i ≥ j,

then the trajectory x(ξ(·;x0, χu)) still satisfies the MTL
specification ϕ with probability at least 1− ε.

IV. WIND TURBINE GENERATOR CONTROLLER
SYNTHESIS

In this section, we apply the controller synthesis method
in designing a coordinated controller for regulating the grid
frequency of a four-bus system with a 600 MW thermal plant
made up of four identical units, a wind farm consisting of 200
identical 1.5 MW Type-C wind turbine generators (WTG)
and an energy storage system (ESS), as shown in Fig. 2.
The configuration parameters of each Type-C WTG can be
found in Appendix B of [16]. For each Type-C WTG, the
differential equations are given as follows:

Ė′qD = − 1
T ′0

(E′qD + (Xs −X ′s)Ids) + ωs
Xm
Xr

Vdr

− (ωs − ωr)E′dD,
Ė′dD = − 1

T ′0
(E′dD − (Xs −X ′s)Iqs)− ωs XmXr Vqr

+ (ωs − ωr)E′qD,
dωr = ωs

2HD
(Tm − E′dDIds − E′qDIqs)dt+ kwdw,

ẋ1 = KI1(Pref − Pgen),

ẋ2 = KI2(KP1(Pref − Pgen) + x1 − Iqr),
ẋ3 = KI3(Qref −Qgen),

ẋ4 = KI4(KP3(Qref −Qgen) + x3 − Idr),

1

Fig. 1. Two possible trajectories (realizations) of the stochastic system
(black), two nominal trajectories (brown) and the stochastic robust neigh-
bourhoods around the nominal trajectories.

ESS

Load

Thermal 

Plant Wind 

Farm

Line 1

Line 2

Fig. 2. The four-bus system [5] with a thermal plant, a wind farm and an
energy storage system (ESS).

where E′dD, E′qD and ωr are the d, q axis voltage and
rotor speed of the WTG, respectively, kw is a positive
factor corresponding to the stochastic part of the wind power
generation, x1 to x4 are proportional-integral (PI) regulator
induced states, KI1, KI2, KI3, KI4, KP1, KP2, KP3, KP4

are parameters of the PI regulator, Tm is the mechanical
torque generated by the wind, Vdr, Vqr, Idr, Iqr are the rotor
d, q axis voltage and current, respectively, Ids, Iqs are the
stator d, q axis current, respectively, Pgen and Qgen are the
WTG active and reactive power output, respectively, and

Pref = Coptω
3
r + uw, Qref = Qset,

T ′0 =
Xr

ωsRr
, X ′s = Xs −

X2
m

Xr
, λ =

2kωrRt
pvwind

,

λi = (
1

λ+ 0.08θt
− 0.035

θ3t + 1
)−1,

Cp = 0.22(
116

λi
− 0.4θt − 5)e

− 12.5
λi ,

Tm =
1

2

ρπR2
tωbCpv

3
wind

Sbωr
,

where uw is a control input (by adjusting the input uw,
the wind turbine generator can adjust its power output for
restoring the grid frequency to allowable ranges after a
disturbance), the explanations of the other parameters can be
found in Section 2.1.2 of [16]. We set Sb=1MVA, Pgen =
1.5, v3wind=12m/s for the operating condition, Copt.

The algebraic equations of each Type-C WTG are given

1583



as follows:

0 = KP2(KP1(Pref − Pgen) + x1 − Iqr) + x2 − Vqr,
0 = KP4(KP3(Qref −Qgen) + x3 − Idr) + x4 − Vdr,
0 = −Pgen + E′dDIds + E′qDIqs −Rs(I2ds + I2qs)

− (VqrIqr + VdrIdr),

0 = −Qgen + E′qDIds − E′dDIqs −X ′s(I2ds + I2qs),

0 = −Idr +
E′qD
Xm

+
Xm

Xr
Ids,

0 = −Iqr −
E′dD
Xm

+
Xm

Xr
Iqs,

The network algebraic equations are given as follows
(details of the Type-C wind turbine generator network can
be found in Figure 2.3 of [16]):

E′qD − jE′dD = (Rs + jX ′s)(Iqs − jIds) + VD,
VDe

jθD = jXt(Iqs − jIds − IGC)ejθD + V ejθ,

where VD and θD are voltage magnitude and angle of the
bus to which the WTG is connected, and

IGC =
VqrIqr + VdrIdr

VD
.

By linearizing the system of differential-algebraic equa-
tions at the equilibrium point (the equilibrium point can
be found by calculating the root of the algebraic equations
and the right-hand side of the differential equations equal to
zero), we have

d

[
∆x
0

]
=

[
As Bs
Cs Ds

] [
∆x
∆y

]
dt+

[
Ms

Ns

]
uwdt+

[
Σs1
Σs2

]
dw,

∆Pgen =
[
Es Fs

] [∆x
∆y

]
,

(15)

where ∆x = [∆EqD,∆EdD,∆ωr,∆x1,∆x2,∆x3,∆x4]T ,
∆y = [∆Pgen,∆Qgen,∆Vdr,∆Vqr,∆Idr,∆Iqr,∆Ids,∆Iqs,
∆VD,∆θD]T , 4Pgen is the active power variation from
each WTG.

Through the Kron reduction, we have

d∆x = Akr∆xdt+Bkru
wdt+ Σkrdw,

∆Pgen = Ckr∆x+Dkru
w + Ekrdw/dt,

(16)

where

Akr = As −BsD−1s Cs, Bkr = Ms −BsD−1s Ns,
Ckr = Es − FsD−1s Cs, Dkr = −FsD−1s Ns,

Σkr = Σs1 −BsD−1s Σs2, Ekr = −FsD−1s Σs2.

For the four-bus system, the system frequency response
model is as follows (we choose base MVA as 1000MVA):

4ω̇ =
ωs
2H

(4Pm + us −4Pd + 200∆Pgen/1000− D

ωs
4ω),

4Ṗm =
1

τch
(4Pv −4Pm),

4Ṗv =
1

τg
(−4Pv −

1

2πR
4ω),

(17)

where 4ω is the grid frequency deviation, 4Pm is the
governor mechanical power variation, 4Pv is the governor
valve position variation and 4Pd denotes a large disturbance
(e.g. generation loss or abrupt load changes). 4Pgen times
200 as there are 200 WTGs, and it is divided by 1000 as the
base MVA for each WTG and the power system are 1MVA
and 1000 MVA, respectively. We set ωs = 2π × 60rad/s,
D=1, H=4s, τch=0.3s, τg=0.1s, R=0.05.

With (16) and (17), we have the following linear system:

dx̂ = (Âx̂+ B̂u)dt+ Σ̂dw, (18)

where x̂ = [4EqD,4EdD,4ωr,4x1,4x2,4x3,4x4,4ω,
4Pm,4Pv]T , the input u = [uw, us]T . As the matrix Â is
computed as Hurwitz, the system is stable.

We consider a disturbance of generation loss of 150 MW
(loss of one unit, ∆Pd = 0.15). We use the following MTL
specification for frequency regulation after the disturbance:

ϕ =�[0,Tend]p1 ∧�[2,Tend]p2,

p1 =(−0.5Hz ≤ ∆f ≤ 0.5Hz) ∧ (−10Hz ≤ ∆fr ≤ 10Hz),

p2 =(−0.4Hz ≤ ∆f ≤ 0.4Hz),
(19)

where ∆f = 4ω
2π , ∆fr = 4ωr

2π . The specification means
“After a disturbance, the grid frequency deviation should
never exceed ±0.5Hz, the WTG rotor speed deviation should
never exceed ±10Hz, after 2 seconds the grid frequency
deviation should always be within ±0.4Hz.

We set kw = 1, Tend = 5 (s), ε = αTend/γ̂ = 5%,
so α = 0.05γ̂/Tend = 0.01γ̂. As α = trace(Σ̂TM Σ̂) =
k2wM(3, 3), we have γ̂ = 100k2wM(3, 3) = 100M(3, 3).
We assume that the initial state variations can be covered by
Bψ(x̂∗0, r), where r = 4γ̂ (4 = 22 is chosen as the initial state
variations due to the time needed for running the algorithm to
generate the controller, which is about twice the simulation
time), x̂∗0 is zero in every dimension. It can be seen from
(19) that the allowable variation range of the grid frequency
variation 4ω is much smaller than that of the wind turbine
rotor speed variation 4ωr. Therefore, in order to decrease
the conservativeness of the probabilistic bound as much as
possible, we further optimize both zk,i and the matrix M
such that the outer bounds of the stochastic robust neigh-
bourhoods in the dimension of the grid frequency variation
δ̂∗1,1 (δ̂∗1,1 = δ̂∗1,2 = δ̂∗2,1 = δ̂∗2,2) are much smaller than
the outer bounds in the dimension of the wind turbine rotor
speed variation δ̂∗1,3 (δ̂∗1,3 = δ̂∗1,4). As δ̂k,i = (

√
r+
√
γ̂)/zk,i

and γ̂ = 100M(3, 3), minimizing δ̂1,1 can be achieved by
minimizing M(3, 3) and maximizing z1,1. The combined
optimization to obtain both M∗ and z∗1,1 is as follows:

min.− z21,1

s.t. M � 0, ÂTM +MÂ+ µM � 0,

eT3Me3 ≤ η,M − z21,1a1,1aT1,1 � 0.

(20)

where e3 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T , µ = 10−10, η is tuned
manually to be as small as possible while the optimization
problem is feasible.
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With the M∗ obtained from (20), we compute the tightest
outer bound in the dimension of 4ωr as follows:

min.− z21,3

s.t. M∗ − z21,3a1,3aT1,3 � 0.
(21)

From (20) and (21), we obtain the δ̂∗k,i-robust modified
formula:
ϕδ̂∗ =�[0,Tend]p̂

∗
1 ∧�[2,Tend]p̂

∗
2,

p̂∗1 =(−0.5Hz + 0.217Hz ≤ ∆f ≤ 0.5Hz− 0.217Hz)∧
(−10Hz + 6.08Hz ≤ ∆fr ≤ 10Hz− 6.08Hz),

p̂∗2 =(−0.4Hz + 0.217Hz ≤ ∆f ≤ 0.4Hz− 0.217Hz).

Simulations: For the feedforward controller synthesis, we
set J(u(·)) = ‖uw(·)‖2 +λ ‖us(·)‖2, where λ = 100 (larger
λ encourages power input from the wind turbine generator)1.
The obtained optimal input signals are shown in Fig. 3. As
shown in Fig. 4, all of the 100 trajectories (realizations)
starting from Bψ(x̂∗0, r) with the obtained optimal input
signals satisfy the specification ϕ.

Fig. 3. The obtained optimal input signals.

Fig. 4. 100 trajectories (realizations) of ∆f and ∆fr without control
(black) and with the feedforward controller (blue).

We further design a feedback controller based on the
obtained optimal input signals of the feedforward controller.
To make a comparison between the feedback controller and
the feedforward controller, we add an unexpected distur-
bance of per unit value 0.35 to ∆Pd during the first 0.1
second while generating 100 trajectories (realizations) of the
stochastic system with both the feedforward and the feedback
controller. As shown in Fig. 5, 99% of the trajectories
generated with the feedforward controller still satisfy the
MTL specification ϕ, while all the trajectories generated with
the feedback controller still satisfy the MTL specification ϕ
with the minimal robustness degree of 0.0016.

1The Matlab codes for the simulations can be found in
https://github.com/david00710/WTGcontroller.

Fig. 5. 100 trajectories (realizations) of ∆f (a) with the feedforward con-
troller and (b) with the feedback controller, with an unexpected disturbance
of per unit value 0.35 to ∆Pd during the first 0.1 second.
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