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Zhe Xu , Student Member, IEEE, A. Agung Julius, Member, IEEE, and Joe H. Chow , Fellow, IEEE

Abstract—We present a formal robust testing method for power
system cascading failure mitigations. The approach is model-based,
using simulated trajectories of the system and proving that uncer-
tainties, e.g., in the initial states or disturbances, do not perturb
the trajectories beyond a robust neighborhood around them. We
model power systems as hybrid systems with locations represent-
ing different swing dynamics and relay dynamics. We present im-
plementations of our robust testing approach in a three-machine
system model from the 2003 Italian Blackout and the IEEE 39-bus
system model. We apply the robust testing method in two scenar-
ios for averting the cascading failures: 1) robust testing of safety
for various generator mechanical power dispatch schedules and
2) robust testing of safety for postfault remedial actions based on
quick-start storage.

Index Terms—Cascading failures, hybrid system, quick-start
storage, robust neighborhood, robust testing.

I. INTRODUCTION

CASCADING failures of the power grid (such as the 2003
blackouts in the Northeastern U.S. and in Italy [1]) can

have devastating effects on almost every aspect of modern so-
ciety [2], [3]. A cascading failure happens when the failure of
one power line or generator triggers the failure of other power
lines or generators, which may further lead to power instability.
Cascading outages are essentially related to the power system
transient stability and various dynamics such as swing dynamics
and relay dynamics [4], [5].

For a long time, time-domain numerical simulations and
direct methods [6] are the two main approaches in analyz-
ing power system dynamics and transient stability. Recently,
reachability analysis has emerged as an effective technique to
compute overapproximated reachable sets of systems trajec-
tories considering uncertainties of initial states, disturbances,
and others. For example, the level set method [7] is utilized
to analyze and design power grid dynamic performances by
computing the reachable sets. In the meantime, the trajectory
(or simulation, test) based approach is increasingly applied be-
cause of its simplicity and highly parallelizability. Probabilis-
tic methods such as Monte–Carlo simulations are applied to
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Fig. 1. Simulated trajectory from initial state x0 (also called the nominal
trajectory in this paper) can be equipped with a robust neighborhood such
that variations in the initial state or bounded disturbance will not deviate
the trajectory beyond the robust neighborhood. If this neighborhood excludes
the states leading to cascading failures, we can formally verify the safety
of the compact set of initial states.

simulate many trajectories to cover the state space. However,
these methods can only offer a probabilistic statement about
system safety. In this paper, we propose a robust neighborhood
approach to cover an uncountable compact set of states with
finitely many simulated trajectories and robust neighborhoods
around them. See Fig. 1 for a conceptual illustration of our
approach.

For linear systems, Lyapunov stability analysis can be used
to compute the robust neighborhood [8], [9]. For nonlinear sys-
tems, several different approaches have been proposed. In [10],
the authors propose a trajectory-based reachability analysis us-
ing local finite-time invariance property. In [11], the authors
propose a conservative linearization method for reachability
analysis for power systems, where the reachable sets are rep-
resented by zonotopes. In [12], the authors propose the dis-
crepancy function, which generalizes other measures of tra-
jectory convergence and divergence such as contraction met-
rics and incremental Lyapunov functions. In [13], the au-
thors propose the local discrepancy function and use matrix
perturbation theory to calculate the robust neighborhood in
the form of balls or ellipsoids iteratively at each local time
point.

In this paper, we use the robust neighborhood approach to
perform robust testing of power systems in mitigating cascad-
ing failures. We model the dynamics of the system as the dy-
namics of a hybrid system, combining the swing dynamics and
the relay dynamics. We propose the bounded disturbance lo-
cal discrepancy function (BDLDF) based on [13] for calculat-
ing the local discrepancy function with the effect of bounded
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disturbances. We use ellipsoids to represent the robust neighbor-
hood and bound the error term utilizing the special characteris-
tics of power system dynamics. We find the robust neighborhood
so that every possible trajectory in the robust neighborhood satis-
fies the safety criterion specified by signal temporal logic (STL)
specifications [14]–[16] with the knowledge of relay dynamics.
The safety criterion guarantees that subsequent line overloading
as a result of initial line trips is not severe enough for further
line trips (cascading failures).

The two cases that we consider in this paper are the following.
1) Robust testing of various generator mechanical power

dispatch schedules: We test the robustness of a power
dispatch schedule in averting cascading failures, i.e.,
a line trip does not lead to the tripping of other
lines.

2) Robust testing of postfault remedial actions based on
quick-start storage: When a major line trips, the distri-
bution of power flow is changed significantly. In [17],
generation rescheduling and load shedding are proposed
as two main methods for redistributing the power flow to
avert cascading failures. While generation rescheduling
has the disadvantage of slow response time (a few sec-
onds to a few minutes), load shedding also suffers from
the significant instantaneous cost and the inconveniences
brought to consumers. Recently, energy storage [18], [19]
has been increasingly utilized as a third alternative for
cascading failure mitigations. Although energy storage is
also costly to install and maintain, it can facilitate ef-
fective utilization of variable sources with much shorter
response time (a few milliseconds for quick-start stor-
ages such as Lithium-ion batteries and supercapacitors)
and avoid the instantaneous cost of load shedding. We
test the robustness of the quick-start storage strategy in
averting cascading failures. Particularly, we perform ro-
bust testing with respect to various starting rates of the
storage.

This paper is organized as follows. Section II briefly re-
views the definitions of trajectories and simulations of hy-
brid systems. Section III presents the algorithm for the robust
neighborhood computation for nonlinear hybrid systems with
STL specifications. Section IV presents the robust testing algo-
rithms and the implementations of the algorithms on a three-
machine power system model and the IEEE 39-bus system
model to test the robustness of the cascading failure mitigations
for both generator power dispatch schedules and emergency
remedial actions. Finally, some conclusions are presented in
Section V.

II. HYBRID SYSTEM TRAJECTORIES AND SIMULATIONS

Definition 1 (Hybrid automaton): A hybrid autonomous
system is defined to be a 5-tuple H = (L×X,L0 ×X0 , f,
E, Inv) [20], [21].

1) L×X is a set of hybrid states (�, x), where � ∈ L is
the discrete state (location), and x ∈ X is the continuous
state.

2) L0 ×X0 ⊂ L×X a set of initial states.

3) f associates with each location � ∈ L the autonomous
continuous time-invariant dynamics, f� : ẋ = f�(x),
which is assumed to admit a unique global solution

ξ�(t, x0
� ), where ξ� satisfies ∂ξ� (t,x0

� )
∂ t = f�(ξ�(t, x0

� )), and
ξ�(0, x0

� ) = x0
� is an initial condition in �.

4) Inv : L→ 2X associates an invariant set Inv(�) ⊂ X with
each location. Only if the continuous state satisfies x ∈
Inv(�), can the discrete state be at the location �.

5) E is a set of events. In each location �, the system state
evolves continuously according to f� until an event e :=
(�, �′, g, r), e ∈ E occurs. The event is guarded by g ∈
Inv(�). Namely, a necessary condition for the occurrence
of e is x ∈ g. After the event, the state is reset from (�, x)
to (�′, r(x)).

When a hybrid system runs, the system state alternately flows
continuously and triggers events inE. For convenience, we also
define an initialization event e0 �∈ E. Then, a trajectory of the
system can be defined as a sequence.

Definition 2 (Trajectory): A trajectory of a hybrid systemH
is denoted as ρ = {(ei, �i , xi, T i)}N�

i=0 ,
where
1) ∀i ≥ 0, (�i , xi) ∈ L×X , and (�0 , x0) ∈ L0 ×X0 ;
2) ∀i ≥ 0, T i ∈ R≥0 (nonnegative real), and ∀t ∈ [0, T i ],

ξ�i (t, xi) ∈ Inv(�i);
3) ∀i ≥ 1, ei = (�i−1 , �i , gi , ri), ξ�i−1 (T i−1 , xi−1) ∈ gi ,

xi = ri(ξ�i−1 (T i−1 , xi−1)), i.e., (�i , xi) is the reset state
for (�i−1 , ξ�i−1 (T i−1 , xi−1)).

Definition 3 (Simulation): A {(xi, τ, ε, T i)}N�
i=0-simulation

ψ of the hybrid systemH is a sequence of time-stamped compact
sets (Ri [k], ti [k]) (for every i, wherek = 1, 2, . . . , Ni

T ) and a se-
quence of hyperrectangles or parallelepipedsQ(ti [k − 1], ti [k])
satisfying the following.

1) The first time in each location is ti [0] and the last time
in each location is ti [Ni

T ] = ti [0] + T i . ∀i ≥ 0, k ≥ 1,
0 < ti [k]− ti [k − 1] ≤ τ , where the parameter τ is the
maximal sampling period.

2) ∀i ≥ 0, k ≥ 1, ξ�i (ti [k]− ti [0], xi) ∈ Ri [k] ⊆ Rn . The
diameter of Ri [k] is bounded by ε, i.e., supx1 ,x2 ∈Ri [k ]
‖x1 − x2‖ ≤ ε.

3) ∀t ∈ [ti [k − 1]− ti [0], ti [k]− ti [0]], ξ�i (t, xi) ∈ Q(ti [k
− 1], ti [k]).

Validated simulation libraries such as VNODE-LP [22] and
CAPD [23] can give strict error bounds in the forms of hyper-
rectangles or parallelepipeds that include all possible simulation
errors between adjacent simulation time points. For example, in
the VNODE-LP library, the error bounds between adjacent sim-
ulation time points are referred to as the apriori bounds (which
can be calculated by [24, Algorithm I]) and the error bounds for
each simulation point are referred to as the tight bounds (which
can be calculated by [24, Algorithm II]).

For an {(xi, τ, ε, T i)}N�
i=0-simulation ψ of the hybrid sys-

tem H , we can define the nominal (simulated) trajectory of ψ.
With slight abuse of notation, we define the nominal (simulated)
trajectory ρψ as a sequence of points ξ�i (ti [k]− ti [0], xi) =
center(Ri [k]) = arg maxx∈Ri [k ] inf{‖x− y‖|y ∈ cl(Rn \Ri

[k])}, where cl(·) means the closure of a set, ‖·‖ denotes the
2-norm.
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III. ROBUST NEIGHBORHOOD COMPUTATION FOR NONLINEAR

HYBRID SYSTEMS WITH STL SPECIFICATIONS

In this section, we introduce the robust neighborhood compu-
tation algorithms for nonlinear hybrid systems with STL specifi-
cations. We first present the algorithm of computing the BDLDF
for a general nonlinear system in Section III-A and then present
the specific bounding method for the error term in Section III-B.
Finally, we extend the methods to hybrid systems and present
the algorithm of robust neighborhood computation for nonlinear
hybrid systems with STL specifications in Section III-C.

A. Bounded Disturbance Local Discrepancy Function

We consider a nonlinear dynamical system of the form

ẋ = f(x). (1)

In addition, we also consider a perturbed version of the same
dynamics

ẋζ = f(xζ ) + ζ(t) (2)

where ζ(t) is a bounded disturbance. Following the convention
in the previous section, we denote the solution trajectories of
(1) with initial condition x0 as ξ(t, x0), the solution of (2) with
the same initial condition and disturbance ζ(t) as ξ̂(t, x0 ; ζ).

For two initial states x0 and x̃0 with disturbance ζ(t), define
z(t) � ξ̂(t, x̃0 ; ζ)− ξ(t, x0). Intuitively, ξ(t, x0) and ξ̂(t, x̃0 ; ζ)
represent the nominal (simulated) trajectory and a perturbed
trajectory.

Following [13], we can write

ż(t) =
(∫ 1

0
Jf

(
ξ(t, x0) + sz(t)

)
ds

)
z(t) + ζ(t) (3)

where Jf (x) � ∂f (x)
∂x is the Jacobian of f(x). Furthermore,

d

dt
‖z(t)‖2 = zT (t)

( ∫ 1

0
(Jf (ξ(t, x0) + sz(t))

+ JTf (ξ(t, x0) + sz(t)))ds
)
z(t) + zT (t)ζ(t) + ζT (t)z(t).

(4)

For this nonlinear dynamics, we find a time-varying function
to bound the right-hand side of (4) and, therefore, bound the
growth of the difference between the nominal trajectory and
the perturbed one. The time-varying function is described in
[13] as the local discrepancy function. To make the bound even
tighter, we define a linear coordinate transformation as in [13],
v(t) � V z(t). Then,

d

dt
‖v(t)‖2 = vT (t)

(∫ 1

0

(
J̃f

(
ξ(t, x0) + sz(t)

)
+ J̃Tf (ξ(t, x0)

+ sz(t))
)
ds

)
v(t) + vT (t)V ζ(t)

+ ζT (t)V T v(t) (5)

where J̃f (x) = V Jf (x)V −1 . One effective candidate ofV is the
inverse of the (generalized) eigenvector matrix of the average
of the Jacobian Jf (ξ(t, x0)) for a period of time (for details on

Algorithm 1: BDLDF computation for nonlinear dynamics.

1: procedure ComputeBDLDF(ψ, ρψ , J̃f (x), Lf , γ[0], μ)
2: for k ← 1 to NT do
3: τ ← t[k]− t[k − 1]
4: J̃ ← J̃f

(
(ξ(t[k − 1], x0) + ξ(t[k], x0))/2

)
5: λ← λmax(J̃ + J̃T )/2
6: d← γ[k − 1]

∥∥V −1
∥∥

7: d̃← eLf τ d
8: S̃[k]← Hull

(
Box

(
Ball(ξ(t[k − 1], x0), d̃)

)
,

9: Box
(
Ball(ξ(t[k], x0), d̃)

))⊕Q(t[k − 1], t[k])

10: Error ← max
x∈S̃ [k ]

∥∥∥J̃f (x) + J̃Tf (x)− J̃ − J̃T
∥∥∥

11: b̃[k]← λ + Error/2
12: γ[k]← (γ[k−1] + ε)eb̃[k ]τ+μ ‖V ‖ /b̃[k]

(eb̃[k ]τ − 1)
13: end for
14: return γ[k](k = 1, 2, . . . , NT )
15: end procedure

the selection of V , see [13, Sec. 3.3]). We denote M � V T V ,
φM (x, y) �

√
(x− y)T M(x− y).

In the following, we assume the disturbance ζ(t) is bounded
by μ, i.e., ‖ζ(t)‖ ≤ μ, μ ∈ R≥0 .

Definition 4: Given the system of equations (1), (2), if the
initial states is a compact set X0 , then a uniformly contin-
uous function γ: X0 ×X0 × [0, T ]→ R≥0 is a BDLDF of
the system if there exists positive-definite matrix M such that
for any initial states x̃0 , x0 ∈ X0 , φM (ξ̂(t, x̃0 ; ζ), ξ(t, x0)) ≤
γ(x̃0 , x0 , t).

The BDLDF actually defines the robust neighborhood of
a trajectory at every time point in the shape of an ellipsoid
with the radius being γ(x̃0 , x0 , t). In the following, for dis-
crete time-stamped trajectories in an (x0 , τ, ε, T )-simulation,
we denote γ[k] � γ(x̃0 , x0 , t[k]). We denote B(x, γ[k]) �
{x′|φM (x, x′) ≤ γ[k]} as the robust neighborhood around x
with radius γ[k].

Theorem 1: Considering the system of equations (1), (2)
with the initial set X0 and a sequence of time points t[0] <
t[1] < . . . < t[NT ] = T , for any x̃0 and x0 ∈ X0 , γ(x̃0 , x0 , t)
is a BDLDF of the system of equations (1), (2), if

γ(x̃0 , x0 , t) =

⎧⎪⎪⎨
⎪⎪⎩

φM (ξ̂(t, x̃0 ; ζ), ξ(t, x0)), if t = t[0]

(γ[k − 1] + ε)eb̃[k ](t−t[k−1])

+μ ‖V ‖ /b̃[k](eb̃[k ](t−t[k−1]) − 1), if t ∈ (t[k − 1], t[k]]

where b̃[k] is defined as in Algorithm 1.
The algorithm to calculate the BDLDF for nonlinear dy-

namics is shown in Algorithm 1. The input of the ComputeB-
DLDF function are an (x0 , τ, ε, T )-simulation ψ and its nom-
inal (simulated) trajectory ρψ , the Jacobian matrix J̃f (x), the
Lipschitz constant Lf , the initial BDLDF value γ[0], and a
disturbance bound μ. Algorithm 1 starts from the initial set
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(ellipsoid) B(x0 , γ[0]) and calculate the time-varying radius
γ[k] iteratively. We use the following notations: λmax(A) is
the largest eigenvalue of matrix A, Hull(S1 , S2) is the convex
hull of the two sets S1 , S2 , Ball(x, r) � {x′| ‖x′ − x‖ ≤ r},
the set-based addition X ⊕ Y = {x+ y|x ∈ X , y ∈ Y}, and
the outer box of a set S of states is the minimal multidimen-
sional interval that contains S, i.e. Box(S) � [xlower, xupper],
where xlower and xupper are the lower and upper bounds of x
in each dimension in S. The calculation of the convex over-
approximated region S̃[k] takes two steps: 1) (lines 6 and
7) the radius of the smallest ball that covers the ellipsoid
B(ξ(t[k − 1], x0), γ[k − 1]) is calculated as d and bloated
through the Lipschitz constant Lf to obtain d̃; 2) (lines 8 and 9)
S̃[k] is calculated as the set-based addition of Q(t[k − 1], t[k])
and the convex hull of the outer boxes of the two balls of radius
d̃ centered at ξ(t[k − 1], x0) and ξ(t[k], x0), respectively. Now,
the only term that needs to be determined in Algorithm 1 is the
error term in line 10, and it can be calculated with the method
described in Section III-B.

Remark 1: Algorithm 1 is modified from Algorithm Com-
puteLDF in [13], but as the bounded disturbance is added,
the representation of b̃[k] is different from b[i] in [13]. Be-
sides, we take the outer box of Ball(ξ(t[k − 1], x0), d̃) and
Ball(ξ(t[k], x0), d̃) to make S̃[k] a polytope (which is to make
the computation of the error term easier in Section III-B), and
we use the Q(t[k − 1], t[k]) to include the simulation errors
between adjacent simulation points, so S̃[k] is an overapprox-
imation of S in [13], and thus, by [13, Lemma 3.2], S̃[k] is
an overapproximation of the reachable set of states between
t[k − 1] and t[k].

B. Upper Bound of the Error Term

Following [13], we use E(x) to denote J̃f (x) + J̃Tf (x)−
J̃ − J̃T for each iteration in Algorithm 1. We denote cond(V )
as the condition number of the matrix V .

Theorem 2: ‖E(x)‖ ≤ 2cond(V ) ‖Jf (x)− J‖F .
The upper bound of ‖Jf (x)− J‖F in the convex hull S̃[k]

can be calculated as follows:

max
x∈S̃ [k ]

‖Jf (x)− J‖F

≤
√∑N

i=1

∑N

j=1
max
x∈S̃ [k ]

(Jf (x)ij − Jij )2 (6)

where N is the dimension of state x, Jf (x)ij is the (i, j)th
entry of the matrix Jf (x), and max

x∈S̃ [k ]
(Jf (x)ij − Jij )2 can

be calculated as the maximum of ( max
x∈S̃ [k ]

Jf (x)ij − Jij )2 and

( min
x∈S̃ [k ]

Jf (x)ij − Jij )2 .

We find conservative upper and lower bounds for each term
Jf (x)ij using interval arithmetics. Specifically, for the power
system dynamics that we consider in this paper, Jf (x)ij can be
expressed as the sum of terms of the following form:

�(χ) = m sin(aχ+ b), χ ∈ [χlower, χupper] (7)

where m,a, and b are nonnegative real numbers, χ represents
either state or linear combination of states, and χlower and χupper

are the minimal and maximal values of χ in S̃[k] (which can be
easily computed by linear programming as S̃[k] is convex). The
upper and lower bounds of each term �(χ) can be calculated by
interval arithmetics of sinusoidal functions.

C. Algorithm for Robust Neighborhood Computation for
Nonlinear Hybrid Systems With STL Specifications

In this section, we apply the analysis of bounding the growth
of differences between trajectories of a hybrid system. In the
following, we use the superscript i to denote the correspond-
ing variables in location �i . For brevity, we denote φi(x, y) =√

(x− y)T Mi(x− y). We want all trajectories initiated from
within B(x0 , γ0 [0]) = {x|φ0(x, x0) ≤ γ0 [0]} to have the same
qualitative behavior as the nominal (simulated) trajectory (i.e.,
triggering the same guards, satisfying the same STL specifi-
cations, etc.). As some of the trajectories may leave later than
the nominal (simulated) trajectory, we use the method in [8] to
extend the time horizon to [ti [0], ti [0] + T i + Tlag] so that all tra-
jectories initiated from the robust neighborhood are guaranteed
to leave Inv(�i) before ti [0] + T i + Tlag. While in general any
kind of STL specification can be used, we consider the follow-
ing two forms (as they are used in the power system cascading
failure mitigation scenarios in Section IV):

ϕis = ¬♦[ti [0],ti [0]+T i +T lag]π i (8)

ϕi = ¬♦[ti [0],ti [0]+T i +T lag]�[0,T ′i ]π
i (9)

ϕis reads as “During the entire time interval of [ti [0], ti [0] +
T i + Tlag], the state should never be in the unsafe set πi .” ϕi

reads as “During the entire time interval of [ti [0], ti [0] + T i +
Tlag], the state should not stay in the unsafe set πi for more than
T ′i .” Note that if i is the last location of the simulated trajectory,
then [ti [0], ti [0] + T i + Tlag] should be replaced by [ti [0], Tend],
where Tend is the end of simulation time.

The algorithm to calculate the robust neighborhood of the
nominal (simulated) trajectory with respect to STL specifica-
tions ϕi(i = 0, 1, . . . , N�) is shown in Algorithm 2. Note that
Algorithm 2 is specifically written for the STL formula ϕi in the
form of (9). If other forms of STL formulas are used, one needs
to change Algorithm 2 (such as line 22) according to the spe-
cific STL formulas. The computation proceeds in reverse order,
i.e., from the last location to the first location. In each location,
we calculate the distances (in the metric of φi(x, y)) between
the state of nominal (simulated) trajectory and the states of the
avoided sets (lines 4–11). The avoided sets have two parts: the
unsafe sets πi and the avoided part of the guards. We define Ξi

as the collection of guards of location �i , ǧi+1 as the part of
gi+1 such that the image through the reset map ri+1 is inside
the robust neighborhood around the reset initial state (as shown
in Fig. 2), which can be expressed formally as follows:

ǧi+1 ← {x ∈ gi+1 |ri+1(x) ∈ Bi+1(xi+1 , γi+1[0])}. (10)

The avoided part of guards can be expressed as follows:

Ξi \ ǧi+1 � (Ξi \ gi+1) ∪ (gi+1 \ ǧi+1)
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Algorithm 2: Robust neighborhood computation with re-
spect to STL specifications ϕi(i = 0, 1, . . . , N�).

1: procedure ROBUSTTUBE(H , ψ, ρψ , r0 , as, Tlag, μ)
2: for i← N� to 0 do
3: k ← 0
4: while ti [k]− ti [0] < T i + Tlag do
5: k ← k + 1
6: if i < N� then
7: Obtain ǧi+1 using (10)
8: dig(t

i [k])← inf
y∈Ξ i \ǧ i+ 1

φi(ξ�i (ti [k], xi), y)

9: end if
10: di(t[k])← inf

y∈π i
φi(ξ�i (ti [k], xi), y)

11: end while
12: flag← 0, γi [0]← r0 , Ni

T ← k
13: while flag = 0 do
14: flag← 1
15: Compute J̃ if (x) and Lif from H

16: γi [k](k = 1, . . . , Ni
T )← ComputeBDLDF

17: (ψi , ρiψ , J̃ if (x), L
i
f , γi [0], μ)

18: for k ← 0 to Ni
T do

19: if i < N� ∧ γi [k] > dig(t
i [k]) then

20: flag← 0
21: end if
22: if there exists j such that ti [j]− ti [k] > T ′i

and γi [k] > di(ti [k]) and γi [k + 1] > di (ti [k + 1])
and . . . γi [j] > di(ti [j]) then

23: flag← 0
24: end if
25: end for
26: if flag = 0 then
27: γi [0]← asγ

i [0] �0 < as < 1
28: end if
29: end while
30: end for
31: return γ0 [0]
32: end procedure

where Ξi \ gi+1 should be avoided because it triggers events dif-
ferent from the event ei+1 triggered by the nominal trajectory,
and ǧi+1 is excluded from the avoided part of guards since it is
allowed for trajectories initiated from the computed neighbor-
hood to reach ǧi+1 and trigger ei+1 . The distance between the
nominal (simulated) trajectory and the unsafe set πi at time ti [k]
is denoted as di(ti [k]), while the distance between the nominal
(simulated) trajectory and the avoided part of the guards at time
ti [k] is denoted as dig(t

i [k]).
Next, we give an initial guess of γi [0] as r0 (line 12) and

gradually shrink the radius until the robust neighborhood of
the nominal trajectory is found (lines 13–29). In each iteration,
Algorithm 1 is called to calculate γi [k](k = 0, 1, . . . , Ni

T ) in the
time horizon [ti [0], ti [0] + T i + Tlag] (lines 16 and 17, whereψi

and ρiψ are the segment ofψ and ρψ in location �i). γi [k] is com-
pared with dig(t

i [k]) (lines 19–21) and di(ti [k]) (lines 22–24) at
relevant time points to determine whether the STL specifications

Fig. 2. Trajectories that start from the robust neighborhoodBi (xi , γi [0]) are
guaranteed to enter �i+1 through ǧi+1 and not enter πi for more than T ′i .

ϕi(i = 0, 1, . . . , N�) are satisfied for the trajectories in the cur-
rent guess of the robust neighborhood. If the answer is yes, then
γ0 [0] is returned; otherwise, γ0 [0] is shrunk by as(0 < as < 1)
and the whole procedure is rerun until ϕi(i = 0, 1, . . . , N�) are
satisfied.

Remark 2: As exact values of di(ti [k]) can be hard to com-
pute when πi is nonconvex, a lower bound of di(ti [k]) can be
calculated instead for conservative computation of the robust
neighborhood. Another way to circumvent the computation of
di(ti [k]) is elaborated in the examples in Section IV. It applies to
the situation where the unsafe set can be represented in the form
of F i(x) > 0, where F i(x) is a function of the state x. In short,
we compute F̄ i [k] as the upper bound of F i(x) for all x in the
current guess of the robust neighborhood around ξ�i (ti [k], xi).
If F̄ i [k] ≤ 0 is always true in [ti [0], ti [0] + T i + Tlag], then all
trajectories in the current guess of the robust neighborhood are
guaranteed to satisfy ϕis . If F̄ i [k] ≤ 0 is false for less than T ′i
in [ti [0], ti [0] + T i + Tlag], then all trajectories in the current
guess of the robust neighborhood are guaranteed to satisfy ϕi .

IV. ROBUST TESTING OF POWER SYSTEM CASCADING

FAILURE MITIGATIONS

A. Three-Machine Power System Model

In this section, we give a case study of the Italian blackout
happened on September 28, 2003. In [25], the authors built
a model to simulate the dynamics of the cascading process
and concluded that the cascading failure happened because of
the interaction between the transient stability governed by the
swing dynamics and the protection operation. In this paper, we
use a three-machine power system model to simulate the Italian
blackout. Fig. 3 shows the three-machine power system model
modified from [25]. The synchronous machines Gi (i= 1, 2, 3)
represent the power systems of Switzerland and France, and the
loads represent the Italian power system. Arrows in the figure
denote constant impedance loads.

The classical model describes the swing dynamics of machine
Gi (i = 1, 2) by the following ordinary differential equations:

⎧⎪⎨
⎪⎩
δ̇i = ωi

Pri

Pb

Hi

πfs
ω̇i = PGi −Diωi − pei(δ1 , δ2)

(11)
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Fig. 3. Modified three-machine power system model for the Italian blackout.

where δi is the rotor angle position of Gi with respect to the
infinite bus at G3 , ωi is the rotor speed deviation of Gi relative
to system angular frequency 2πfs, Pb is the base MVA in the
per unit system, Pri is the rated power of Gi , Hi is the per-unit
inertia constant, PGi is the mechanical input power to Gi , Di is
the damping coefficient of Gi , and Pei stands for the electrical
output power of Gi and is given by the following function of
δ1 , δ2 (δ3 = 0 in the following equation):

Pei(δ1 , δ2)�GiiE
2
i +

3∑
j=1,j �=i

EiEj{Gij cos(δi − δj )

+Bij sin(δi − δj )} (12)

where Ei is the terminal voltage of Gi , Gii is its internal con-
ductance, andGij + jBij is the transfer admittance between Gi

and Gj .
There are several kinds of overcurrent relays, which are in

use in the current power systems. In this paper, we focus on the
induction-disc-type overcurrent relays as described in [26]. The
internal dynamics of the induction-disc type overcurrent relays
is described by ordinary differential equations of the internal
state variable rx1 for the relay and the internal state variable rx2
for the circuit breaker. The internal dynamics of the relay is as
follows:

ṙx1 = fr(I)(1− ν(rx1 − rTDS)gr(I)− ν(−rx1)(1− gr(I)))

zr = ν(rx1 − rTDS) (13)

where

fr(I) = K((I/ITAP)2 − 1) gr(I) = ν(I − ITAP)

ν(x) �
{

0, if x ≤ 0

1, if x > 0
(14)

where the function ν is a step function of state rx1 , ITAP is
the prescribed threshold value of input current I , rTDS is the
threshold value of state rx1 , K is the acceleration factor of the
internal dynamics, and zr is the discrete output of the overcurrent
relay.

Fig. 4. Locations of the hybrid system H describing the series of events of
the cascading failure.

The internal dynamics of the circuit breaker is as follows:

τtrṙx2 = zr
(
1− ν(rx2 − rtr)

)
zcb = ν(rx2 − rtr) (15)

where rtr is the threshold value of rx2 , and τtr is the time constant
for the circuit breaker internal dynamics, zcb is the discrete
output of the circuit breaker (when zcb=1, the circuit breaker
opens).

In this paper, we setPb = 2000 MVA, fs = 50 Hz,Pr1 = Pr2 =
2000 MW, Pr3 = 200 GW, the voltage base is 400 kV, the trans-
former impedance is 0.15 (all the values here and in the follow-
ing are per unit values unless otherwise specified), and the initial
active power flow to load L1 ,L2 ,L3 , and L4 are 0.25, 0.95, 0.2,
and 0.1, respectively. For i = 1, 2, 3, Hi = 5 s, Di = 0.05, and
Ei = 1. The line inductance is 0.9 mH/km, and the line resis-
tance and capacitance are neglected. The relay parameters ITAP

= 1.05, K = 16, rTDS = 1, the circuit breaker parameters τtr =
0.1 s, rtr = 1. We assume that a three-phase line-to-ground fault
occurs near CB11; then, the cascading behavior of the power
system can be modeled as a hybrid systemH with ten locations
corresponding to different generator swing dynamics and relay
dynamics, as shown in Fig. 4. We use I1 , I2 , and I3 to denote
the line current amplitudes of line 1-2, line 6-7, and line 11-12,
respectively. rx1,1 , rx1,2 , and rx1,3 are the internal state vari-
able for the relays corresponding to CB11(12), CB21(22), and
CB31(32), respectively. rx2,1 , rx2,2 , and rx2,3 are the internal
state variable for the circuit breaker CB11(12), CB21(22), and
CB31(32), respectively. The simulated trajectories start from
the fault-on location �1 and x1 (the initial state at location �1) is
also the initial state of the entire nominal (simulated) trajectory.

After the fault happens, if the relay corresponding to
CB11(12) sends the signal to the circuit breaker (which nor-
mally is bound to happen as a protection for in-section fault),
then the dynamics move to location �2 . If CB11 and CB12 are
opened (the time interval between CB11 opens and CB12 opens
is neglected), then the dynamics move to location �3 . Fig. 5
shows that when PG1 = 0.9 and PG2 = 0.6, the circuit break-
ers CB11(12), CB21(22), and CB31(32) open consecutively at
0.12889, 0.58421, and 0.78355 s. After the three lines trip, the
machines lose synchronism with the infinite bus and the system
becomes unstable.
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Fig. 5. Swing dynamics and protection operation in the three-machine power
system model when PG1 = 0.9 and PG2 = 0.6.

1) Robust Testing of Generator Power Dispatch Schedules:
To avert the cascading failure, it is essential for CB21(22) not
to open after CB11(12) opens. To achieve this, we present the
following two methods.

Method 1: In the hybrid system H , we simulate a nomi-
nal trajectory ρψ that starts from �1 and we treat the guard
set between location �4 and �5 as the unsafe set π4 . The state
x = [δ1 , δ2 , ω1 , ω2 , PG1 , PG2 , rx1,1 , rx2,1 , rx1,2 , rx2,2 ]T and the
continuous dynamics in location �1 to �4 are given as follows:

For location �1 ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3 , ẋ2 = x4

ẋ3 = 31.42x5 − 1.57x3 − 34.56(0.033 + 0.032 cos(x1

−x2) + 0.44 sin(x1 − x2) + 0.019 cos(x1)
+0.23 sin(x1))

ẋ4 = 31.42x6 − 1.57x4 − 34.56(0.032 cos(x2 − x1)+
0.44 sin(x2 − x1) + 0.039 + 0.025 cos(x2)+
0.52 sin(x2))

ẋ5 = 0, ẋ6 = 0
ẋ7 = 16((1.2971 + 1.1342 cos(x1 − x2) + 0.61 cos(x1)

+0.4766 cos(x2))/1.05/1.05− 1)
ẋ8 = 0, ẋ9 = 0, ẋ10 = 0.

(16)
For location �2 ,{

ẋ1 , ẋ2 , ẋ3 , ẋ4 , ẋ5 , ẋ6 are the same as in �1

ẋ7 = 0, ẋ8 = 10, ẋ9 = 0, ẋ10 = 0.
(17)

For location �3 ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3 , ẋ2 = x4

ẋ3 = 31.42x5 − 1.57x3 − 34.56(0.27 + 0.21 cos(x1

−x2) + 1.05 sin(x1 − x2) + 0.12 cos(x1)
+0.55 sin(x1))

ẋ4 = 31.42x6 − 1.57x4 − 34.56(0.21 cos(x2 − x1)
+1.05 sin(x2 − x1) + 0.17 + 0.098 cos(x2)
+0.74 sin(x2))

ẋ5 = ẋ6 = ẋ7
1 = ẋ8 = ẋ9 = ẋ10 = 0.

(18)

1Note that x7 (rx1 ,1 ) actually gradually decreases to 0 after CB11(12) opens,
but as x7 (rx1 ,1 ) is not relevant any more after CB11(12) opens, we decide to
simplify it by assuming that x7 (rx1 ,1 ) stays the same after CB11(12) opens.

Algorithm 3: Robust testing algorithm for generator power
dispatch schedules.

1: flag← 0
2: while flag = 0 do
3: Simulate ψ and ρψ of H from the initial point x1

4: if ρψ is safe with respect to ϕ4
s then

5: γ1 [0]← RobustTube(H,ψ, ρψ , r0 , as, Tlag, μ)
6: if γ1 [0] ≥ η then flag← 1
7: else
8: x1

5 ← x1
5 − h, x1

6 ← x1
6 + h

9: end if
10: else
11: x1

5 ← x1
5 − h, x1

6 ← x1
6 + h

12: end if
13: end while
14: return x1 , γ1 [0]

For location �4 ,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 , ẋ2 , ẋ3 , ẋ4 , ẋ5 , ẋ6 , ẋ7 , ẋ8 are the same as in �3

ẋ9 = 16((1.3 + 0.92 cos(x1 − x2 − 2.041) + 0.6 cos(x1

−2.1666) + 0.2762 cos(x2 − 0.1256))/1.05/1.05− 1)
ẋ10 = 0.

(19)

The invariant sets are Inv(�1) = {x|x7 ≤ 1}, Inv(�2) = {x|
x8 ≤ 1, 1.2971 + 1.1342 cos(x1 − x2) + 0.61 cos(x1) +
0.4766 cos(x2) > 1.052}, Inv(�3) = {x|1.3 + 0.92 cos(x1 −
x2 − 2.041) + 0.6 cos(x1 − 2.1666) + 0.2762 cos(x2 −
0.1256) ≤ 1.052}, and Inv(�4) = R10 . Corresponding to
boundaries of invariant sets, four events are modeled: e2 = (�1 ,
�2 , g2 , r2), g2 = {x|x7 = 1}, r2(x) = x; e3 = (�2 , �3 , g3 , r3),
g3 = {x|x8 = 1}, r3(x) = x; e4 = (�3 , �4 , g4 , r4), g4 = {x|
1.3 + 0.92 cos(x1 − x2 − 2.041) + 0.6 cos(x1 − 2.1666) +
0.2762 cos(x2 − 0.1256) = 1.052}, r4(x) = x.

We express the safety criterion in the following STL form:

ϕ4
s = ¬♦[t4 [0],Tend](rx1,2 > 1) (20)

which reads as “During the time period [t4 [0], Tend], rx1,2 should
never be greater than 1.” We say that a simulated (nominal) tra-
jectory ρψ is safe with respect to ϕ4

s if ρψ satisfies ϕ4
s (for de-

tails on satisfaction of trajectories with respect to STL formulas,
see [27]).

The robust testing algorithm for the existing generator power
dispatch schedules is shown in Algorithm 3. We modified MAT-
LAB Toolbox STRONG [9] to incorporate the nonlinear dy-
namics. The error bounds of the simulations are obtained from
the simulation library VNODE-LP. We first simulate a nomi-
nal trajectory ρψ and compute γ1 [0] using Algorithm 2. We set
a lower threshold η to avoid too small robust neighborhood.
If ρψ is not safe or ρψ is safe but γ1 [0] is too small, then we
move the initial point x1 along the linePG1 + PG2 = PD (equal-
ity constraint for power system economic dispatch, where PD

is the total active power demand) for stepsize h and verify if
the new trajectory starting from the new initial point is safe.
We set r0 = 0.1, as = 0.75, Tlag = 0.01s, μ = 0.002%, ε =
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Fig. 6. Swing dynamics and protection operation in the three-machine power
system model when PG1 = 0.88 and PG2 = 0.62.

Fig. 7. Simulation of rx1 ,2 with robustness bounds at location �4 with γ0
1 =

0.000032 and (a) PG1 = 0.88, PG2 = 0.62 and (b) PG1 = 0.885, PG2 = 0.615.

10−6 , h = 0.005, η = 0.00001, and Tend = 0.4 s. When PG1 =
0.885 andPG2 = 0.615, the nominal trajectory violatesϕ4

s ; when
PG1 = 0.88 and PG2 = 0.62, both the nominal trajectory and
all the other trajectories in the robust neighborhood satisfy ϕ4

s

(as shown in Figs. 6 and 7). By setting the elements in the M
matrix that are not related to PG1 and PG2 to be 0, we have

(PG1 − 0.88, PG2 − 0.62)

[
M55 M56

M65 M66

]

(PG1 − 0.88, PG2 − 0.62)T ≤ 0.0000322 (21)

where Mij is the (i, j)th entry of the matrix M , specifi-
cally, M55 = 22.1684,M56 = 12.94,M65 = 12.94,M66 =
20.4193. The above-obtained inequality describes the robust
neighborhood of PG1 and PG2 assuming all other state variables
x1 , x2 , x3 , x4 , x7 , x8 , x9 and x10 remain the same. Considering
that PG1 + PG2 = 1.5, it is verified that if PG1 is 0.88 ±
0.00001 (1760 MW ± 0.02 MW), PG2 is 0.62 ∓ 0.00001
(1240 MW ∓ 0.02 MW), the cascading failure would not
happen.

Method 2: In the hybrid system H , we simulate a nominal
trajectory ρψ that starts from �1 and we treat the guard set be-
tween location �3 and �4 as the unsafe set π3 , which cannot
be entered for more than 0.1 s. In this way, we can save the
computation burden of rx1,2 and rx2,2 and define the state x =
[δ1 , δ2 , ω1 , ω2 , PG1 , PG2 , rx1,1 , rx2,1 ]T . We express the safety
criterion as ϕ3 = ¬♦[t3 [0],Tend](�[0,0.1]I2 > 1.05), which reads
as “During the time period [t3 [0], Tend], I2 should not be greater
than 1.05 for over 0.1 s.” It is a conservative safety criterion
as CB21(22) takes 0.1 s plus the relay’s response time to open.

Fig. 8. Simulation of the line current I2 with robustness bounds at location �3

with (a) PG1 = 0.9, PG2 = 0.6, γ0
1 = 0.0011, (b) PG1 = 0.695, PG2 = 0.805,

γ0
1 = 0.0011, (c) PG1 = 0.695, PG2 = 0.805, γ0

1 = 0.00056, and (d) PG1 =
0.69, PG2 = 0.81, γ0

1 = 0.0011.

After the fault is cleared, I2(t) can be expressed as follows:

I2(t)2 = 1.3 + 0.92 cos(δ1(t)− δ2(t)− 2.041)

+ 0.6 cos(δ1(t)− 2.1666)

+ 0.2762 cos(δ2(t)− 0.1256). (22)

It is clear that the unsafe set is nonconvex, and finding the
global minimal distance between a point in the unsafe set and
a given point of the nominal trajectory is hard. However, as
I2(t)2 can be represented as the sum of sinusoidal terms as (7),
the upper and lower bounds of I2(t)2 in the current guess of
robust neighborhood of the nominal trajectory can be calculated
in a similar manner as the error term is bounded in Section III-B.

We modify Algorithm 3 by replacing ϕ4
s with ϕ3 , and we use

the same parameters of Method 1. When PG1 = 0.9 and PG2
= 0.6, as shown in Fig. 8(a), the simulated trajectory clearly
violates ϕ3 . When PG1 = 0.695 and PG2 = 0.805, as shown
in Fig. 8(b), the simulated trajectory satisfies ϕ3 , but not every
trajectory in the current guess of robust neighborhood (with γ0

1
= 0.0011) are safe as the upper bound current exceeds ITAP for
0.1176 s. When γ1 [0] is shrunk to 0.0001, as shown in Fig. 8(c),
the robust neighborhood is found as the upper bound current
exceeds ITAP for only 0.0749 s. Therefore, it is verified that if
PG1 is 0.695± 0.000136 (1390 MW± 0.272 MW),PG2 is 0.805
∓ 0.000136 (1610 MW∓ 0.272 MW), then the cascading failure
would not happen. To make γ1 [0] larger, we set η = 0.001. This
time, Algorithm 3 does not terminate until PG1 moves to 0.69
and PG2 moves to 0.81, as shown in Fig. 8(d). Similarly, it is
verified that if PG1 is 0.69 ± 0.00027 (1380 MW ± 0.54 MW),
PG2 is 0.81 ∓ 0.00027 (1620 MW ∓ 0.54 MW), the cascading
failure would not happen.

In comparison with Method 1, Method 2 chieves a more
conservative result, but the computational complexity is also
reduced by not incorporating the relay and circuit breaker dy-
namics of the second line (line 6-7).

2) Robust Testing of Remedial Action Based on Quick-start
Storage: Various storages are increasingly utilized to generate
or store electricity after a line trip to reduce imbalance within a
short time. When the storage starts, the classical model described
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Fig. 9. Locations of the hybrid system Ĥ with an unsafe set.

in (11) is modified as follows:⎧⎪⎨
⎪⎩
δ̇i = ωi

Pri

Pb

Hi

πfs
ω̇i = PGi + PESSi −Diωi − pei(δ1 , δ2)

(23)

where PESSi is the power flowing out of the storage.
We assume that the storage is always connected to the grid and

PESSi cannot change instantaneously. We denote dPESSi as the
starting rate of the storage (ramping up or down) for the ith gen-
erator. In order to still balance the supply and demand, we have∑2

i=1 dPESSi = 0. In order to prevent CB21(22) from opening
after CB11(12) opens, we need to decrease the active power
flowing into the grid from bus 4. Thus, we specify dPESS1 < 0
(the active power flowing into the storage ESS1 is increasing)
and correspondingly dPESS2 > 0 (the active power flowing out
of the storage ESS2 is increasing). We set a maximal power
limit of the storage as Plim and dPESSi are set to zero once Plim

is reached.
We construct a new hybrid system Ĥ with three differ-

ent locations, as shown in Fig. 9. The new state variable
y = [δ1 , δ2 , ω1 , ω2 , PESS1 , PESS2 , dPESS1 , dPESS2 ]. We specify
that the remedial action happens after CB11(12) opens and y1

(the initial point of location �̂1) is the initial point of the nominal
(simulated) trajectory. The continuous dynamics of �̂1 and �̂2 are
given as follows:

For location �̂1 ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = y3 , ẏ2 = y4

ẏ3 = 31.42(0.71 + y5)− 1.57y3 − 34.56(0.28
+0.21 cos(y1 − y2) + 1.05 sin(y1−y2)+0.12 cos(y1)
+0.55 sin(y1))

ẏ4 = 31.42(0.79 + y6)− 1.57y4 − 34.56(0.21 cos(y2

−y1) + 1.05 sin(y2 − y1) + 0.35 + 0.098 cos(y2)
+0.74 sin(y2))

ẏ5 = y7 , ẏ6 = y8 , ẏ7 = ẏ8 = 0.
(24)

For location �̂2 ,{
ẏ1 , ẏ2 , ẏ3 , ẏ4 , ẏ7 , ẏ8 are the same as in �̂1

ẏ5 = ẏ6 = 0.
(25)

If the nominal (simulated) trajectory stops at �̂1 , we use the
safety criterion ϕ̂1 in the form of (9) with the time horizon
[t1 [0], t1 [0] + T 1 + Tlag] replaced by [t1 [0], Tend]. If the nominal
(simulated) trajectory stops at �̂2 , in order to prevent the situation
where I2 is over ITAP for over 0.1 s during the transition period at
guard ĝ2 = {y|y5 = Plim}, we modify Algorithm 2 by checking

Algorithm 4: Robust testing algorithm for remedial actions
based on quick-start storage.

1: flag← 0
2: while flag = 0 do
3: Simulate ψ̂ and ρ̂ψ of Ĥ from the initial point y1

4: if ρ̂ψ is safe with respect to ϕ̂i(i = 1, 2) then
5: γ̂1 [0]← RobustTube(Ĥ, ψ̂, ρ̂ψ , r0 , as, Tlag, μ)
6: if γ̂1 [0] ≥ η then flag← 1
7: else
8: y1

7 ← y1
7 − h, y1

8 ← y1
8 + h

9: end if
10: else
11: y1

7 ← y1
7 − h, y1

8 ← y1
8 + h

12: end if
13: end while
14: return y1 , γ̂1 [0]

if the upper bound of I2 is over ITAP for [t2 [0], t2 [0] + T ′d](0 ≤
T ′d ≤ 0.1). If the answer is no, we use ϕ̂1 in the form of (9);
otherwise, ϕ̂1 is modified as the following STL form:

ϕ̂1 = ¬
((

♦[t1 [0], t1 [0]+T 1 +T lag](�[0,0.1]I2 > 1.05)
)∨

(
♦[t1 [0]+T 1−T lead−(0.1−T ′d), t1 [0]+T 1 +T lag]

(�[0,0.1−T ′d]I2 > 1.05)
))

(26)

where Tlead is the earliest time that any trajectory in the robust
neighborhood could reach guard ĝ2 (Tlead can be calculated or
specified using the method in [8]). In both cases, the safety
criterion ϕ̂2 for location �̂2 is in the form of (9) with the time
horizon [t2 [0], t2 [0] + T 2 + Tlag] replaced by [t2 [0], Tend].

The robust testing algorithm for remedial generator power
dispatch based on quick-start storage is shown in Algorithm 4.
We set h = 0.1, η = 0.00001, Plim = 0.05, and Tend = 0.4 s.
We perform robust testing using storage as remedial actions
when PG1 = 0.71 (1420 MW) and PG2 = 0.79 (1580 MW).
As can be seen from Fig. 10, the simulated trajectory for stor-
age starting rate of 0 (no storage starting) is not safe as I2 is
exceeding ITAP for more than 0.1 s. When−dPESS1 = dPESS2 =
0.1, the nominal (simulated) trajectory is safe, but not every
trajectory in the current guess of robust neighborhood (with
γ̂1 [0] = 0.00075) is safe as the upper bound current exceeds
ITAP for 0.1299 s. Then, γ1 [0] shrinks to 0.000075 and the ro-
bust neighborhood is found.

We denote V̂ as the transformation matrix in (5) for the re-
medial action scenario and M̂ = V̂ T V̂ . By setting the elements
in the M̂ matrix that are not related to dPESS1 and dPESS2 to be
0, we have

(dPESS + 0.1, dPESS2 − 0.1)

[
M̂77 M̂78

M̂87 M̂88

]

(dPESS1 + 0.1, dPESS2 − 0.1)T ≤ 0.0000752 (27)
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Fig. 10. Simulation of the line current I2 with robustness bounds for dif-
ferent storage starting rates: (a) dPESS1 = dPESS2 = 0, γ̂1 [0] = 0.00075,
(b) −dPESS1 = dPESS2 = 0.1, γ̂1 [0] = 0.00075, (c) −dPESS1 = dPESS2 =
0.1, γ̂1 [0] = 0.000075, and (d)−dPESS1 = dPESS2 = 0.2, γ̂1 [0] = 0.00075.

Fig. 11. IEEE 39-Bus System (the circled numbers next to the red lines are
the orders in which the red lines are tripped after the fault near bus 6).

where M̂77 = 2.4416, M̂78 = 1.2296, M̂87 = 1.2296, and
M̂88 = 2.2795. The above-obtained inequality describes the
robust neighborhood of dPESS1 and dPESS2 , assuming all other
state variables yi(i = 1, 2, . . . , 6) remain the same. Therefore,
it is verified that when PG1 = 0.71 (1420 MW) and PG2 = 0.79
(1580 MW), if dPESS1 = −0.1 ± 0.00007(−200 MW/s ±
0.14 MW/s) and dPESS2 = 0.1 ∓ 0.00007 (200 MW/s ∓
0.14 MW/s), then the cascading failure would not happen. To
make γ̂1 [0] larger, we set η = 0.0005, and it is verified that if
dPESS1 = −0.2 ± 0.00052 (−400 MW/s ± 1.04 MW/s) and
dPESS2 = 0.2 ∓ 0.00052 (400 MW/s ∓ 1.04 MW/s), then the
cascading failure would not happen.

B. IEEE 39-Bus System

In this section, we perform robust testing of the IEEE 39-Bus
System (as shown in Fig. 11) in terms of mitigating cascading
failures. We use the same relay and circuit breaker parameters
as those in Section IV-A except that we set ITAP = 8.5 for the
lines that are connected directly to a generator bus (such as
bus 6-31) and ITAP = 5.5 for the other lines. We assume that
a three-phase fault happens on line 6-31 near bus 6 and line
6-31 is tripped as a result. The tripping of line 6-31 leads to
the isolation of generator G2 , and line 6-11 which connects the
generators in the right part and the loads at bus 7,8,4 is suddenly

Fig. 12. Swing dynamics and protection operation in the IEEE 39-bus system
model when PG3 = 6.5 (per unit value on a 100-MVA base) and PG10 = 10.

Fig. 13. Simulation of the line 6-11 current with robustness bounds at location
�3 with γ0

1 = 0.00002 and (a) PG3 = 6.5, PG10 = 10, and (b) PG3 = 3.6,
PG10 = 12.9.

overloaded. When line 6-11 is tripped by the relay, line 4-14
is suddenly overloaded and tripped as it is one of the bridges
that connect the left and right part of the remaining system.
As shown in Fig. 12, lines 3-4, 1-2, and 14-15 will be tripped
consecutively after the tripping of line 4-14 and the system soon
becomes unstable. The locations of the hybrid system are similar
to those in Fig. 4 except that we have 19 different locations
corresponding to 6 line trippings. We use rx1,a-b and rx2,a-b to
denote the internal state of the relay and the circuit breaker
of line a-b. As G3 at bus 32 and G10 at bus 39 are the two
closely related generators for the tripping of line 6-11, we first
test different power dispatch schedules of the two generators G3
and G10 in terms of preventing the tripping of line 6-11 (which
is essential for averting the cascading failure). The state x =
[δ1 , δ2 , . . . , δ10 , ω1 , ω2 , . . . , ω10 , PG3 , PG10 , rx1,6-31 , rx2,6-31 ]T .

We set the safety criterion as ϕ3 = ¬♦[t3 [0],Tend](�[0,0.1]I6-11
> 5.5). Using a similar algorithm to Algorithm 3, it can be
verified that if PG3 is 3.6± 0.00001 (360 MW± 1 kW), PG10 is
12.9 ∓ 0.00001 (1290 MW ∓ 1 kW), then line 6-11 would not
be tripped (as shown in Fig. 13). It should be, however, noted
that although the tripping of line 6-11 is avoided, the supply
and demand are still not balanced after line 6-31 is tripped (the
generator at bus 31 is isolated). Therefore, we set a quick-start
storage near bus 39 and after line 6-31 is tripped, the active
power starts flowing from the storage to the grid and keeps
increasing until the supply and demand are balanced. Using
a similar algorithm to Algorithm 4, it can be verified that if
dPESS10 = 1 ± 0.00002 (100 MW/s ± 2 kW/s), then line 6-11
would not be tripped and the cascading failure would not happen.
As shown in Fig. 14, the machine angles first decrease and then
gradually become steady with the rotor speeds returning to the
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Fig. 14. Machine angles and rotor speed deviations when PG3 = 3.6, PG10
= 12.9, and dPESS10 = 1.

normal value. The robust testing for each simulation takes about
5 s on a Dell desktop computer with a 3.20-GHz Intel Xeon CPU
and 8-GB RAM.

V. CONCLUSION

We presented a robust testing method for cascading failure
mitigations based on power dispatch schedules and quick-start
storage. We modified the approach in [13] to calculate the
BDLDF, which bounds the growth of differences between tra-
jectories considering the effects of disturbances. We modified
the simulation model in [25] to model the 2003 Italian Blackout
as a hybrid system, and it is different from their model as we
consider not only different network topologies but also different
relay states in defining different locations of the hybrid system.
We also used the IEEE 39-bus system to test the scalability
of our approach. Besides robust testing, our method can also
provide a measure of system stability robustness in mitigating
cascading failures, and this measure can be utilized in the eco-
nomic dispatch to incorporate the stability aspect of the power
dispatch.

APPENDIX

Proof of Theorem 1: The proof of uniform continuity of
γ(x̃0 , x0 , t) is not shown here as it is very similar with the proof
of uniform continuity of β(x1 , x2 , t) in [13, proof of Th. 3.9]. As
S̃[k] is an overapproximation of S in [13], utilizing [13, Lemma
3.6], it can be easily proven that J̃f (x) + J̃Tf (x) � 2b̃[k]I for

any x ∈ S̃[k], then from (5), for t ∈ [t[k − 1], t[k]],

d ‖v(t)‖2
dt

≤ vT (t)
(∫ 1

0
(2b̃[k]I)ds

)
v(t) + 2 ‖ζ(t)‖ ‖V ‖ ‖v(t)‖

= 2b̃[k] ‖v(t)‖2 + 2 ‖ζ(t)‖ ‖V ‖ ‖v(t)‖
≤ 2b̃[k] ‖v(t)‖2 + 2μ ‖V ‖ ‖v(t)‖ . (28)

As the solution of the differential equation du(t)
dt = 2bu(t) +

2a
√
u(t) with u(0) = ‖v(t[k − 1])‖2 is u(t) = (

√
u(0)ebt +

a/b(ebt − 1))2 , according to the comparison principle for the
solutions of first-order ordinary differential equations [28], and
considering the simulation error at time t[k − 1], we have for
t ∈ [t[k − 1], t[k]],

‖v(t)‖ ≤ (‖v(t[k − 1])‖+ ε)eb̃[k ](t−t[k−1])

+ μ ‖V ‖ /b̃[k](eb̃[k ](t−t[k−1]) − 1). (29)

We use induction to prove φM (ξ̂(t, x̃0 ; ζ), ξ(t, x0)) ≤
γ(x̃0 , x0 , t). As φM (ξ̂(t, x̃0 ; ζ), ξ(t, x0)) = ‖v(t)‖, we only
need to prove ‖v(t)‖ ≤ γ(x̃0 , x0 , t). At t[0], ‖v(t[0])‖ =
φM (ξ̂(t[0], x̃0 ; ζ), ξ(t[0], x0)) = γ[0]. By setting k = 1 in (29),
for t ∈ (t[0], t[1]], we have ‖v(t)‖ ≤ (γ[0] + ε)eb̃[k ](t−t[0]) +
μ ‖V ‖ /b̃[k](eb̃[k ](t−t[0]) − 1) = γ(x̃0 , x0 , t).

Next, we show that if for t ∈ (t[k − 2], t[k − 1]], ‖v(t)‖ ≤
γ(x̃0 , x0 , t), then for t ∈ (t[k − 1], t[k]], ‖v(t)‖ ≤ γ(x̃0 , x0 , t).
To this end, we assume for t ∈ (t[k − 2], t[k − 1]], ‖v(t)‖ ≤
γ(x̃0 , x0 , t), then ‖v(t[k − 1])‖ ≤ γ[k − 1]; then, using (29),
for t ∈ (t[k − 1], t[k]],

‖v(t)‖ ≤ (γ[k − 1] + ε)eb̃[k ](t−t[k−1])

+ μ ‖V ‖ /b̃[k](eb̃[k ](t−t[k−1]) − 1) = γ(x̃0 , x0 , t).
(30)

Thus, by induction, it is proven that γ(x̃0 , x0 , t) is a BDLDF of
the system.

Proof of Theorem 2:

‖E(x)‖ =
∥∥∥J̃f (x) + J̃Tf (x)− J̃ − J̃T

∥∥∥
=

∥∥(V −1)T (JTf (x)− JT )V T + V (Jf (x)− J)V −1
∥∥

≤ ∥∥(V −1)T (JTf (x)− JT )V T
∥∥ +

∥∥V (Jf (x)− J)V −1
∥∥

≤ ∥∥(V −1)T
∥∥∥∥JTf (x)− JT ∥∥ ∥∥V T

∥∥
+ ‖V ‖ ‖Jf (x)− J‖

∥∥V −1
∥∥

= 2
∥∥V −1

∥∥ ‖Jf (x)− J‖ ‖V ‖ = 2cond(V ) ‖Jf (x)− J‖
≤ 2cond(V ) ‖Jf (x)− J‖F . (31)
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