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Abstract—We present an energy storage controller synthesis
method for power systems with respect to metric temporal logic
(MTL) specifications. The power systems with both constant
impedance loads and constant power loads are modeled as a set
of differential–algebraic equations. After a fault is cleared, with
uncertainties in the fault clearing time, the generator machine an-
gles and rotor speed deviations will enter a set of postfault initial
states. We use the robust neighborhood approach to cover this set
using the initial robust neighborhoods of finitely many simulated
postfault trajectories. These simulated postfault trajectories meet
the frequency regulation requirements specified in MTL as they
are driven by the optimal control input signals obtained through
a functional gradient descent approach. In this way, all the possi-
ble postfault trajectories with the given uncertainties in the fault
clearing time are guaranteed to satisfy the MTL specification. Fur-
thermore, we learn a piecewise linear control law from the data of
the simulated trajectories to generate a feedback controller.

Index Terms—Controller synthesis, differential–algebraic equa-
tions, energy storage systems (ESSs), temporal logic.

I. INTRODUCTION

IN RECENT years, power systems are increasingly utilizing
diversified power resources for providing more reliable and

efficient ancillary services [1], [2]. The market-based mecha-
nism has provided incentives for improving the performance
of various ancillary services. Unlike the traditional ancillary
services, market with no differentiation for resources that can
respond more quickly or accurately, current and future ancillary
services markets are increasingly focusing on the performance
of different resources [3]. With the incorporation of renewable
energy in the ancillary services, energy storage systems (ESSs)
such as flywheels, supercapacitors, and battery ESSs serve as
buffers of the power system to restore grid frequency to the
allowable range [4]. The ESSs perform better than traditional
generators and operating reserves with their quicker respon-
sive capability, more precise control and capability to store
and release energy in providing nearly net-zero energy services
[5], [6].

As different ancillary services and ESSs have different re-
sponse time and duration time, the regulated frequency could
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have different temporal properties. Therefore, temporal logic
[7], [8] can be utilized to provide time-related specifications
such as “after a fault is cleared, the grid frequency should
be restored to 60 Hz ± 0.2 Hz within 2 s and to 60 Hz ±
0.02 Hz within 20 s.” The ESSs that can meet frequency and
stability requirement in the form of temporal logic specifications
have more precise time-related performance measure, which can
create potential economic benefits in the performance-based an-
cillary services market. There are a lot of literature on the control
of ESSs for economic and stability benefits, while incorporating
temporal logic constraints into the controller synthesis problem
is still a novel approach.

A. Related Works

In the literature, there are two main categories of approaches
of designing controllers that meet certain temporal logic spec-
ifications. The first category of approaches abstract the system
as a transition system and transform the controller synthesis
problem into a series of constrained reachability problems [9]–
[11]. This category of approaches have been mostly used in
controller synthesis with respect to discrete-time temporal log-
ics such as linear temporal logic (LTL). The second category
of approaches convert the controller synthesis problem into a
single optimal control problem and encode the temporal logic
specifications as optimization constraints on the optimization
variables. These category of approaches are mainly used in
continuous-time (real-time, dense-time) temporal logics such
as metric temporal logic (MTL) and signal temporal logic. For
the optimization problem formulation, some authors formulate
it as a mixed-integer linear programming problem for mixed
logical dynamical systems [12], [13] while some other authors
substitute the temporal logic constraint into the optimization
objectives and apply a functional gradient descent algorithm on
the resulting unconstrained problem. The functional gradient de-
scent approach has wider applications as it can be applied for any
general nonlinear systems. In [14], Winn and Julius propose an
optimal safety controller synthesis method for continuous non-
linear systems using functional gradient descent. In [15], Abbas
et al. apply the method in the falsification of MTL specifications
and the controller synthesis can be achieved by falsifying the
negation of the MTL specifications.

While these methods are effective in applications such as con-
trolling quadrotors or insulin levels in the blood with the systems
modeled as a set of differential equations, they are still insuffi-
cient for power system applications as power systems are often
modeled as a set of nonlinear differential–algebraic equations
(nonlinear DAE systems) [16], especially when constant power
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loads exist in the network [17], [18]. There has been only a few
studies in controller synthesis for nonlinear DAE systems with
discrete-time or continuous-time temporal logic specifications
such as [19] where the authors designed a hybrid controller for
switched DAE systems with LTL specifications. There has been
literature in the reachability analysis of power systems modeled
as DAE systems [20], but it has not been applied to controller
synthesis of such systems.

B. Contributions and Advantages

1) Feedforward Controller Synthesis for the Power System
Nonlinear DAE Model with Uncertainties in the Initial State
with respect to MTL Specifications: We present a controller
synthesis method to regulate grid frequencies utilizing ESSs
and we seek the minimal-storage-effort control to satisfy cer-
tain MTL specifications of the frequency deviations and ma-
chine angles. Our method is based on the functional gradient
descent method in [15], but different from [15], we formulate
the MTL specification as a constraint and we apply the func-
tional gradient descent method to both satisfy the MTL con-
straint and minimize an objective function as a performance
metric of the controller. A preliminary version of this paper ap-
peared in conference proceedings [21], where we present the
energy controller synthesis of power systems modeled as a set
of differential equations. In this paper, the gradients of both
the objective and the constraint functions are calculated specif-
ically for DAE systems. While our methodology is applicable
for general nonlinear DAE systems, as the power system DAE
model is feedback linearizable, we choose to utilize that for the
purpose of easier computation (less computation time) and the
obtained feedback linearized system has a control autobisimu-
lation function, which can bound the divergence of trajectories
that start from an initial set within the robust neighborhood [22].
We simulate finitely many postfault trajectories (after the fault is
cleared) with different fault clearing time such that the initial ro-
bust neighborhoods of these simulated trajectories can cover all
the postfault initial states (all the possible states when the fault is
cleared) with given uncertainties in the fault clearing time. For
each simulated postfault trajectory, the optimal storage control
input signals are computed through the functional gradient de-
scent method. In this way, all the postfault trajectories that start
from the set of postfault initial states (including the uncertainties
in the fault clearing time) are guaranteed to stay in the robust
neighborhoods around the nominal (simulated) trajectories and
satisfy the MTL specifications.

2) Feedback Controller Synthesis with Respect to MTL
Specifications: In [23], Winn and Julius replace the feedfor-
ward controller obtained in [14] with a feedback controller and
a piecewise linear control law is learned from the data of the
simulated trajectories following the approach of Bemporad et al.
[24]. Following this path, we generate a feedback controller by
identifying a piecewise linear control law from the data of the op-
timal input signals and the states of the simulated trajectories, but
different from [23], we generate a feedback controller for MTL
specifications, which requires more stringent conditions than
that for safety specifications in [23]. Another difference from
other works such as [23] is that we use robust linear program-
ming (LP) to find the classification functions for the subclasses

and construct piecewise linear classifiers in partitioning the state
space so that the state space is totally covered. We have proven
and tested with simulations that any trajectory starting from the
initial set with the feedback controller are guaranteed to sat-
isfy the MTL specification. Besides, simulations show that even
when unexpected disturbances occur, trajectories generated with
the feedback controller can still satisfy the MTL specification in
certain cases and have better performance in comparison with
the trajectories generated with the feedforward controller.

This paper is structured as follows. Section II briefly reviews
the MTL and the control autobisimulation function. Section III
shows the controller synthesis methods for both the feedfor-
ward and feedback controllers with nonlinear DAE systems and
MTL specifications. Section IV shows the implementation of
the algorithms on a double-machine infinite-bus power system
model to control the ESSs with MTL specifications. Finally,
some conclusions are presented in Section V.

II. PRELIMINARIES

A. Metric Temporal Logic

In this section, we briefly review the MTL that are interpreted
over continuous-time signals [25], the MTL interpreted over
discrete-time signals can be found in [26]. The state of the
system we are studying is described by a set of n variables that
can be written as a vector x = [x1 , x2 , . . . , xn ]T . The domain
of x is denoted by X = X1 ×X2 × · · · ×Xn (Xi is a subset of
R). The domain B = {true, false} is the Boolean domain and
the time set is T = R�0 . A trajectory (or signal) s describing an
evolution of the system is a function from T to X. A set AP is
a set of atomic propositions, each mapping X to B. The syntax
of MTL is defined recursively as follows:

φ := � | π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1UIφ2

where � stands for the Boolean constant True, π ∈ AP is an
atomic proposition, ¬ (negation), ∧(conjunction), ∨ (disjunc-
tion) are standard Boolean connectives, U is a temporal op-
erator representing “until,” I is a time interval of the form
I = [i1 , i2). We can also derive two useful temporal operators
from “until” (U), which are “eventually” ♦Iφ = �UIφ and “al-
ways” �Iφ = ¬♦I¬φ. We define the set of states that satisfy the
atomic proposition π asO(π) ∈ X. We denote 〈〈φ〉〉(s, τ) = �
if the state of the trajectory s satisfies the formula φ at time τ .
Then, the Boolean semantics of MTL are defined recursively as
follows [25]:

〈〈�〉〉(s, τ) := �
〈〈π〉〉(s, τ) := s(τ) ∈ O(π)

〈〈¬φ〉〉(s, τ) := ¬〈〈φ〉〉(s, τ)
〈〈φ1 ∨ φ2〉〉(s, τ) := 〈〈φ1〉〉(s, τ) ∨ 〈〈φ2〉〉(s, τ)
〈〈φ1UIφ2〉〉(s, τ) :=

∨

τ ′∈(τ+I)

(〈〈φ2〉〉(s, τ ′) ∧
∧

τ≤τ ′′<τ ′
〈〈φ1〉〉

(s, τ ′′)
)

where τ + I = {τ + τ̃ |τ̃ ∈ I}.
We denote the distance fromx to a setS ⊆ X as distd(x, S) �

inf{d(x, y)|y ∈ cl(S)} where d is a metric on X and cl(S)
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denotes the closure of the set S. In this paper, we use the metric
d(x, y) = ‖x− y‖, where ‖·‖ denotes the 2-norm. We denote
the depth of x in S as depthd(x, S) � distd(x,X \ S), the
signed distance from x to S as

Distd(x, S) �
{
−distd(x, S), if x �∈ S
depthd(x, S), if x ∈ S. (1)

We use [[φ]] (s, τ) to denote the robustness degree of the
trajectory s with respect to the formula φ at time τ . The robust
semantics of a formulaφwith respect to s are defined recursively
as follows [25]:

[[�]] (s, τ) := +∞
[[π]] (s, τ) := Distd(s(τ),O(π))

[[¬φ]] (s, τ) := − [[φ]] (s, τ)

[[φ1 ∨ φ2 ]] (s, τ) := max
(
[[φ1 ]] (s, τ), [[φ2 ]] (s, τ)

)

[[φ1UIφ2 ]] (s, τ) := max
τ ′∈(τ+I)

(
min

(
[[φ2 ]] (s, τ ′),

min
τ≤τ ′′<τ ′

[[φ1 ]] (s, τ ′′)
))
.

As an example, the trajectory s(τ) = sin(τ) (τ ∈ [0,+∞)) sat-
isfies the formula �[π/6,π/2)(x > 0) (which reads as “During
the time interval of [π/6, π/2), s(τ) is always greater than 0”)
at time 0 with robustness degree [[φ]] (s, 0) = 0.5.

B. Control Autobisimulation Function

Consider a nonlinear DAE system with input

ẋ = f(x, z) +
p∑

i=1

gi(x, z)ui

0 = σ(x, z) (2)

where the state x = [x1 , x2 , . . . , xn ]T ∈ Rn , z = [z1 , z2 ,
. . . , zm ]T ∈ Rm , the input u = [u1 , u2 , . . . , up ]T ∈ Rp , f :
Rn ×Rm → Rn , gi : Rn ×Rm → Rn (i = 1, . . . , p), and σ :
Rn ×Rm → Rm are smooth vector fields.

If we define the constraint manifold as Ξ = {(x, z)|σ(x, z) =
0}, then the singular manifold is defined as Υ = {(x, z) ∈
Ξ|det ∂σ (x,z )

∂z = 0}.
Assumption 1: In the following, we assume that the trajec-

tories of the system described by (2) do not enter the singular
manifold, i.e., rank( ∂σ (x,z )

∂z ) = m always holds.
According to [27] and [28], we have the following definition:
Definition 1: For the system described by (2), let hi : Rn ×

Rm → R(i = 1, . . . , p) be smooth output functions. The M
derivative of hi along f is a function Rn ×Rm → R, denoted
as Mfhi(x, z) and defined as Mfhi(x, z)

=

(
∂hi(x, z)

∂x
− ∂hi(x, z)

∂z

(
∂σ(x, z)
∂z

)−1
∂σ(x, z)
∂x

)
f(x, z).

(3)

If hi is differentiated k times along f , the function Mk
f hi can

be defined as Mk
f hi = Mf (Mk−1

f hi) with M 0
f hi = hi .

If the system described by (2) is state feedback linearizable
using the M derivative [28], we can introduce a new control
input ρ ∈ Rp , choose output functions hi(x, z)(i = 1, . . . , p)
and design a feedback law as u = κ(x, z) + λ(x, z)ρ, where

λ(x, z) = 	(x, z)−1

=

⎡

⎢⎢⎢⎢⎣

Mg1M
r1−1
f h1(x, z) . . . Mgp M

r1−1
f h1(x, z)

Mg1M
r2−1
f h2(x, z) . . . Mgp M

r2−1
f h2(x, z)

. . . . . . . . .

Mg1M
rp −1
f hp(x, z) . . . Mgp M

rp −1
f hp(x, z)

⎤

⎥⎥⎥⎥⎦

−1

κ(x, z) = −λ(x, z) · [Mr1
f h1(x, z), . . . ,M

rp
f hp(x, z)]T (4)

where r = [r1 , . . . , rp ] is the vector relative degree, i.e.,
ri = min{k|Mgj M

k−1
f hi(x, z) �= 0 for at least one j} and

det(	(x, z)) �= 0, r1 + r2 + · · ·+ rp = n. In this way, the
closed-loop system with the new input ρ is a linear system,
as shown in Fig. 2.

We denote the feedback linearized system dynamics as fol-
lows:

η̇ = Aη +Bρ (5)

where η ∈ Rn is the new state of the feedback linearized system,
which can be expressed as a function of x and z:

η(x, z) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(x, z)
. . .

Mr1−1
f h1(x, z)

. . .

. . .

hp(x, z)
. . .

M
rp −1
f hp(x, z)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

When the state is not in the singular manifold Υ, according to
the implicit function theorem, z can be represented as a function
of x. Thus, it can be proven that there exists a diffeomorphism
η = T (x) [29], therefore both x and z can be represented as
a function of η. For the system described by (5), a control
autobisimulation function can be formed [22].

Definition 2: A continuously differentiable function ψ :
Rn ×Rn → R + is a control autobisimulation function of
the system described by (5) if for any η, η′ ∈ Rn , ψ(η, η′) ≥
‖η − η′‖, and there exists a function ρ : Rn → Rp such that

∇ηψ(η, η′)(Aη +Bρ(η)) +∇η ′ψ(η, η′)(Aη′ +Bρ(η′)) ≤ 0.
(7)

Following [22], we can introduce another input v such that
ρ(η) = Kη + v, whereK ∈ Rp×n is chosen such thatA+BK
is Hurwitz (this is referred to as stabilization). In this way, a
control autobisimulation function can be formed as follows:

ψ(η, η′) = [(η − η′)T P (η − η′)] 1
2 (8)

where P and K satisfy

PT = P � 0

(A+BK)T P + P (A+BK) � 0. (9)
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Fig. 1. Trajectories that start from the initial robust neighborhood (robustness
ellipsoid)Bψ (η0 , γ) are guaranteed to stay in the robust neighborhoods around
the nominal (simulated) trajectory and satisfy the MTL specification φ (such as
not entering the unsafe set for a certain period of time).

Fig. 2. Diagram of the feedforward controller with the stabilized feedback
linearized system.

For brevity, we denote F (η, v) � (A+BK)η +Bv. We de-
note the solution of the stabilized feedback linearized sys-
tem η̇ = F (η, v) as ξ(τ ; η0 , v), where η0 is the initial state
of the feedback linearized system. We denote Bψ (η, γ) �
{η′|ψ(η, η′) ≤ γ} as the robust neighborhood of a point η in
the shape of an ellipsoid (robustness ellipsoid) and γ is re-
ferred to as the radius of the ellipsoid. As the control au-
tobisimulation function is nonincreasing through time, it is
guaranteed that for any initial state η′0 ∈ Rn and any input sig-
nal v(τ), if the initial distance ψ(η0 , η

′
0) = γ, then for any time

τ , ξ(τ ; η′0 , v) ∈ Bψ (ξ(τ ; η0 , v), γ) (as shown in Fig. 1).

III. CONTROLLER SYNTHESIS

A. Feedforward Controller Synthesis

As discussed in Section II-B, both x and z can be represented
as a function of ξ(τ ; η0 , v) when the state is not in the singular
manifold Υ. The core of the feedforward controller synthesis
problem that we consider in this paper is to find the input v
such that the trajectory x(ξ(·; η0 , v)) satisfies the MTL spec-
ification φ with minimal control efforts for the original input
u. As shown in Fig. 2, although there are feedback innerloops
for the feedback linearization and stabilization, it is a feedfor-
ward controller for the stabilized feedback linearized system.

The optimization problem is formulated as follows:

min.
∫ T

0
g(ξ(τ ; η0 , v), v(τ))dτ

s.t. [[φ]] (x(ξ(·; η0 , v)), 0) ≥ ζ (10)

where ζ is a positive number to avoid too small robustness
ellipsoid and g(ξ(τ ; η0 , v), v(τ)) can be expressed as follows:

g(ξ(τ ; η0 , v), v(τ))

= ‖u(τ)‖2

= ||κ(x(ξ(τ ; η0 , v)), z(ξ(τ ; η0 , v))
)

+ λ
(
x(ξ(τ ; η0 , v)), z(ξ(τ ; η0 , v))

)
(Kξ(τ ; η0 , v) + v(τ))||2 .

We can use functional gradient descent method to de-
crease [[¬φ]] (x(ξ(·; η0 , v)), 0), which is equivalent to increas-
ing [[φ]] (x(ξ(·; η0 , v)), 0), at each iteration step until the
constraint is satisfied. AsF (η, v) is linear with respect to η and v,
the solution ξ(τ ; η0 , v) is unique and absolutely continuous, the
flow F is locally bounded. According to [30, Proposition 3.1],
for the MTL formula ¬φ, there exists a critical time τr ∈ [0, T ]
and a critical proposition πr ∈ AP (see Section II-A) such
that [[¬φ]] (x(ξ(·; η0 , v)), 0) = Distd(x(ξ(τr; η0 , v)),O(πr)).
Thus, the robustness degree of the trajectory x(ξ(·; η0 , v)) with
respect to ¬φ can be calculated by identifying the critical time
τr and the critical proposition πr (which can be easily computed
using software such as S-TaLiRo [31]).

Thus, at each iteration the optimization problem is converted
to the following problem:

min.
∫ T

0
g(ξ(τ ; η0 , v), v(τ))dτ

s.t. G(ξ(τr; η0 , v)) + ζ ≤ 0 (11)

where G(ξ(τr; η0 , v)) = [[¬φ]] (x(ξ(·; η0 , v)), 0) = Distd(x
(ξ(τr; η0 , v)),O(πr)). For brevity, we denote J(v) �

∫ T
0

g(ξ(τ ; η0 , v), v(τ))dτ and Jcon(v) � G(ξ(τr; η0 , v)) + ζ as the
objective function and the constraint function, respectively.

We compute the functional derivative of J(v) with respect to
the input signal v in the direction v̂,

dJ(v; v̂) � lim
δ→0

J(v + δv̂)− J(v)
δ

. (12)

If we denote q(·) as the gradient of J in the function space of
v(·), then we have

dJ(v; v̂) � 〈q, v̂〉 =
∫ T

0
q(τ)v̂(τ)dτ. (13)

Similarly, the functional derivative of Jcon(v) with respect to v
in the direction v̂con can be written as follows:

dJcon(v; v̂con) � lim
δ→0

Jcon(v + δv̂con)− Jcon(v)
δ

� 〈qcon, v̂con〉

=
∫ T

0
qcon(τ)v̂con(τ)dτ (14)

where qcon(·) is the gradient of Jcon in the function space of v(·).
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In the following, we use the following notations for the sake
of brevity:

ṽ � v + δv̂, ṽcon � v + δv̂con,
∂G(τr)
∂η

� ∂G

∂η
|ξ(τ r;η0 ,v )

F (τ) � F (ξ(τ ; η0 , v), v(τ)), g(τ) � g(ξ(τ ; η0 , v), v(τ))

F̃ (τ) � F (ξ(τ ; η0 , ṽ), ṽ(τ)), g̃(τ) � g(ξ(τ ; η0 , ṽ), ṽ(τ))

∂F (τ)
∂η

� ∂F

∂η
|(ξ(τ ;η0 ,v ),v (τ )) ,

∂g(τ)
∂η

� ∂g

∂η
|(ξ(τ ;η0 ,v ),v (τ ))

∂F (τ)
∂v

� ∂F

∂v
|(ξ(τ ;η0 ,v ),v (τ )) ,

∂g(τ)
∂v

� ∂g

∂v
|(ξ(τ ;η0 ,v ),v (τ )) .

(15)

We obtain the Taylor series expansion of g̃(τ) at g(τ) and
G(ξ(τr; η0 , ṽ)) at G(ξ(τr; η0 , v)) as follows:

g̃(τ) = g(τ) + δ
∂g(τ)
∂x

dx

dη
dξτ (v; v̂)

+ δ
∂g(τ)
∂z

dz

dη
dξτ (v; v̂)

+ δ
∂g(τ)
∂v

v̂(τ) + o(δ)

G(ξ(τr; η0 , ṽcon)) = G(ξ(τr; η0 , v)) + δ
∂G(τr)
∂η

dξτ r(v; v̂con)

+ o(δ) (16)

where dξτ (v; v̂) is the functional derivative of ξ(τ ; η0 , v) with
respect to v in the direction v̂, dξτ r(v; v̂con) is the functional
derivative of ξ(τr; η0 , v) with respect to v in the direction v̂con.

From σ(x, z) = 0, we have

dσ(x, z)
dη

=
∂σ(x, z)
∂x

dx

dη
+
∂σ(x, z)
∂z

dz

dη
= 0. (17)

If the current state is not in the singular manifold Υ, i.e., ∂σ (x,z )
∂z

is invertible, then we have

dz

dη
= −

(
∂σ(x, z)
∂z

)−1
∂σ(x, z)
∂x

dx

dη
. (18)

By substituting (16) and (18) into (12) and (14), we have

dJ(v, v̂) =
∫ T

0

((
∂g(τ)
∂x

− ∂g(τ)
∂z

(
∂σ(x, z)
∂z

)−1

∂σ(x, z)
∂x

)
dx

dη
dξτ (v; v̂) +

∂g(τ)
∂v

v̂(τ)
)
dτ

(19)

dJcon(v, v̂con) =
∂G(τr)
∂η

dξτ r(v; v̂con). (20)

Next, we write dξτ (v; v̂) as a linear functional of v̂ as follows:

dξτ (v; v̂) = 〈pτ , v̂〉 =
∫ τ

0
pτ (t)v̂(t)dt (21)

where pτ (t) is an Rn×m -valued function which is specified to
be zero if τ < t.

By substituting (21) into (19) and (13), and changing the order
of integration, we have

q(t) =
∂g(t)
∂v

+
∫ T

t

(
∂g(τ)
∂x

− ∂g(τ)
∂z

(
∂σ(x, z)
∂z

)−1
∂σ(x, z)
∂x

)

dx

dη
pτ (t)dτ. (22)

Similarly, the gradient for the constraint function can be obtained
as follows:

qcon(t) =
∂G(τr)
∂η

pτ r(t). (23)

The remaining terms that need to be calculated in (22) and (23)
are pτ (t) and pτ r(t). Observe that dξτ (v; v̂) is the functional
derivative of ξ(τ ; η0 , v) in the direction v̂, so we have

dξτ (v; v̂) = lim
δ→0

ξ(τ ; η0 , ṽ)− ξ(τ ; η0 , v)
δ

= lim
δ→0

1
δ

∫ τ

0
(F̃ (s)− F (s))ds. (24)

The Taylor series expansion of F̃ (s) at F (s) is as follows:

F̃ (s) = F (s) +
∂F (s)
∂η

dξs(v; v̂)δ +
∂F (s)
∂v

v̂(s)δ + o(δ).

(25)

By substituting (25) into (24), we have

dξτ (v; v̂) =
∫ τ

0

(
∂F (s)
∂η

dξs(v; v̂) +
∂F (s)
∂v

v̂(s)
)
ds. (26)

Then, by substituting (26) into (21), we have

pτ (t) =
∫ τ

t

∂F (s)
∂η

ps(t)ds+
∂F (t)
∂v

. (27)

To make the computation easier to handle, we specify the input
signal v(τ) to be a piecewise constant function of time, i.e.,
v(τ) = v[k] for kTs ≤ τ < (k + 1)Ts where Ts is a sampling
period. Then, it can be seen from (27) that pτ (t) can be computed
as solutions of the following Linear Time Invariant (LTI) system:

dpτ (t)
dτ

=
∂F (τ)
∂η

pτ (t) = (A+BK)pτ (t) (28)

with the initial condition pt(t) = ∂F (t)
∂v = B at t = kTs(k =

0, 1, . . . ). Then, pτ r(t) can be calculated by taking the value
of pτ (t) when τ = τr. Thus, q(t) and qcon(t) can be calculated
using (22) and (23) at t = kTs (k = 0, 1, . . . ). Thus, we have
computed q(kTs) and qcon(kTs), we specify q(τ) = q(kTs) and
qcon(τ) = qcon(kTs) for kTs ≤ τ < (k + 1)Ts.

The functional gradient descent algorithm for the feedforward
controller synthesis is shown in Algorithm 1. We denote vi as the
input signals in the ith iteration (similarly, τ ir and πir indicate
the critical time and critical proposition in the ith iteration).
When the state is in the singular manifold Υ, i.e., ∂σ (x,z )

∂z is
not invertible, we perform an SVD decomposition of the matrix
∂σ (x,z )
∂z = UΣV ∗ and perturb the rank-deficient matrix Σ to be

a full-rank matrix Σ̃ (line 9). We use the multistart method to
avoid the situation when the solution is stuck at one piece of
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Algorithm 1: Functional gradient descent algorithm.

1: Simulate the initial trajectory ξ(·; η0 , v
1)

2: Run S-TaLiRo to calculate critical time τ 1
r and

critical proposition π1
r

3: Calculate Jcon(v1), i← 1
4: while

(
(Jcon(vi) > 0) ∨ (λ1 > ε)

) ∧ (i ≤ Nmax) do
5: Calculate pτ (t) as solution of (28)
6: if ∂σ (x,z )

∂z is invertible then

7: dz
dη ← −

( ∂σ (x,z )
∂z

)−1 ∂σ (x,z )
∂x

dx
dη

8: else
9: Perform ∂σ (x,z )

∂z = UΣV ∗ and perturb Σ to be a
full-rank matrix Σ̃

10: dz
dη ← −(U Σ̃V ∗)−1 ∂σ (x,z )

∂x
dx
dη

11: end if
12: Calculate q(t) and qcon(t) using (22) and (23)
13: if Jcon(vi) ≤ 0 then
14: Calculate the input signal of the next iteration

vi+1(τ)← vi(τ)− λ1q(τ)
15: Simulate the trajectory of the next iteration

ξ(·; η0 , v
i+1)

16: Run S-TaLiRo to calculate critical time τ i+1
r ,

critical proposition πi+1
r and then calculate

Jcon(vi+1)
17: Calculate Ĵ(vi+1)←∑NT

k=0 g(ξ(τ [k]; η0 , v
i+1),

vi+1[k])
18: if Ĵ(vi+1) < Ĵ(vi) then
19: λ1 ← αλ1 , α > 1
20: else
21: λ1 ← βλ1 , 0 < β < 1
22: end if
23: else
24: Calculate the input signal of the next iteration

vi+1(τ)← vi(τ)− λ2qcon(τ)
25: Simulate the trajectory of the next iteration

ξ(·; η0 , v
i+1)

26: Run S-TaLiRo to calculate critical time τ i+1
r ,

critical proposition πi+1
r and then calculate

Jcon(vi+1)
27: if Jcon(vi+1) < Jcon(vi) then
28: λ2 ← αλ2 , α > 1
29: else
30: λ2 ← βλ2 , 0 < β < 1
31: end if
32: end if
33: i← i+ 1
34: end while

the constraint manifold when other pieces exist. If the current
solution satisfies the constraint, then the next solution will be
optimized along the opposite direction of the gradient of the
objective function (lines 14–22); otherwise, the next solution
will be optimized along the opposite direction of the gradient of
the constraint function as the constraint has to be met before the
objective function is further minimized (lines 24–31). λ1 and λ2
are adjustable stepsizes. For each optimization, the algorithm
terminates when the constraint is satisfied (Jcon(vi) ≤ 0) and

Fig. 3. Diagram of the feedback controller with the stabilized feedback lin-
earized system.

the objective function reaches a local minimum (λ1 ≤ ε), or a
maximal number of iterations is exceeded (i > Nmax ).

B. Feedback Controller Synthesis

In this section, we design a feedback control law using
system identification techniques to replace the optimal input
signals of the feedforward controller. When the states and
inputs of the trajectories are calculated using numeric simu-
lators such as ODE or CVODE, the data are discrete and there-
fore in the following we use ξ� [k] � ξ�(k; η0,� , v�) and v� [k]
to denote the flow solution and the input of the �th nominal
(simulated) trajectory at the kth time instant, respectively. We
denote F �

⋃N�

�=1
⋃NT , �

k=0 Bψ (ξ� [k], γ�) as the robust neighbor-
hoods around the N� nominal trajectories (NT ,� is the number
of time points in the �th nominal trajectory).

Different from [23], we apply the following piecewise linear
feedback law χv (η, η′0) (as shown in Fig. 3) which depends both
on the current state η and the initial state η′0 :

χv (η, η′0) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1η + θ0,1 , when η ∈ X1(η′0)

θ2η + θ0,2 , when η ∈ X2(η′0)
...

...

θn cη + θ0,n c , when η ∈ Xn c(η
′
0)

(29)

where {Xi(η′0)}n c
i=1 form a partition of the state space and the

partition depends on the initial state η′0 . We use ξ(k; η′0 , χv ) to
denote the flow solution of the trajectory starting from η′0 at
the kth time instant when the feedback control law χv (η, η′0)
is applied. The feedback control law χv (η, η′0) and the parti-
tion {Xi(η′0)}n c

i=1 have the following properties (which can be
guaranteed using our design approach explained later).

Property 1: For all k > 0, � > 0, and v� that satisfies the con-
straint of (10), if ξ� [k] ∈ Xj (η′0), then v� [k] = θj ξ� [k] + θ0,j −
ε� [k], where ‖ε� [k]‖∞ ≤ δ, and
[

P (A+BK +Bθj )P

PT (A+BK +Bθj )T P

]
� 0. (30)

Property 2: If η ∈ F ∩ Xj (η′0), then there exists a ξ� [k] ∈
Xj (η′0) such that η ∈ Bψ (ξ� [k], γ�).
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Property 3: For any η′0 ∈
⋃N�

�=1 Bψ (η0,� , γ�), if �′ =
min{�|η′0 ∈ Bψ (η0,� , γ�)}, then for all k > 0, if ξ� ′ [k] ∈
Xj (η′0), then ξ(k; η′0 , χv ) ∈ Xj (η′0).

Remark 1: Properties 1, 2 are modified from [23] while
Property 3 is added in this paper as MTL specifications requires
more stringent conditions than safety specifications in [23].

Theorem 1: If the feedback control law χv (η, η′0) and the
partition {Xi(η′0)}n c

i=1 have Properties 1, 2, and 3, then there
exists a critical radius γcrit > 0 such that if min1≤�≤N�

γ� > γcrit,
the following is true for all η′0 ∈

⋃N�

�=1 Bψ (η0,� , γ�) and k > 0:
�′ = min{�|η′0 ∈ Bψ (η0,� , γ�)} ⇒ ψ(ξ� ′ [k], ξ(k; η′0 , χv ))

≤ γ� ′ .
Proof: Straightforward from Theorem 1, Theorem 4, and

the analysis part in the right column of [23, p. 4] while applying
Properties 1–3. �

It can be seen from Theorem 1 that if χv (η, η′0) and
{Xi(η′0)}n c

i=1 have Properties 1–3 and min1≤�≤N�
γ� > γcrit,

then any trajectory that starts from the initial setBψ (η0,� ′ , γ� ′) \⋃
�<� ′ Bψ (η0,� , γ�) when χv (η, η′0) is applied will remain in the

robustness ellipsoids Bψ (ξ� ′ [k], γ� ′).
Theorem 2: Assume that x(η) is Lipschitz continuous for

η ∈ F , i.e., ‖x(η1)− x(η2)‖ ≤ Kx‖η1 − η2‖ for any η1 ,
η2 ∈ F , and some constant Kx > 0. If the feedback con-
trol law χv (η, η′0) and the partition {Xi(η′0)}n c

i=1 have Prop-
erties 1–3, then there exists a critical radius γcrit > 0 such
that if min1≤�≤N�

γ� > γcrit and max1≤�≤N�
γ�‖P− 1

2 ‖Kx ≤
ζ(‖P− 1

2 ‖ is the largest singular value of P−
1
2 ), then the tra-

jectory x(ξ(·; η′0 , χv )) satisfies the MTL specification φ for any
η′0 ∈

⋃N�

�=1 Bψ (η0,� , γ�).
Proof: As η′0 ∈

⋃N�

�=1 Bψ (η0,� , γ�), if �′ = min{�|η′0 ∈
Bψ (η0,� , γ�)}, according to Theorem 1, for all k > 0,

ψ(ξ� ′ [k], ξ(k; η′0 , χv )) = [
(
ξ� ′ [k]− ξ(k; η′0 , χv )

)T
P
(
ξ� ′ [k]−

ξ(k; η′0 , χv )
)
]

1
2 ≤γ� ′ , thus ‖ξ� ′ [k]− ξ(k; η′0 , χv )‖≤γ� ′ ‖P−

1
2 ‖.

As for all k > 0, ξ� ′ [k] ∈ F , ξ(k; η′0 , χv ) ∈ F , so
‖x(ξ� ′ [k])− x(ξ(k; η′0 , χv ))‖ ≤ Kx‖ξ� ′ [k]− ξ(k; η′0 , χv )‖ ≤
Kxγ� ′ ‖P− 1

2 ‖. Therefore, if [[φ]] (x(ξ� ′ [·]), 0) ≥ ζ (from
(10), here x(ξ� ′ [·]) denotes a discrete-time trajectory)
and Kxγ� ′ ‖P− 1

2 ‖ ≤ max1≤�≤N�
γ�‖P− 1

2 ‖Kx ≤ ζ, then
[[φ]] (x(ξ� ′ [·]), 0) ≥ maxk>0 ‖x(ξ� ′ [k])− x(ξ(k; η′0 , χv ))‖,
thus using the triangle inequality it can be proven that
[[φ]] (x(ξ(·; η′0 , χv )), 0) ≥ 0. �

In order to satisfy Properties 1–3, in the following we describe
the clustering, partitioning, and boundary modification process
to determine {Xi(η′0)}n c

i=1 and χv (η, η′0).
1) Clustering: The basic idea of the clustering algorithm is

to find θi and θ0,i that make the inequalities |θiξ� [k] + θ0,i −
v� [k]| ≤ δ true for as many k and � as possible (maximum fea-
sible subsystem problem), then remove those points and repeat
the same process over the remaining ones until all points have
been covered (for details, see [24]). For i ≥ 2, θi and θ0,i are
also tested in the place of θj and θ0,j (j < i) in the previous
coverings. If θi and θ0,i can cover more points than θj and θ0,j ,
then θj and θ0,j will be replaced by θi and θ0,i to prevent the
suboptimality of the greedy algorithm. For each candidate θi and
θ0,i , we also check if (30) is satisfied to make sure that Property
1 is satisfied. The clusters are further split into subclusters (by
k-means or other clustering methods) until the convex hull of

Fig. 4. Piecewise linear classifiers of four sets of points with robustness el-
lipsoids around them (left) and the reduced partitions with modified boundaries
(right).

each subcluster is disjoint with the convex hull of any other
subcluster.

2) Partitioning: After all the disjoint subclusters are ob-
tained, we classify all the subclusters using multiclass linear
classification. There are two major approaches of multiclass
linear classification: pairwise linear classifiers and piecewise
linear classifiers. The pairwise linear classifiers classify each
class with every other class and then use the intersection of all
the half spaces determined by the pairwise decision boundaries
as the partition for the class. It is easy to implement, but it is
not guaranteed to form a complete partition of the whole state
space as there may be “holes” that do not belong to any partition
[24]. The piecewise linear classifier can form a complete parti-
tion of the whole state space and therefore is a better fit for our
approach. There are several different methods of constructing
piecewise linear classifiers. One way is to construct nc classifi-
cation functions for thenc subclasses such that at each data point
the corresponding class function is maximal. We use robust LP
to find the nc classification functions for the nc subclasses.

Definition 3 ([32]): The nc sets Ai(i = 1, 2, . . . , nc), each
consisting of mi

c points in Rn and represented by the n×mi
c

matrices Ai , are piecewise linear separable if there exists
ϑi, ϑj ∈ Rn , bi, bj ∈ R such that

ϑiAi − ebi > ϑjAi − ebj , i, j = 1, 2, . . . , nc, i �= j (31)

where e is a vector of ones.
The classification problem becomes the following LP prob-

lem:

min
ϑi ,bi ,y i j

n c∑

i=1

n c∑

j=1,j �=i

eyij

mi
c

s.t. yij ≥ −(ϑi − ϑj )Ai + e(bi − bj ) + e

yij ≥ 0, i, j = 1, 2, . . . , nc, i �= j. (32)

3) Boundary modification: We denote the resulting parti-
tion of the above LP optimization as {X̂i}n c

1 . As shown in
Fig. 4(a), the red point does not belong to any robustness el-
lipsoid within the partition X̂1 , but belongs to a robustness
ellipsoid in another partition X̂2 (Property 2 is violated). To
avoid this, each partition is shrunk so that it does not intersect
any robustness ellipsoid outside the partition, as shown in the
shrunken partitions enclosed by the brown lines in Fig. 4(b).
In the meantime, for each partition face, we make note of the
robustness ellipsoids centered outside the partition and intersect
the partition face. Let Sij � {(�, k)| − ‖(ϑi − ϑj )P− 1

2 ‖γ� <
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(ϑi − ϑj )ξ� [k] + bi − bj < 0} be the set of pairs (�, k) where
the robustness ellipsoid of the �th simulated trajectory at the
kth time instant (outside of X̂i) intersects the decision boundary
between the ith and jth subcluster of data. We calculate b−ij �
min(�,k)∈Si j (−‖(ϑi − ϑj )P−

1
2 ‖γ� − (ϑi − ϑj )ξ� [k]), and thus,

obtain the new decision boundary (ϑi − ϑj )x+ b−ij = 0. Thus,

we obtain a reduced partition X̃i for each original partition X̂i
such that a system state within X̃i is guaranteed not to belong
to a robustness ellipsoid in any other partitions.

When implemented online, given the initial state η′0 , we first
calculate �′ = min{�|η′0 ∈ Bψ (η0,� , γ�)}, then we use the fol-
lowing algorithm to determine the final partition {Xi(η′0)}n c

i=1
and the feedback control law χv (η, η′0).

1) If the current state η lies within the reduced partition X̃i ,
then η ∈ Xi(η′0), the feedback control law χv (η, η′0) =
θiη + θ0,i is applied.

2) If the current state lies within the original partition X̂i , but
not the reduced partition X̃i , check to see if it lies within
any of the robustness ellipsoids marked in Sij (j �= i),
then:

a) if it does not lie within any robustness ellipsoid cen-
tered outside of X̂i , then η ∈ Xi(η′0), the feedback
control law χv (η, η′0) = θiη + θ0,i is applied;

b) if it lies within a unique robustness ellipsoid cen-
tered at ξ� [k] and ξ� [k] lies within the jth partition
(j �= i), then η ∈ Xj (η′0), the feedback control law
χv (η, η′0) = θj η + θ0,j is applied;

c) if it lies within more than one robustness ellipsoids,
find the partition X̂w where the state ξ� ′ [k] lies (k is
the current time instant), then η ∈ Xw (η′0), the feed-
back control law χv (η, η′0) = θwη + θ0,w is applied
(in this way, Property 3 is always satisfied).

IV. ENERGY STORAGE CONTROLLER SYNTHESIS

In this section, we apply the controller synthesis method in
designing an energy storage controller for regulating the grid
frequency of a double-machine infinite-bus system as shown in
Fig. 5 [33]. Two synchronous generators are denoted as Gi (i=
1, 2), two constant power loads are denoted as L1 and L2 , and
two constant impedance loads are denoted as L3 and L4 . Two
ESSs are placed near G1 and G2 . The configuration parameters
of the power system model and the line data can be seen in
Tables I and II. The swing dynamics of machine Gi (i = 1, 2)
can be described by the following classical model:

{
δ̇i = ωi
P ri
Pb

Hi

πfs
ω̇i = Pmi − PESSi −Diωi − pei

(33)

where δi is the rotor angle position of Gi with respect to the
infinite bus at G3 , ωi is the rotor speed deviation of Gi relative
to system angular frequency 2πfs, Pb is the base power in the
per unit system, Pri is the rated power of Gi , Hi is the per-unit
inertia constant, Pmi is the mechanical input power to Gi , Di

is the damping coefficient, PESSi is the power that flows from
the grid to the ESS near Gi , the electrical output power Pei

is described by the following function of δ1 , δ2 (δ3 = 0 in the

Fig. 5. Double-machine infinite-bus system.

TABLE I
SYSTEM PARAMETERS

VA base Pb 160 MVA
System frequency fs 60 Hz
Machine rating Pri of Gi i = 1 82 MVA

i = 2 160 MVA
Mechanical input power Pmi i = 1 0.28 (p.u.)

i = 2 0.75 (p.u.)
Active power flow to load Li i = 1 0.25 (p.u.)

i = 2 0.4375 (p.u.)
i = 3 0.1875 (p.u.)
i = 4 0.75 (p.u.)

Transient reactance of Gi i = 1 0.261 (p.u.)
i = 2 0.284 (p.u.)

Per-unit inertia constant Hi i = 1 5 s
i = 2 3.5 s

Damping coefficient Di of Gi i = 1, 2 0.01 s
Voltage Ei of Gi i = 1, 2 1.05 (p.u.)
Transformer impedance G1 1.8868 (p.u.)

G2 0.618 (p.u.)

TABLE II
LINE DATA (160 MVA BASE)

Line number Line impedance (p.u.) Line charging (p.u.)

2–8(2–9) 0.0224 + j0.1051 0.0006625
7–8(7–9) 0.0880 + j0.4080 0.0023
4–8(4–9) 0.1168 + j0.5440 0.0031
4–5 0.0015 + j0.0029 0.0034
5–6 0.0023 + j0.0032 0.0094
6–7 0.0053 + j0.0201 0.0258

following equation):

Pei �
3∑

j=1

EiEj{Gij cos(δi − δj ) +Bij sin(δi − δj )}

+
2∑

j=1

EiVj{Ĝij cos(δi − θj ) + B̂ij sin(δi − θj )}

(34)
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whereEi is the voltage behind the transient reactance of Gi ,Gii

is its internal conductance,Gij + jBij is the transfer admittance
between Gi and Gj , Ĝij + jB̂ij is the transfer admittance be-
tween Gi and Lj , Vj and θj are the bus voltage and bus phase
angle of Lj (j = 1, 2), respectively.

The power balance equations for the constant power loads are
as follows (δ3 = 0 in the following equations):

0 = Pdi +
3∑

j=1

ViEj{Ĝji cos(θi − δj ) + B̂ji sin(θi − δj )}

+
2∑

j=1

ViVj{G̃ij cos(θi − θj ) + B̃ij sin(θi − θj )}

0 = Qdi +
3∑

j=1

ViEj{Ĝji sin(θi − δj )− B̂ji cos(θi − δj )}

+
2∑

j=1

ViVj{G̃ij sin(θi − θj )− B̃ij cos(θi − θj )} (35)

where Pdi and Qdi are the real power and reactive power of
constant power load Li (i = 1, 2), Ĝji + jB̂ji is the trans-
fer admittance between Gj and Li , G̃ij + jB̃ij is the transfer
admittance between Li and Lj (i, j = 1, 2).

We use the following MTL specification for frequency regu-
lation (here time zero represents the fault clearing time):

φ = �¬φ1 ∧�¬φ2 ∧�[2,T ]φ3 ∧�[2,T ]φ4

φ1 = (ω1 > 10), φ2 = (ω2 > 10)

φ3 = (−2 ≤ ω1 ≤ 2)∧(−2 ≤ ω2 ≤ 2)∧(−π/2 ≤ δ1 ≤ π/2)

∧ (−π/2 ≤ δ2 ≤ π/2)

which reads “The frequency deviations should never exceed 10
rad/s, after 2 s the frequency deviations should always be within
±2 rad/s and machine angles should always be within ±π/2.”

Assume that a three-phase lines-to-ground fault occurs near
bus 4 on lines 4–9 and the resulting fault-on system dynamics
is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = 74.3059
(
0.28− 0.01x3 − (0.0027808− 0.00045389

· cos(x1) + 0.054597 sin(x1)− 0.0020063z3

· cos(x1 − z1) + 0.30751z3 sin(x1 − z1))
)

ẋ4 = 53.8559
(
0.75− 0.01x4

)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −0.25− (0.0020063z3 cos(z1 − x1) + 0.30751z3

· sin(z1 − x1)− 0.76927z3 cos(z1) + 3.5329z3 sin(z1)
+1.3459z2

3 )
0 = −0.4375− (−12.1574z4 cos(z2) + 46.4191z4 sin(z2)

+84.8243z2
4 )

0 = 0.0020063z3 sin(z1 − x1)− 0.30751z3 cos(z1 − x1)
−0.76927z3 sin(z1)− 3.5329z3 cos(z1) + 6.4861z2

3

0 = −12.157z4 sin(z2)− 46.419z4 cos(z2) + 164.647z2
4

where the state x = [δ1 , δ2 , ω1 , ω2 ]T , z = [θ1 , θ2 , V1 , V2 ]T .

Fig. 6. Simulated postfault trajectories with no storage input with fault clear-
ing time of 0.19 and 0.2 s.

After the fault is cleared, the postfault system with the input
u = [PESS1 , PESS2 ]T is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = 74.3059
(
0.28− u1 − 0.01x3 − (0.003− 0.00062

· cos(x1) + 0.0683 sin(x1)− 0.00237z3 cos(x1 − z1)
+0.3336z3 sin(x1 − z1))

)

ẋ4 = 53.8559
(
0.75− u2 − 0.01x4 − (0.00447 + 0.00455z3

· cos(x2 − z1) + 0.0134z3 sin(x2 − z1)− 0.0083z4

· cos(x2 − z2) + 1.0875z4 sin(x2 − z2))
)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −0.25− (−0.0023695z3 cos(z1 − x1) + 0.3336z3

· sin(z1 − x1) + 0.00455z3 cos(z1 − x2) + 0.013353z3

· sin(z1 − x2)− 0.84z3 cos(z1) + 3.83z3 sin(z1) + 1.47
−0.38326z3z4 cos(z1 − z2) + 1.7208z3z4 sin(z1 − z2))

0 = −0.4375− (−0.008316z4 cos(z2 − x2) + 1.0875z4

· sin(z2 − x2)− 12.1574z4 cos(z2) + 46.4191z4 sin(z2)
−0.38326z3z4 cos(z2 − z1) + 1.7208z3z4 sin(z2 − z1)
+13.1715z2

4 )
0 = −0.0023695z3 sin(z1 − x1)− 0.3336z3 cos(z1 − x1)

+0.0045526z3 sin(z1 − x2)− 0.013353z3 cos(z1 − x2)
−0.83677z3 sin(z1)− 3.8322z3 cos(z1) + 5.8948z2

3

−0.38326z3z4 sin(z1 − z2)− 1.7208z3z4 cos(z1 − z2)
0 = −0.008316z4 sin(z2 − x2)− 1.0875z4 cos(z2 − x2)
−12.1574z4 sin(z2)− 46.4191z4 cos(z2)− 0.3833z3z4

· sin(z2 − z1)− 1.7208z3z4 cos(z2 − z1) + 49.1724z2
4 .

We assume that the fault is cleared between 0.19 and 0.2 s. As
shown in Fig. 6, the postfault system with no storage input (u1 =
u2 = 0) is not stable as the two generators lose synchronism
soon after the fault is cleared. Therefore, an energy storage
controller is necessary not only for the purpose of frequency
regulation, but also for maintaining the transient stability of the
postfault system.

We first feedback linearize the postfault system using the
M derivative. By choosing the output functions as h1(x, z) =
x1 , h2(x, z) = x2 , the postfault feedback linearized system is
as follows:

⎧
⎪⎨

⎪⎩

η̇1 = η2
η̇2 = ρ1
η̇3 = η4
η̇4 = ρ2
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where the new state η = [x1 , x3 , x2 , x4 ]T , ρ = [ρ1 , ρ2 ]T is the
input of the feedback linearized system. κ(x, z) and λ(x, z) in
(4) are calculated as follows:

λ(x, z) =

[
− 1

74.3059 0

0 − 1
53.8559

]

κ(x, z) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.28− 0.01x3 − (0.003− 0.00062 cos(x1)

+0.0683 sin(x1)− 0.00237z3 cos(x1 − z1)

+0.3336z3 sin(x1 − z1));

0.75− 0.01x4 − (0.00447 + 0.00455z3

· cos(x2 − z1) + 0.0134z3 sin(x2 − z1)− 0.0083

·z4 cos(x2 − z2) + 1.0875z4 sin(x2 − z2))

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We then introduce input v and let ρ(η) = Kη + v, where

K =
[−0.8068 −0.9894 0 0

0 0 −0.8068 −0.9894

]

is calculated using (9). The obtained system η̇ = F (η, v) =
(A+BK)η +Bv is a stabilized linear system with the new
input v.

To optimize v for the feedforward controller synthesis, we
use Algorithm 1 and set T = 10 s, Ts = 0.1 s, ζ = 0.3,Nmax =
100, ε = 10−6 , λ1 = λ2 = 1 (initial values), α = 1.5, β = 0.2
(all the values are per unit values unless otherwise specified). We
simulate three trajectories of the postfault feedback linearized
system starting from the fault-on trajectories cleared at 0.1912 s,
0.195 s, and 0.1995 s respectively. The optimal input signal v
and the corresponding storage input u for the three different
fault clearing time are shown in Fig. 7. It can be seen that in
all three different scenarios, the power flows from the grid to
the ESSs near G1 and G2 significantly in the first 1 to 2 s to
decrease the grid frequency. After this period, the power flow
changes direction as the frequency deviation becomes negative
and continues to decrease, so the ESSs have to inject power
to the grid to prevent the frequency from dropping beyond the
lower threshold. After the first 5 s, the storage control efforts
gradually decrease to zero. It can also be seen that with longer
fault clearing time, more (storage) control effort is needed to
satisfy the MTL specification φ.

The initial robustness ellipsoid of the simulated postfault tra-
jectory with fault clearing time of 0.195 s totally covers the
simulated fault-on trajectory from 0.19 to 0.2 s (the postfault
initial states), as shown in Fig. 8. Thus, all the possible post-
fault trajectories with the given uncertainties in the fault clearing
time (between 0.19 and 0.2 s) are guaranteed to satisfy the MTL
specification φ (as shown in Fig. 9).

Next, we design a piecewise linear feedback law that is
learned from the data of the simulated trajectory and the corre-
sponding optimal inputs. We first cluster the 1001 data points
into 94 disjoint subclusters while in each subcluster the input er-
ror is within δ = 0.0118 (as γcrit depend on δ [23], δ is designed
such that min1≤�≤N�

γ� > γcrit and max1≤�≤N�
γ�‖P− 1

2 ‖Kx ≤
ζ, here N� = Kx = 1), as shown in Fig. 10. We generate
the piecewise linear classifier to separate the 94 subclus-
ters and modify the partitions using the method described in
Section III-B. We generate 20 postfault trajectories with the

Fig. 7. New input v and storage input u (blue for ESS 1 and green for ESS 2)
of the feedforward controller with fault clearing time of: (a), (b) 0.1912 s, (c),
(d) 0.195 s, (e), (f) 0.1995 s.

Fig. 8. Coverage of the simulated fault-on trajectory from 0.19 to 0.2 s (red)
with the initial robustness ellipsoid (black) of the simulated postfault trajectory
with fault clearing time of 0.195 s.

Fig. 9. Robust neighborhoods (red) of the nominal (simulated) postfault tra-
jectory (black) with fault clearing time of 0.195 s.
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Fig. 10. Subclusters obtained from the bounded-error clustering approach
(different colors represent different subclusters).

Fig. 11. Twenty postfault trajectories generated with the feedback controller
over a sampling of initial conditions (fault clearing time between 0.19 and 0.2 s).

Fig. 12. Twenty postfault trajectories generated with the feedforward con-
troller (a) and the feedback controller, (b) over a sampling of initial conditions
(fault clearing time between 0.19 and 0.2 s) with the disturbance of value
−20 in the first dimension of the input v during the first 0.2 s.

feedback controller over a sampling of initial conditions and
the trajectories all satisfy the MTL specification φ (as shown in
Fig. 11).

To make a comparison between the feedback controller and
the feedforward controller, we add a disturbance of value−20 to
the first dimension of the input v during the first 0.2 s while gen-
erating the 20 postfault trajectories with both the feedforward
and the feedback controllers over a sampling of initial condi-
tions (fault clearing time between 0.19 and 0.2 s). As shown in
Fig. 12(a), with the feedforward controller, although the rotor
speed deviation ω1 still gradually approaches zero, ω1 crosses
−2 rad/s in the process as the inputs are precomputed and thus
unresponsive to the unexpected disturbance. In comparison, as
shown in Fig. 12(b), with the feedback controller, the rotor
speed deviation ω1 is always greater than −2 rad/s as the feed-
back controller adjusts the inputs according to the feedback law,

thus the states remain in the robust neighborhoodsF despite the
unexpected disturbances.

V. CONCLUSION

We presented a controller synthesis framework to control the
ESSs with MTL specifications. We model the power system as
a nonlinear DAE system and both the feedforward and the feed-
back controller synthesis for such DAE systems are presented.
The controller synthesis approach can be used in other related
areas in power systems such as transient stability enhancement,
voltage regulation, etc. Similar approaches can be also applied
to other nonlinear DAE systems such as robotic systems, bio-
logical systems, etc.
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