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Abstract— A formal safety controller synthesis method for
power grid frequency regulation using energy storage systems
is proposed. After a fault, with uncertainties in the fault
clearing time, the generator machine angles and rotor speed
deviations will enter a set of post-fault states that can be over-
approximated using reachability analysis. We use the robust
neighbourhood approach to cover this set using the initial
robust neighbourhood of finitely many simulated post-fault
trajectories. We design these simulated trajectories to meet the
frequency regulation requirements specified in Metric Temporal
Logic (MTL) by optimizing the input signals through a func-
tional gradient descent approach. In this way, all the possible
post-fault trajectories with the given uncertainties in the fault
clearing time are guaranteed to satisfy the MTL specification.
Further, a piecewise linear control law is learned from the data
of the simulated trajectories to generate a feedback controller
that is more reactive to unexpected disturbances.

I. INTRODUCTION

With the increasing incorporation of renewable energy in
the ancillary services, modern power systems are utilizing
diversified power resources for providing more reliable and
efficient services. Energy storage systems such as spinning
reserves and battery energy storage systems serve as buffers
of the power system to restore grid frequency to the allowable
range [1]. As different services and storage systems have
different response time and duration time, the regulated fre-
quency could have different temporal properties. Therefore,
temporal logics [2], [3], [4] can be utilized to provide time-
related specifications such as “after a fault is cleared, the
grid frequency should be restored to 60Hz±0.2Hz within 2
seconds and to 60Hz±0.02Hz within 20 seconds”. There are
a lot of literature on the control of energy storage systems for
economic and stability benefits, while incorporating temporal
logic constraints into the controller synthesis problem is still
a novel approach.

Currently, there are two main categories of approaches in
designing controllers that meet certain temporal logic specifi-
cations. The first category of approaches abstract the system
as a transition system and transform the controller synthesis
problem into a series of constrained reachability problems
[5], [6], [7]. The second category of approaches convert the
controller synthesis problem into a single optimal control
problem and encode the temporal logic specifications as op-
timization constraints on the optimization variables. For the
optimization problem formulation, some authors formulate
it as a Mixed-Integer Linear Programming (MILP) problem
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for Mixed Logical Dynamical (MLD) systems [8], [9] while
some other authors substitute the temporal logic constraint
into the optimization objectives and apply a functional gra-
dient descent algorithm on the resulting unconstrained prob-
lem. In [10], the authors propose an optimal safety controller
synthesis method for continuous nonlinear systems using
functional gradient descent. In [11], the authors apply the
method in the falsification of Metric Temporal Logic (MTL)
specifications and the controller synthesis can be achieved
by falsifying the negation of the MTL formulae. In [12], the
authors replace the feedforward controller obtained in [10]
with a feedback controller and a piecewise linear control
law is learned from the data of the simulated trajectories
following the approach of [13].

In this paper, we modify the functional gradient descent
method in [11] and the feedback control law generation
method in [12] to regulate grid frequencies utilizing energy
storage systems. We seek the minimal-storage-effort control
to satisfy certain MTL specifications of the frequency devia-
tions and machine angles. Different from [11], we formulate
the MTL specification as a constraint and we apply the
functional gradient descent method to both satisfy the MTL
constraint and minimize the storage control effort. The power
system nonlinear dynamics is first feedback linearized and
the obtained linear system has a control autobisimulation
function which can bound the trajectories that start from an
initial set within the robust neighbourhood [14]. We simu-
late finitely many post-fault trajectories with different fault
clearing time such that the initial robust neighbourhood of
these simulated trajectories can cover the over-approximated
reachable set of the post-fault states with given uncertainties
in the fault clearing time. Then we compute the optimal
storage control input signals for the post-fault trajectories
through the functional gradient descent method. Further, we
generate a feedback controller by identifying a piecewise
linear control law from the data of the optimal input signals
and the states of the simulated trajectories. Different from
other works, we use robust linear programming to find
the classification functions for the subclasses and construct
piecewise linear classifiers in partitioning the state space.

This paper is structured as follows. Section II reviews the
control autobisimulation function and shows the controller
synthesis methods for both the feedforward and feedback
controllers. Section III shows the implementation of the algo-
rithms on a double-machine infinite-bus power system model
to control the energy storage systems for power system
frequency regulation under Temporal Logic specifications.
Finally, some conclusions are presented in Section IV.
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II. CONTROLLER SYNTHESIS

A. Control Autobisimulation Function

Consider a nonlinear dynamical system with input

ẋ = F (x, u), (1)

where F : Rn × Rm → Rn and u ∈ L2[0, T ].
The concept of the control autobisimulation function

(CAF) is described in [14]. For nonlinear system dynamics
that is feedback linearizable (such as the power system
dynamics in Sec. III), we can introduce a new control input
ω(τ) and design a feedback law u = κ(x)+λ(x)ω to make
the closed-loop system with the new input ω as a linear sys-
tem, as shown in Fig. 1. We denote the feedback linearized
system dynamics as ż = Az+Bω, where z is the new state of
the feedback linearized system. Then we can design another
input signal v such that ω = Kz + v, where K is chosen
such that A+BK is Hurwitz. For the obtained stable linear
system ż = (A + BK)z + Bv, a control autobisimulation
function can be formed as ψ(z, z′) =

√
(z − z′)TP (z − z′),

where P can be calculated by the following Linear Matrix
Inequalities:

PT = P � 0,

(A+BK)TP + P (A+BK) � 0.
(2)

For brevity, we denote f(z, v) = (A + BK)z + Bv. We
denote the solution of ż = f(z, v) as ξ(τ ; z0, v) where
z0 = z(0) is the initial state of the feedback linearized
system. Using the inverse mapping of z(x), we have x =
z−1(ξ(τ ; z0, v)). We denote Bψ(z, r) , {z′|ψ(z, z′) ≤ r}
as the robust neighbourhood of a point z in the shape of
an ellipsoid (robustness ellipsoid) and r is referred to as
the radius of the ellipsoid. As the control autobisimulation
function is non-increasing through time, it is guaranteed that
for any initial state z′0 ∈ Rn and any control signal v(τ),
if the initial distance ψ(z0, z

′
0) = γ, then for any time τ ,

ξ(τ ; z′0, v) ∈ Bψ(ξ(τ ; z0, v), γ).

B. Feedforward Controller Synthesis

The feedforward controller synthesis problem is to find
the input v such that the trajectory ξ(τ ; z0, v) satisfies the
MTL specification φ with minimal control efforts. The syntax
and semantics of the Metric Temporal Logic are described
in [15]. The optimization problem is formulated as follows:

min.
∫ T

0

g(ξ(τ ; z0, v), v(τ))dτ

s.t. [[φ]] (ξ(τ ; z0, v), 0) ≥ ζ,

(3)

where ζ is a positive number to avoid too small robustness
ellipsoid, [[φ]] (ξ(τ ; z0, v), 0) is the robustness degree (for the
definition of robustness degree, see [15]) of the trajectory
ξ(τ ; z0, v) with respect to the formula φ at time 0 and
g(ξ(τ ; z0, v), v(τ)) can be expressed as follows:

g(ξ(τ ; z0, v), v(τ)) = ‖u(τ)‖2 = ||
(
κ
(
z−1(ξ(τ ; z0, v))

)
+ λ

(
z−1(ξ(τ ; z0, v))

)
(Kξ(τ ; z0, v) + v(τ))

)
||2.

We denote the domain of the state z as X, the distance
from z to a set S as distd(z, S) ,inf{d(z, y)|y ∈ cl(S)},
where d is a metric on X and cl(S) denotes the closure of
the set S. We denote the set of states that satisfy the atomic
proposition π as O(π), the depth of z in S as depthd(z, S) ,
distd(z,X \ S), the signed distance from x to S as

Distd(z, S) ,

{
−distd(z, S) if z 6∈ S;

depthd(z, S) if z ∈ S.
(4)

We can use functional gradient descent method to decrease
[[¬φ]] (ξ(τ ; z0, v), 0) at each iteration step until the constraint
is satisfied. According to Proposition 3.1 in [16], for the
MTL formula ¬φ, there exists a critical time τr ∈ [0, T ]
and a critical proposition πr that appears in φ such that
[[¬φ]] (ξ(τ ; z0, v), 0) = Distd(ξ(τr; z0, v),O(πr)). Thus the
robustness degree of the trajectory ξ(τ ; z0, v) with respect to
¬φ can be calculated by identifying the critical time τr and
the critical proposition πr (which can be easily computed
using software such as S-TaLiRo [17]).

Thus at each iteration the optimization problem is
converted to the following problem:

min.
∫ T

0

g(ξ(τ ; z0, v), v(τ))dτ

s.t. G(ξ(τr; z0, v)) + ζ ≤ 0,

(5)

where G(ξ(τr; z0, v)) = Distd(ξ(τr; z0, v),O(πr)). In the
following, we denote J(v) ,

∫ T
0
g(ξ(τ ; z0, v), v(τ))dτ and

Jcon(v) , G(ξ(τr; z0, v)) + ζ as the objective function and
the constraint function respectively.

We compute the functional derivative of J(v) for the input
v(τ) in the direction v̂,

dJ(v; v̂) , lim
δ→0

J(v + δv̂)− J(v)

δ
. (6)

If we denote q(·) as the gradient of J in the function space
of v(·), then we have

dJ(v; v̂) , 〈q, v̂〉 =
∫ T

0

q(τ)v̂(τ)dτ. (7)

Similarly, the functional derivative of Jcon(v) for the input
v(τ) in the direction v̂con can be written as follows:

dJcon(v; v̂con) , lim
δ→0

Jcon(v + δv̂con)− Jcon(v)

δ

, 〈qcon, v̂con〉 =
∫ T

0

qcon(τ)v̂con(τ)dτ.

(8)

where qcon(·) is the gradient of Jcon in the function space
of vcon(·).

We use the following notations for the sake of brevity:
∂G(τr)

∂z
,
∂G

∂z
|ξ(τr;z0,v)

∂f(τ)

∂z
,
∂f

∂z
|(ξ(τ ;z0,v),v(τ)),

∂f(τ)

∂v
,
∂f

∂v
|(ξ(τ ;z0,v),v(τ)),

∂g(τ)

∂z
,
∂g

∂z
|(ξ(τ ;z0,v),v(τ)),

∂g(τ)

∂v
,
∂g

∂v
|(ξ(τ ;z0,v),v(τ)) .

(9)
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Following similar mathematical deductions with those
in [10], it can be calculated that the gradients q(t) = ∂g(t)

∂v +∫ T
t

∂g(τ)
∂z pτ (t)dτ , qcon(t) = ∂G(τr)

∂z pτr (t), where pτ (t) =∫ τ
t
∂f(s)
∂z ps(t)ds+

∂f(t)
∂v is an Rn×m-valued function which

is specified to be zero if τ < t. To make the computation
easier to handle, we specify the input signal v(τ) to be a
piecewise constant function of time, i.e v(τ) = v[k] for
kTs ≤ τ ≤ (k + 1)Ts where Ts is a sampling period. Then
pτ (t) can be computed as state trajectories of the following
Linear Time Invariant (LTI) system:

dpτ (t)

dτ
=
∂f(τ)

∂z
pτ (t) = (A+BK)pτ (t) (10)

with the initial condition pt(t) =
∂f(t)
∂v = B at t = kTs(k =

0, 1, . . . , N). Then pτr (t) can be calculated by taking the
value of pτ (t) when τ = τr. Thus q(t) and qcon(t) can be
calculated at t = kTs (k = 0, 1, . . . , N).

After q(kTs) and qcon(kTs) are computed, we specify
q(τ) = q(kTs) and qcon(τ) = qcon(kTs) for kTs ≤ τ ≤
(k + 1)Ts. Our functional gradient descent algorithm is
similar to the algorithm in [11] and [10], but we consider the
constraint function while minimizing the objective function.
If the current solution satisfies the constraint, then the next
solution will be optimized along the opposite direction of
the gradient of the objective function; otherwise, the next
solution will be optimized along the opposite direction of
the gradient of the constraint function as the constraint has
to be met before the objective function is further minimized.

C. Feedback Controller Synthesis

In this section, we generate a feedback control law using
system identification techniques to replace the open-loop
input signals of the feedforward controller. The advantage of
a feedback controller is that it is more reactive to unexpected
disturbances and the required memory is reduced from
storing many signals to only a set of piecewise linear control
laws [12]. When the states and inputs of the trajectories
are calculated using numeric simulators such as ODE or
CVODE, the data are discrete and therefore in the following
we use ξ(k; z0, v) to denote the flow solution ξ(t; z0, v) at
the kth time instant.

Theorem 1 ([12]): Suppose that ‖ε‖∞ ≤ δ, then there
exists a critical radius γcrit > 0 such that for any γ > γcrit
the following is true for all k > 0:
ψ(z0, z

′
0) ≤ γ ⇒ ψ(ξ(k; z0, v), ξ(k; z

′
0, v + ε)) ≤ γ.

It can be seen from Theorem 1 that if γ > γcrit, then any
trajectory that starts from the initial set Bψ(z0, γ) will remain
in the robustness ellipsoids Bψ(ξ(k; z0, v), γ) in spite of
input uncertainties bounded by δ (i.e. ‖ε‖∞ ≤ δ). Therefore,
we can apply the following piecewise linear feedback law
Kv(z) to guarantee safety:

Kv(z) ,


θ1z + θ0,1, when z ∈ X1,

θ2z + θ0,2, when z ∈ X2,
...

...
θnz + θ0,nc

, when z ∈ Xnc
,

(11)

where {Xi}nc
i=1 form a partition of the state space and the

data points of the finitely many simulated trajectories in each
partition Xi satisfy |θiz+θ0,i−v| < δ (v is the optimal input
of the feedforward controller corresponding to state z).

λ(x)ω ẋ = F (x, u)
u

+

κ(x)

ω
+

v

z(x)K

x

feedback linearized system

Kv(z)

feedforward controller

feedback law

Fig. 1. Diagram of the feedforward and feedback controllers with the
feedback linearized system.

We use ` to denote the index of the nominal (simulated)
trajectories and we denote ξ`[k] , ξ`(k; z0,`, v`). The
clustering algorithm finds θi and θ0,i that make the
inequalities |θiξ`[k] + θ0,i − v`[k]| < δ true for as many k
and ` as possible (Maximum Feasible Subsystem Problem),
then remove those satisfied inequalities and repeat the
same process over the remaining ones until all inequalities
have been covered (for details, see [13]). The clusters are
further split into subclusters (by k-means or other clustering
methods) until the convex hull of each subcluster is disjoint
with the convex hull of any other subcluster (otherwise
the data points in different clusters may not be linearly
separable and thus lead to loss of safety guarantee).

After all the disjoint subclusters are obtained, we classify
all the subclusters using multi-class linear classification.
There are two major approaches of multi-class linear clas-
sification: pairwise linear classifiers and piecewise linear
classifiers. The pairwise linear classifiers classify each class
with every other class and then use the intersection of all the
half spaces determined by the pairwise decision boundaries
as the partition for the class. It is easy to implement, but it
is not guaranteed to form a complete partition of the whole
state space (there may be “holes” that do not belong to any
partition). The piecewise linear classifier can form a complete
partition of the whole state space and therefore is a better
fit for our approach. There are several different methods
of constructing piecewise linear classifiers. One way is to
construct nc classification functions for the nc subclasses
such that at each data point the corresponding class function
is maximal. We use robust linear programming to find the
nc classification functions for the nc subclasses.

Definition 1 ([18]): For nc sets Ai(i = 1, 2, . . . , nc) each
consisting of mi

c points in Rn, represented by the n ×mi
c

matrices Ai, are piecewise linear separable if there exists
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ωi, ωj ∈ Rn, bi, bj ∈ R such that

ωiAi − ebi > ωjAi − ebj , i, j = 1, 2, . . . , nc, i 6= j, (12)

where e is a vector of ones.
The classification problem becomes the following linear

programming (LP) problem:

min.
nc∑
i=1

nc∑
j=1,j 6=i

eyij

mi
c

,

s.t. yij ≥ −(ωi − ωj)Ai + e(bi − bj) + e

yij ≥ 0, i, j = 1, 2, . . . , nc, i 6= j.

(13)

We denote the resulting partition of the above LP op-
timization as {X̂i}nc

1 . We define the robustness ball as
the smallest ball that covers the robustness ellipsoid. As
a system state within one partition X̂i may not belong to
any robustness ellipsoid within the partition X̂i, but may
belong to a robustness ellipsoid in another partition X̂j (for
detailed illustration, see Fig. 4 of [12]), each partition is
shrunk so that it does not intersect any robustness ball outside
the partition and for each partition face, we make note
of the robustness balls outside the partition that intersect
it. Let Sij , {(`, k)| −

∥∥∥(ωi − ωj)P− 1
2

∥∥∥ γ` < (ωi −
ωj)ξ`[k] + bi − bj < 0} be the set of pairs (`, k) where
the robustness ball of the `th simulated trajectory at the kth
time instant (outside of X̂i) intersects the decision boundary
between the ith and jth subcluster of data. We calculate
b−ij ,min(`,k)∈Sij

(−
∥∥∥(ωi − ωj)P− 1

2

∥∥∥ γ` − (ωi − ωj)ξ`[k]),

and thus obtain the new decision boundary (ωi−ωj)x+b−ij =
0. Thus we obtain a reduced partition Xi for each original
partition X̂i such that a system state within Xi is guaranteed
not to belong to a robustness ball in any other partitions.

When implemented online we use the following algorithm:
1) If the current state z lies within the reduced partition Xi,
use the feedback control law Kv(z) = θiz + θ0,i;
2) If the current state lies within the original partition X̂i,
but not the reduced partition Xi, check to see if it lies
within any of the robustness balls marked in Sij for the
face that it lies near, then:
2a) If it does lie within a robustness ball centered at ξ`[k]
and ξ`[k] lies within the jth partition (j 6= i), use the control
law Kv(z) = θjz + θ0,j ;
2b) If it does not lie within any robustness ball, then still
use the feedback control law Kv(z) = θiz + θ0,i.

III. ENERGY STORAGE CONTROLLER SYNTHESIS

In this section, we apply the controller synthesis method
in designing an energy storage system (ESS) controller for
regulating the grid frequency of a double-machine infinite-
bus system as shown in Fig. 2 [19]. Two synchronous
generators are denoted as Gi (i = 1, 2), while four constant
impedance loads are denoted as Lj (j = 1, 2, 3, 4). The
configuration parameters of the power system model and
the line data can be seen in Tab. I and Tab. II. The swing

G1

G2

L4

1

2

3

4

5 6

78

9 ∞

L3L2

L1

ESS1

ESS2

Fig. 2. Double-machine infinite-bus system.

dynamics of machine Gi (i = 1, 2) can be described by the
following classical model:{

δ̇i = ωi,
Pri

Pb

Hi

πfs
ω̇i = Pmi − Pessi −Diωi − pei(δ1, δ2),

(14)

where δi is the rotor angle position of Gi with respect to
the infinite bus at G3, ωi is the rotor speed deviation of Gi
relative to system angular frequency 2πfs, Pb is the base
power in the per unit system, Pri is the rated power of Gi,
Hi is the per-unit inertia constant, Pmi is the mechanical
input power to Gi, Di is the damping coefficient, Pessi is
the power that flows from the grid to the energy storage
system near Gi, the electrical output power Pei is described
by the following function of δ1, δ2 (δ3 = 0):

Pei(δ1, δ2) ,GiiV
2
i +

3∑
j=1,j 6=i

ViVj{Gij cos(δi − δj)

+Bij sin(δi − δj)},
(15)

where Vi is the voltage behind the transient reactance of Gi,
Gii is its internal conductance, Gij + jBij is the transfer
admittance between Gi and Gj .

We use the following MTL specification for frequency
regulation:

φ =�¬φ1 ∧�¬φ2 ∧�[2,T ]φ3,

φ1 =(ω1 > 10), φ2 = (ω2 > 10),

φ3 =(−2 ≤ ω1 ≤ 2) ∧ (−2 ≤ ω2 ≤ 2) ∧ (−π/2 ≤ δ1 ≤ π/2)

∧ (−π/2 ≤ δ2 ≤ π/2),

which reads “The frequency deviations should never exceed
10 rad/s, after 2 seconds the frequency deviations should
always be within ±2 rad/s and machine angles should always
be within ±π/2”.

Assume that a three phase lines-to-ground fault occurs
near bus 4 on line 4-9 and the resulting fault-on system

1877



TABLE I
SYSTEM PARAMETERS

VA base Pb 160 MVA
System frequency fs 60 Hz
Machine rating Pri of Gi i=1 82MVA

i=2 160MVA
Mechanical input power Pmi i=1 0.28 (pu)

i=2 0.75 (pu)
Active power flow to load Li i=1 0.25 (pu)

i=2 0.1875 (pu)
i=3 0.4375 (pu)
i=4 0.75 (pu)

Transient reactance of Gi i=1 0.261 (pu)
i=2 0.284 (pu)

Per-unit inertia constant Hi i=1 5s
i=2 3.5s

Damping coefficient Di of Gi i=1,2 0.01s
Voltage Vi of Gi i=1,2 1.05 (pu)
Transformer impedance G1 1.8868 (pu)

G2 0.618 (pu)

TABLE II
LINE DATA (160MVA BASE)

Line number Line impedance (pu) Line charging (pu)
2-8(2-9) 0.0224+j0.1051 j0.0006625
7-8(7-9) 0.0880+j0.4080 j0.0023
4-8(4-9) 0.1168+j0.5440 j0.0031
4-5 0.0015+j0.0029 j0.0034
5-6 0.0023+j0.0032 j0.0094
6-7 0.0053+j0.0201 j0.0258

dynamics is as follows:

ẋ1 = x3;

ẋ2 = x4;

ẋ3 = 74.3059(0.28− 0.01x3 − 1.052(0.0054985

−0.0031946 cos(x1) + 0.22242 sin(x1)));

ẋ4 = 53.8559(0.75− 0.01x4).

(16)

where the state x = [δ1, δ2, ω1, ω2]
T .

The post-fault system with the input u = [Pess1 , Pess2 ]
T

is as follows:

ẋ1 = x3;

ẋ2 = x4;

ẋ3 = 74.3059(0.28− u1 − 0.01x3 − 1.052(0.006537+

0.00089272 cos(x1 − x2) + 0.0027265 sin(x1−
x2)− 0.0056368 cos(x1) + 0.38079 sin(x1));

ẋ4 = 53.8559(0.75− u2 − 0.01x4 − 1.052(0.00089272

cos(x2 − x1) + 0.0027265 sin(x2 − x1)+

0.010454 + 0.0077156 cos(x2) + 1.0712 sin(x2)).

(17)

As shown in Fig. 3, the post-fault system with no storage
input (u1 = u2 = 0) is not stable as the second generator
loses synchronism soon after the fault is cleared. Therefore
a storage controller is necessary not only for the purpose of
frequency regulation but also for maintaining the transient
stability of the post-fault system.

We simulate 4 trajectories of the post-fault feedback
linearized system (with the new input v to be optimized
as described in Sec. II-B) starting from the fault-on tra-
jectories cleared at 0.1912s, 0.1940s, 0.1967s and 0.1995s
respectively. For the feedforward controller, we set T = 10s,
Ts = 0.1s, ζ = 0.5, (all the values are per unit values
unless otherwise specified). As the optimization problem is
not convex, we use the multi-start method to avoid getting
stuck in local optimal solutions. The optimal storage input
signals for the 4 different fault clearing time are shown
in Fig. 4. It can be seen that in all 4 different scenarios,
ESS 1 is hardly used while the power flows significantly
from the grid to ESS 2 in the first 1 to 2 seconds to
decrease the grid frequency. After this period, the power
flow changes direction as the frequency deviation becomes
negative and continues to decrease, so the storage has to
generate electricity to prevent the frequency from dropping
beyond the lower threshold. After the first 5 seconds, the
storage control efforts gradually decrease to zero. It can also
be seen that with longer fault clearing time, more (storage)
control effort is needed to satisfy the MTL specification φ.
The initial robustness ellipsoids of the simulated trajectory
with fault clearing time of 0.1967s can totally cover the
fault-on states with uncertainties in the fault clearing time
(between 0.19s and 0.2s). Thus all the possible post-fault
trajectories with the given uncertainties in the fault clearing
time are guaranteed to satisfy the MTL specification φ (as
shown in Fig. 5).

Next, we design a piecewise linear feedback law that
is learned from the data of the simulated trajectory with
fault clearing time of 0.1967s and the corresponding optimal
inputs. We first cluster the 1001 data points into 84 disjoint
subclusters while in each subcluster the input error is within
δ=0.0118 (δ is designed such that γcrit < min

`
γ`). We

generate the piecewise linear classifier to separate the 84 sub-
clusters and modify the partitions according to the algorithm
described in Sec. II-C. We generate 20 trajectories using
the feedback controller over a sampling of initial conditions
and demonstrate that the trajectories all satisfy the MTL
specification φ (as shown in Fig. 6).
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-1

0

1

2


1
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
1
 (
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d
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Fig. 3. 4 simulated trajectories of the post-fault system with no storage
input over a sampling of initial conditions (fault clearing time between 0.19s
and 0.2s).

IV. CONCLUSIONS
We presented an approach to optimally control the energy

storage system for frequency regulation of power systems.
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We use functional gradient descent method for the feedfor-
ward controller synthesis and the piecewise linear system
identification techniques for the feedback controller synthe-
sis. Both controllers can guarantee that all the post-fault
trajectories with the given fault clearing time uncertainties
satisfy the MTL specifications. The similar controller syn-
thesis approach can be used in other related areas such as
transient stability enhancement, voltage regulation, etc.
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Fig. 4. Storage input u (blue for ESS 1 and green for ESS 2) of the
optimal feedforward controller with fault clearing time of (a) 0.1912s, (b)
0.1940s, (c) 0.1967s, (d) 0.1995s.

Fig. 5. Robust neighbourhood of the nominal (simulated) trajectory of the
post-fault feedback linearized system with the feedforward controller and
the fault clearing time being 0.1967s.

Fig. 6. 20 trajectories generated by the feedback controller over a sampling
of initial conditions (fault clearing time between 0.19s and 0.2s).
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