
Trajectory-Based Observer for Hybrid Automata Fault Diagnosis

Yi Deng, Alessandro D’Innocenzo and A. Agung Julius

Abstract— A method for constructing state observers for
hybrid automata is proposed. The approach is trajectory-based.
So it does not require the system to be fully observable. The
discrete and continuous states of the system can be estimated
constantly. We present implementation of the observer, and its
application to fault diagnosis problem of hybrid automata.

I. INTRODUCTION

Hybrid systems can effectively model interactive contin-
uous and discrete dynamics [1], [2], [3], where the system
state performs continuous flow and discrete jump (called an
event) alternately. Their observability problem is in general
more complex than that of classical dynamical systems,
because of stability issue in the state estimation error [4]
and involvement of the discrete states (also called locations
or modes) estimation [5]. Intuitively, knowing the current
location where the system can be is of critical importance
for the estimation of continuous states. Measurement of
continuous states in turn helps to improve the observability
of locations. By triggering an event, the system state reaches
a location from another. The event itself can output a signal,
making the current event and even the current location
immediately observable; but this is not always the case.
When these intrinsic event-output signals are not enough to
determine the current location, one can increase the event
and location observability by measuring continuous states,
for example, by designing residual generators [6], [7], or
directly observing the output continuous states and their
derivatives [8]. These methods are without doubt facilitative,
but still the state estimation problem is not always extricable
from unobservable events and uncertain current location for
free.

In the literature, researchers have developed various meth-
ods on designing continuous state observer for linear hybrid
systems [4], [6], [8]; but the continuous state observabil-
ity in each location is required. In the present work, we
study the state estimation problem from the perspective of
bisimulation theory [9]. The basic idea is, given a trajectory
simulated from an initial state, and the elapsed time of
system operation, the current location and continuous state
of the system can be estimated for any trajectory initiated

YD and AAJ would like to acknowledge the support of NSF CAREER
grant CNS-0953976.

The research leading to these results has received funding from the Italian
Government under Cipe resolution n.135 (Dec. 21, 2012), project INnovat-
ing City Planning through Information and Communication Technologies
(INCIPICT).

YD and AAJ is with the Department of Electrical, Computer, and
Systems Engineering, Rensselaer Polytechnic Institute. AD is with the
Department of Engineering and Information Sciences and Mathematics
Center of Excellence DEWS University of LAquila, Italy.

from a neighborhood around the simulated initial state [10].
Thus, it has the following differences from classical observer
design approaches: (i) The measured state variable that
drives the observer is time, instead of the system output
continuous states (of course, time can also be considered as a
continuous system state). (ii) The estimate is not designed to
be asymptotically converging to the continuous state; instead,
it always stays inside a neighborhood of the continuous state,
and the size of the neighborhood (error bound) can be chosen
according to need.

With this approach, the observer is able to work for
systems that do not have full observability. This does not
mean that we can recover the current state (or initial state)
of the system with arbitrarily high precision. Given the
limited event observability, the approach can only estimate
the current state (or initial state) as being in a set of
neighborhoods, which will become more apparent in later
sections.

We apply the observer to fault diagnosis of hybrid au-
tonomous systems. System fault diagnosis is concerned with
detection and isolation of faults [11]. For clarity we define
faults as faulty events in this paper; but the results are also
applicable to diagnosis of faulty discrete and continuous
states, since the observer will estimate the state of the
system. Even if we only want to diagnose faulty events,
for continuous-time systems we can use more than just
the sequence of the observed events (for classical discrete
event system diagnosis, see [12]). For example, we can use
the timing information of the events. As in our previous
research [13], temporal properties of trajectories, which are
closely related to continuous dynamics, can be combined
with discrete dynamics to improve diagnosability. In the
present work, we make more direct use of time as a state,
and extract the idea of bisimulation-based state estimation.
So the approach presented in this paper is different from [13]
in the following aspects: (i) The observer (constructed as a
finite automaton driven by exogeneous events and an external
timer) actually estimate both discrete and continuous states
for every time instant. (ii) Infinite time horizon is considered,
given that the over-approximated reachable set is compact.
(iii) At some states, we assume that the faults can happen at
any time non-deterministically.

In Section II, we introduce the hybrid automata model
and fault diagnosability notion. In Section III, we briefly
review the robust neighborhood approach [10]. Based on
that, a timed abstraction of the hybrid system is constructed.
The abstraction is halfway between grid-based approaches
and the approach in [14]. It is computationally feasible, and
arbitrarily more precise than [14], which is very fast but very

2015 IEEE 54th Annual Conference on Decision and Control (CDC)
December 15-18, 2015. Osaka, Japan

978-1-4799-7886-1/15/$31.00 ©2015 IEEE 942

conservative. In Section IV, an observer of the hybrid system
state is constructed based on the timed abstraction, which
can be used as a fault diagnoser. The paper [15] also studies
diagnoser construction from timed automata. In our case, the
timed abstraction serves the purpose of hybrid system state
estimation, and belongs to a special class of timed automata
(guards are intervals, and the clock is always reset to zero, as
opposed to general timed automata considered in [15]). Thus,
compared with [15], the diagnoser constructed in this paper
maintains a finite state space, and has explicitly expressed
transition functions, and is able to update state immediately
when a location change of the hybrid system possibly occurs
([15] updates the observer state based on observable event
interrupt and time-out interrupt). In Section V, we implement
the approach with a numerical example.

II. HYBRID AUTOMATA FAULT
DIAGNOSABILITY

A. System Formulation

A hybrid autonomous system is defined to be a 5-tuple
H = (L×X,L0 ×X0, D,E, Inv) [16]:
• L ×X is a set of hybrid states (`, x), where ` ∈ L is

discrete state (location), and x ∈ X is continuous state.
• L0 ×X0 ⊂ L×X is a set of initial states.
• D associates with each location ` ∈ L the autonomous

continuous time-invariant dynamics, D` : ẋ = D`(x),
which is assumed to admit a unique global solution
ξ`(t, x

0
`), where ξ` satisfies ∂ξ`(t,x0

`)
∂t = D`(ξ`(t, x

0
`)),

and ξ`(0, x0
`) = x0

` is the initial condition in `.
• Inv : L → X associates an invariant set Inv(`) ⊂ X

with each location. Only if the continuous state satisfies
x ∈ Inv(`), can the discrete state be at the location `.

• E is a set of events. In each location `, the system state
evolves continuously according to D` until an event
e := (`, `′, g, r), e ∈ E occurs. The event is guarded
by g ∈ Inv(`). Namely, a necessary condition for the
occurrence of e is x ∈ g. After the event, the state is
reset from (`, x) to (`′, r(x)).

When a hybrid system runs, the system state alternately flows
continuously and triggers events in E. For convenience, we
also define an initialization event e0 6∈ E. Then a trajectory
of the system can be defined as a sequence:

Definition 1 (Trajectory):

ρ = {(ei, `i, xi, τ i)}Ni=0,

where
• ∀i ≥ 0, (`i, xi) ∈ L×X , and (`0, x0) ∈ L0 ×X0;
• ∀i ≥ 0, τ i ∈ R≥0 (nonnegative real), and ∀t ∈ [0, τ i],
ξ`i(t, x

i) ∈ Inv(`i);
• ∀i ≥ 1, ei = (`i−1, `i, gi, ri), ξ`i−1(τ i−1, xi−1) ∈ gi,
xi = ri(ξ`i−1(τ i−1, xi−1)), i.e., (`i, xi) is the reset state
for (`i−1, ξ`i−1(τ i−1, xi−1)).

Suppose there is a trajectory ρ′ = {(e′i, `′i, x′i, τ ′i)}N ′i=0

such that N ′ ≤ N , and ∀i ∈ [0, N ′ − 1], (e′i, `′i, x′i, τ ′i) =
(ei, `i, xi, τ i), and also (e′N

′
, `′N

′
, x′N

′
) = (eN

′
, `N

′
, xN

′
),

τ ′N
′ ≤ τN ′ , then we call ρ′ a sub-trajectory of ρ.

B. Fault Diagnosability

Let Ef ⊂ E ∪ {e0} be the set of events that model a
fault. We call Ef the faulty events. Assume in some of the
locations one faulty event can occur. That is, for any ` ∈ L,
the following set is either empty or a singleton:

Feasf (`) := {ef ∈ Ef |ef = (`, `′, g, r)}. (1)

It is also assumed that given Feasf (`) 6= ∅, its guard is
Inv(`), i.e., the fault can happen anywhere in Inv(`).

We start from defining trajectories that trigger a faulty
event and then keep flowing for enough long time [13]:

Definition 2: A trajectory ρ = {(ei, `i, xi, τ i)}Ni=0 is δ-
faulty if and only if there exists a finite index if ∈ [0, N]

such that ei 6∈ Ef for all i < if , ei
f ∈ Ef , and

N∑
i=if

τ i ≥ δ.

Each event e ∈ E has a (possibly unobservable) output
symbol ψ. If the output is observable, we write ψ ∈ Ψv .
Otherwise it is called an unobservable output symbol ψ = ε.
The initialization event e0 6∈ E has the special output symbol
ι (starting signal), signaling the start of fault diagnosis. Note
that different events may have identical output symbols, and
some events are not observable at all. Hence, we introduce
the definition of projected timed output symbol sequences:

Definition 3: Given a trajectory ρ = (ei, `i, xi, τ i)
N

i=0, the
sequence of timed output symbols produced by ρ is

Ω(ρ) = ω = {(∆i, ψi)}N+1
i=0 ,

where (∆0, ψ0) = (0, ι), ∆i = τ i−1, ψi ∈ Ψv ∪ {ε} is the
output symbol associated with ei ∈ E for all i ∈ [1, N], and
(∆N+1, ψN+1) = (τN , ε). In words, ρ produces a sequence
of alternating time intervals and output symbols; a symbol
ψi appears ∆i time units later than the preceding symbol.

The observable output symbol sequence of ω is

{ψin}N ′n=0 ⊂ Ψv ∪ {ι}, N ′ ≤ N,

where ψin is the nth observable output symbol after the
starting signal ψi0 = ψ0 = ι, and in is its index in ω.

We define the projected output symbol sequence of ω:

Π(ω) = π = {(∆′n, ψ′n)}N ′+1
n=0 ,

where (∆′0, ψ′0) = (0, ι), ∆′n =
∑in
i=in−1+1 ∆i, ψ′n = ψin

for all n ∈ [1, N ′], (∆′N
′+1, ψ′N

′+1) = (
∑N
i=iN′+1 ∆i, ε).

In words, Π absorbs all the timed output symbols with the
unobservable output symbol ε into the first observable one
that follows, while leaves the rest unchanged. If a trajectory
has consecutive unobservable output symbols at its end,
then the corresponding dwell time is summed, and ε is
assigned to the end. For instance, (∆0, ψ0), (∆1, ε), (∆2, ψ2)
is projected to (∆0, ψ0), (∆1 + ∆2, ψ2), ψ2 ∈ Ψv ∪ {ε}.

Definition 4 (δd-Diagnosability): H is δd-diagnosable if it
does not have a δd-faulty trajectory ρ and a normal trajectory
ρ′ such that Π(Ω(ρ)) = Π(Ω(ρ′)).
In this definition δd is the delay parameter, characterizing
the maximum time delay allowed to diagnose a fault. Similar
definitions can be found in [14], [15].

943

g′′

g

B(γ, x0`)

ξ`(τ, x
0
`) ξ`(τ

0
` , x

0
`)

γ g′

Simulated Trajectory

Fig. 1. Any trajectory initiated from B(γ, x0`) will not reach g′.

III. SYSTEM ABSTRACTION

A. Robust Neighborhood Approach

In this section, we briefly review the robust neighborhood
approach proposed in [10], which is based on the bisimula-
tion theory [9].

Definition 5: [9] Let φ`(x1, x2) : X × X → R be a
pseudo-metric on the state space of the dynamical system

ẋ = D`(x), x ∈ X.
Let ξ`(t, x0

`) denote the solution of D` under the initial
condition x0

` . If for any initial states x0
` and x̃0

` , the function
φ`(ξ`(t, x

0
`), ξ`(t, x̃

0
`)) is non-increasing with respect to time

t, then φ` is a bisimulation function between the system and
itself.
For any γ > 0, t > 0, if φ`(x0

` , x̃
0
`) < γ, then

φ`(ξ`(t, x
0
`), ξ`(t, x̃

0
`)) ≤ φ`(ξ`(0, x

0
`), ξ`(0, x̃

0
`))

= φ`(x
0
` , x̃

0
`)

< γ.

Thus, φ` can be used to bound continuous state divergence
of trajectories. The ball of φ` is denoted as

B`(γ, x
0
`) := {x|φ`(x, x0

`) < γ}. (2)

Let e = (`, `′, g, r) be an event triggered by a trajectory
simulated from x0

` . If we want all trajectories initiated from
within B`(γ, x

0
`) to avoid reaching a location `′′ through

e′ = (`, `′′, g′, r′), then we can let

γ = inf
y∈g′

inf
t∈[0,τ]

φ`(ξ`(t, x
0
`), y),

where τ is sum of the time for the simulated trajectory to
transition out of ` and the allowed lag for other trajectories
initiated from B`(γ, x

0
`) to transition out of ` compared with

the simulated one. Then by the preceding argument, for any
x̃0
` ∈ B`(γ, x

0
`), t ∈ [0, τ], ξ`(t, x̃0

`) cannot reach g′ that
guards e′. See Fig. 1 for illustration.

With the basic idea reviewed above, the robust neigh-
borhood approach is to compute a neighborhood around a
simulated initial state, such that any trajectory initiated from
the neighborhood will reach the same location sequence as
the simulated one, and the continuous state always stays
inside a neighborhood around the continuous state of the
simulated trajectory. The specific algorithm is presented
in [10], which computes robust neighborhoods B`i(γi, xi)

around the (reset) initial continuous states xi of a simulated
trajectory ρ = {(ei, `i, xi, τ i)}Ni=0. Formally, the following
property holds [10]:

Proposition 1: For any covered initial state (˜̀0, x̃0) ∈
{`0} × B`0(γ0, x0), for any trajectory ρ̃′ initiated from
(˜̀0, x̃0), there is a trajectory ρ̃ = {(ẽi, ˜̀i, x̃i, τ̃ i)}Ñi=0 such
that ρ̃ is a sub-trajectory of ρ̃′ or ρ̃′ is a sub-trajectory of ρ̃,
and ρ, ρ̃ satisfy
• Ñ = N ; for all i ∈ [0, N], ẽi = ei, ˜̀i = `i,
x̃i ∈ B`i(γ

i, xi), τ̃ i ∈ [τ i − leadi, τ i + lagi], and
φ`i(ξ`i(t, x

i), ξ˜̀i(t, x̃i)) ≤ γi for all t ∈ [0, τ̃ i].
Following the above idea, we simulate normal trajectories

ρk = {(`nk , xnk , enk , τnk)}Nk
n=0, k ∈ [1,K] from the initial set

L0 × X0, and compute their robust neighborhoods. Faulty
events are not considered in the simulation and neighborhood
computation. The robust neighborhood around the (reset)
initial state xnk in location `nk is denoted as

Ball(k, n) = B`nk (γnk , x
n
k)

= {x|φ`nk (xnk , x) < γnk }, (3)

where φ`nk is the bisimulation function in location `nk , and
γnk is the radius of the computed robust neighborhood. It
is assumed the robust neighborhoods around the simulated
initial states (`0k, x

0
k), k ∈ [1,K] fully cover L0 ×X0, i.e.,⋃

1≤k≤K

{`0k} ×Ball(k, 0) ⊃ L0 ×X0. (4)

Let [τ1, τ2] be a time interval. We define the robust tube
around the trajectory segment indexed by (k, n) for the
interval [τ1, τ2] as

Tube(k, n, [τ1, τ2])

:=
⋃

t∈[τ1,τ2]

B`nk (γnk , ξ`nk (t, xnk)) ∩ Inv(`nk). (5)

We assume that for all k̃ ∈ [1,K], there exists

Cover(k̃) ⊂ {(k, n)|1 ≤ k ≤ K, 0 ≤ n ≤ Nk}
such that

Tube(k̃, N k̃, [τ
Nk̃

k̃
, τ
Nk̃

k̃
]) ⊂

⋃
(k,n)∈Cover(k̃)

Ball(k, n). (6)

Clearly, Tube(k̃, N k̃, [τ
Nk̃

k̃
, τ
Nk̃

k̃
]) represents the end of the

robust tube around ρk̃. So Assumption Eq. (6) means that
the ends of all the tubes around the normal trajectories
are covered by some robust neighborhoods. According to
Proposition 1 and Assumption Eq. (6), all the trajectories will
stay inside the tubes around the simulated normal trajectories
for infinitely long horizon, as long as no faulty event has been
triggered. In other words, we are assuming that the over-
approximated reachable set (robust tubes) of the system for
infinite time horizon is compact. See Fig. 2 for illustration.

Remark 1: The assumption above on infinite-horizon
compactness is made for normal trajectories of the system.
When a fault occurs, we need to diagnose it within maximum
time delay. So faulty trajectories only need finite-horizon

944

Tube around Normal Trajectory

ef ∈ Ef

End of Simulation

e 6∈ Ef

Faulty Event

Ball(k̃, 0)

Ball(k̃, 1)

Fig. 2. The end of the robust tube around the normal trajectory ρk̃ (left) is
covered by the robust neighborhood Ball(k̃, 0), i.e., Cover(k̃) = {(k̃, 0)}.
Any trajectory initiated from Ball(k̃, 0) will stay inside the tube around
ρk̃ until it triggers the faulty event.

analysis. If normal trajectories are studied also for finite time
horizon, then the assumption can be removed.

Next, we simulate (faulty part of) the faulty trajectories
corresponding to the locations `nk , 1 ≤ k ≤ K, 0 ≤ n ≤
Nk such that Feasf (`nk) 6= ∅. Namely, `nk are the source
locations of the faulty events.

For any `nk , we simulate a set of faulty trajectories indexed
by Indf (k, n) such that the inverse image of the robust
neighborhoods around their initial states cover the entire
Tube(k, n, [0, τnk + lagnk]). That is,

Tube(k, n, [0, τnk + lagnk])

⊂
⋃

k̂∈Indf (k,n)

r−1(Ball(k̂, 0)), (7)

where r−1(·) denotes the inverse image through the reset
map of the faulty event.

The set of all the (faulty part of) faulty trajectories
simulated for all `nk is denoted as {ρk}K̂k=K+1. Namely, we
have simulated {ρk}K̂k=1, where k ∈ [1,K] are normal, and
k ∈ [K + 1, K̂] are faulty.

B. Timed Abstraction

Based on the simulated trajectories {ρk}K̂k=1, we construct
a timed automaton [17] that is an abstraction of H .

Definition 6: Define T = (Q,Q0, C, Ẽ, ˜Inv):
• The state space is Q := {(k, n)|k ∈ {1, . . . , K̂}, n ∈
{0, . . . , Nk}}∪{EoS} (EoS means end of simulation).

• The initial set is Q0 := {1, . . . ,K} × {0}.
• The set of clock C is a singleton {c}.
• The events ẽ ∈ Ẽ are defined as ẽ = (q, q′, g̃, r̃) such

that r̃(c) = 0, i.e., the only clock is reset after any event,
and one of the following cases should be satisfied:

1) q = (k, n), where n < Nk; q′ = (k, n + 1); and
g̃ = [τnk − leadnk , τnk + lagnk]; ẽ is associated with
the output symbol of en+1

k ;
2) q = (k,Nk), where k ∈ [1,K]; q′ = (k′, n′),

where (k′, n′) ∈ Cover(k); and g̃ = [τNk

k , τNk

k];
ẽ is associated with the unobservable ε;

3) q = (k,Nk), where k ∈ [K + 1, K̂]; q′ = EoS
(end of simulation); and g̃ = [τNk

k , τNk

k]; ẽ is
associated with the unobservable ε;

4) q = (k, n); q′ = (k′, 0), where k′ ∈ Indf (k, n);
and g̃ = [0, τnk + lagnk]; ẽ is associated with the
output symbol of the faulty event Feasf (`nk).

• The invariant set is ˜Inv(q) := [0, τnk + lagnk] if n < Nk,
˜Inv(q) := [0, τnk] if n = Nk, where q = (k, n) ∈ Q.

We assume that all the numbers that appear in the clock
constraints are rational. This is realizable since the lead/lag
times are flexible. We can relax the lead/lag constraints by ar-
bitrarily small amount to make them rational. From this point
on we assume the clock constraints only involve integers,
since any rational timed automaton has an integer counterpart
whose runs are isomorphic to the original runs [17].

Since timed automata can be considered as a subclass
of hybrid automata, trajectories and projected timed output
symbol sequences can be defined the same way as before.
By construction, for any normal trajectory ρ of H , there is a
trajectory ρ̃ of T such that Π(Ω(ρ)) = Π(Ω(ρ̃)). For faulty
trajectories, a similar property holds for finite horizon.

IV. OBSERVER

Based on the timed abstraction T , we construct for H
an observer O. By using the history of system output,
i.e., a projected timed output symbol sequence, O over-
approximates the current state reached by H . Each state s
of O can be represented by a subset of the set

{(k, n)[ā, b̄] | k, n, ā, b̄ are integers,
1 ≤ k ≤ K̂, 0 ≤ n ≤ Nk,
[ā, b̄] ⊂ ˜Inv((k, n))}.

The state of the observer being just updated to s
means that the system H must be at some state within⋃

(k,n)[ā,b̄]∈s Tube(k, n, [ā, b̄] ∩ R≥0).
Given T = (Q,Q0, C, Ẽ, ˜Inv), for each (k, n) ∈ Q, let

Feas : Q→ 2Ẽ be the feasible event function:

Feas((k, n)) := {ẽ ∈ Ẽ|ẽ = ((k, n), (k′, n′), g̃, r̃)}. (8)

For (k, n)[ā, 0], we define the ε[0]-successors:

Succε[0]((k, n)[ā, 0]))

:= {(k′, n′)[ā− b̃, 0]|∃ẽ = ((k, n), (k′, n′), [0, b̃], r̃)

∈ Feas((k, n)), ẽ outputs ε}. (9)

The ε[0]-closure of (k, n)[ā, 0], denoted as Clε[0](q[ā, 0]),
is defined to be union of (k, n)[ā, 0], the ε[0]-successors of
(k, n)[ā, 0], and the ε[0]-successors of all the ε[0]-successors
of (k, n)[ā, 0].

Given s as a set of (k, n)[ā, b̄], the ε[0]-closure of s is then

Clε[0](s) := s ∪ {Clε[0]((k, n)[ā, 0])|(k, n)[ā, 0] ∈ s}. (10)

Definition 7 (Observer): We construct O = (S, s0, Σ̄, f)
by the following steps, where S, S0, Σ̄, f are the state space,
initial state, transition labels and transition function:

945

1) Define s0 := Clε[0]({(1, 0)[0, 0], . . . , (K, 0)[0, 0])}).
Set S = {s0}.

2) For each new state s ∈ S, for each q̄ = (k, n)[ā, b̄] ∈ s,
compute the following, where ẽ ∈ Feas((k, n)) has
the guard [ã, b̃] and outputs the symbol ψ:

Blank(q̄, ẽ) :=


ã− b̄, if ψ = ε, b̄ < ã,

b̃− ā, if ψ ∈ Ψv, ā < b̃,

∞, otherwise.

Blank
˜Inv(q̄) := b̃− ā.

Blankmin(s) := min{Blank ˜Inv(q̄),

min
q̄∈s,ẽ∈Feas((k,n))

Blank(q̄, ẽ)}.

Add the label ε[∆t],∆t = Blankmin(s) to Σ̄.

f ′(q̄, ε[∆t])

:= Clε[0]({(k′, n′)[ā+ ∆t− b̃, 0]|∃ẽ =

((k, n), (k′, n′), [ã, b̃], r̃) ∈ Feas((k, n)),

ẽ outputs ε, b̄+ ∆t = ã}) ∪
{(k, n)[ā+ ∆t, b̄+ ∆t] ∩ ˜Inv((k, n))|
(ā+ ∆t, b̄+ ∆t] ∩ ˜Inv((k, n)) 6= ∅}.
f(s, ε[∆t])

:= {f ′(q̄, ε[∆t])|q̄ ∈ s}.
3) For each new state s ∈ S, check if there exist q̄ =

(k, n)[ā, b̄] ∈ s and ẽ ∈ Feas((k, n)) that has the
guard [ã, b̃] and outputs ψ ∈ Ψv such that

([max{0, ã− b̄}, b̃− ā]\{0})∩ (0, Blankmin(s)] 6= ∅.
If so, define a := max{0, ã − b̄}, b := Blankmin(s),
σ̄′ := ψ〈a, b], where 〈a, b] stands for (a, b] if a = 0,
[a, b] if a > 0. Classify the obtained labels σ̄′ into the
sets [σ̄′]ψ according to distinct ψ.
For each [σ̄′]ψ = {ψ〈a1, b], ψ〈a2, b], . . .}, order the
distinct ai values increasingly and let the result be
a(1) < . . . < a(m). Then add to Σ̄ the transition labels
{ψ〈a(1), a(2)), . . . , ψ〈a(m−1), a(m)), ψ〈a(m), b]}.
For σ̄ = ψ〈a, b] or ψ〈a, b), ψ ∈ Ψv , define

f ′(q̄, σ̄)

:= Clε[0]({(k′, n′)[0, 0]|∃ẽ =

((k, n), (k′, n′), [ã, b̃], r̃) ∈ Feas((k, n)),

ẽ outputs ψ, b̃− ā ≥ b, ã− b̄ ≤ a}).
f(s, σ̄)

:= {f ′(q̄, σ̄)|q̄ ∈ s}.
4) If s′ := f(s, σ̄) 6∈ S, add the new state s′ to S.
5) Repeat Steps 2-4 until no new states are created.
The observer is constructed as a deterministic finite au-

tomaton driven by an external timer and output symbols
observed from H . Whenever the observer reaches a new
state, the timer reading t is immediately reset to 0.

Proposition 2: Given that the current state of O is s,
and the state of the timer is t, then the state of H is in
{(`nk , x)|(k, n)[ā, b̄] ∈ s, x ∈ Tube(k, n, [ā+t, b̄+t]∩R≥0)}.

Proof: Directly follow from construction of O.
By checking the reachable states of O, we can analyze the

δd-diagnosability of H as follows:
Let Q̄0 denote the set

{q̄0 = (k, 0)[ā, 0]|k ∈ [K + 1, K̂], q̄0 ∈ s0 ∈ S}.
Given q̄0 ∈ Q̄0, and sequences {σ̄i}mi=1, {q̄i}mi=1 such

that for all i ∈ [1,m], q̄i ∈ f ′(q̄i−1, σ̄i), we define
Delay(q̄0, {σ̄i}mi=1) for the following cases:
• If there exists m′ ∈ [1,m] such that k′ ∈ [K + 1, K̂]

for all (k′, n′)[ā′, b̄′] ∈ sm′ , where sm
′ 3 q̄m′ , then

Delay(q̄0, {σ̄i}mi=1) :=

m′∑
i=1

time(σ̄i), where

time(σ̄) :=

{
b, if σ̄ = ψ〈a, b) or ψ〈a, b],
∆t, if σ̄ = ε[∆t].

• If the case above is not satisfied, while sm 3 q̄m has no
outgoing transitions, then Delay(q̄0, {σ̄i}mi=1) := ∞.
Essentially, this case means the simulation horizon of
the faulty trajectories is not long enough to discriminate
faulty trajectories from normal trajectories.

The hybrid automaton H is δd-diagnosable, where

δd = max
q̄0∈Q̄0

max
{σ̄i}mi=1

Delay(q̄0, {σ̄i}mi=1). (11)

V. IMPLEMENTATION EXAMPLE

We implement the approach to a hybrid system that has 4
locations. The continuous dynamics in location `i is given by
ẋ = Aix + bi, i ∈ {1, 2, 3, 4}, where x = [x1, x2, x3, x4]T ,
Ai are diagonal matrices with ai on the diagonals,

a1 =


−1
−2
−3
−4

 , a2 = a3 = a4 =


−4
2
3
−1

 ,

b1 =


100
200
300
400

 , b2 = b3 = b4 =


300
200
100
400

 .

The invariant sets are Inv(`1) = {x|x2 + 2x3 ≤
25}, Inv(`2) = {x|2x1 + x2 ≤ 15}, Inv(`3) = {x|2x1 +
x2 ≤ 25}, Inv(`4) = R4. On the boundaries of the invariant
sets, three events are modeled:
e11 = (`1, `1, g11, r11), g11 = {x|x2 + 2x3 = 25},
r11(x) = 0.01x+ [1, 0, 0, 2]T ; e23 = (`2, `3, g23, r23), g23 =
{x|2x1 + x2 = 15}, r23(x) = x; e34 = (`3, `4, g34, r34),
g34 = {x|2x1 + x2 = 25}, r34(x) = x.

Assume that a state in `1 can incur a fault and transition
to `2 from anywhere in Inv(`1). Based on that we define a
faulty event e12 = (`1, `2, g12, r12), where g12 = Inv(`1),
r12(x) = 0.01x+ [0, 0, 1, 1]T is the reset map.

Let L0 × X0 = {`1} × {x|1 ≤ x1 ≤ 1.1, 0 ≤ x2 ≤
0.1, 0 ≤ x3 ≤ 0.1, 2 ≤ x4 ≤ 2.2} be the initial set.
By using the MATLAB Toolbox STRONG [18], we can
verify that L0 × X0 is covered by a robust neighborhood

946

(1, 0)

ψ23 ψ34

start

18 ≤ c ≤ 20
c := 0

12 ≤ c ≤ 14
c := 0

0 ≤ c ≤ 24
c := 0

ψ12

22 ≤ c ≤ 24
c := 0

ψ11

ε

end of

c = 18
c := 0

(2, 0) (2, 1) (2, 2)

EoS
simulation

Fig. 3. Timed abstraction T of the hybrid automaton H .

(1, 0)[0, 0]

(2, 0)[−24, 0]

(1, 0)[18, 18]

(2, 0)[−6, 18]

(2, 1)[−26, 0]

(2, 0)[0, 20]

(2, 1)[−20, 6]

(2, 2)[0, 0]

(2, 1)[0, 14]

(2, 2)[18, 18]

ε[18] ε[6]

ψ11[4, 6]

ε[20]

ψ34[6, 20]

ψ34(0, 14]

ε[18]

Fig. 4. State observer O of the hybrid automaton H . H is 24-diagnosable.

B`1(0.14, x0
1) = {x|φ`1(x, x0

1) < 0.14} around the initial
state of the trajectory

ρ1 = (e0, `1, x
0
1, 0.023), x0

1 = [1.039, 0.046, 0.068, 2.108]T ,

where φ`i is a bisimulation function computed with
YALMIP Toolbox [19] for `i. The last state of ρ1,
ξ`1(0.023, x0

1), triggers the event e11. Also we can verify that
B`1(0.14, ξ`1(0.023, x0

1)) is covered by r−1
11 (B`1(0.14, x0

1)).
Thus, any trajectory initiated from L0 × X0 will trigger
a sequence of e11, and the dwell time in `1 will satisfy
τ ∈ [0.023− lead, 0.023 + lag], where lead = lag = 0.001
are transition time lead and lag in the robust neighborhood
computation.

Next ,we use STRONG Toolbox to cover the robust tube
Tube(1, 0, [0, 0.024]) around the initial segment (also the
only segment) of ρ1. For lead = lag = 0.001, the inverse im-
age through r12 of the robust neighborhood computed around
the initial state of the following faulty part of trajectory will
cover the entire tube.

ρ2 = (e12, `2, x
0
2, 0.019), (e23, `3, x

1
2, 0.013),

(e34, `4, x
2
2, 0.018),

x0
2 = [0.023, 0.026, 1.039, 1.070]T ,

x1
2 = [5.539, 3.922, 3.067, 8.619]T ,

x2
2 = [9.138, 6.723, 4.548, 13.791]T .

Converting rationals to integer time units, we abstract H
as a timed automaton in Fig. 3.

The output symbol of an event eij is denoted by ψij .
Suppose ψ12 = ψ23 = ε, ψ11 = ψ34 ∈ Ψv . The observer
is shown in Fig. 4.

VI. CONCLUSIONS

We presented an approach to trajectory-based observer
construction for hybrid automata. The approach relies on

bisimulation theory and robust neighborhood approach [9],
[10] to abstract the original system by simulating finitely
many trajectories. Based on the abstraction, an observer is
constructed as a finite automaton, which provides estimates
for the discrete and continuous states of the hybrid automaton
constantly. We applied the observer to fault diagnosis as well
as fault diagnosability analysis for the hybrid automaton.

REFERENCES

[1] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. J. Pappas, H. Ru-
bin, and J. Schug, “Hybrid modeling and simulation of biomolecular
networks,” in Proc. Hybrid Syst.: Comput. and Control, Rome, Italy,
2001, pp. 19–32.

[2] J. P. Hespanha, S. Bohacek, K. Obraczka, and J. Lee, “Hybrid
modeling of tcp congestion control,” in Proc. Hybrid Syst.: Comput.
and Control, Rome, Italy, 2001, pp. 291–304.

[3] H. D. Jong, J. L. Goué, C. Hernandez, M. Page, T. Sari, and
J. Geiselmann, “Hybrid modeling and simulation of genetic regulatory
networks: A qualitative approach,” in Proc. Hybrid Syst.: Comput. and
Control, Prague, Czech Republic, 2003, pp. 267–282.

[4] A. Alessandri and P. Coletta, “Design of luenberger observers for a
class of hybrid linear systems,” in Proc. Hybrid Syst.: Comput. and
Control, Rome, Italy, 2001, pp. 7–18.

[5] M. Babaali and G. J. Pappas, “Observability of switched linear systems
in continuous time,” in Proc. Hybrid Syst.: Comput. and Control, ser.
Lecture Notes in Comput. Sci. Springer Berlin Heidelberg, 2005,
vol. 3414, pp. 103–117.

[6] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. L. Sangiovanni-
Vincentelli, “Design of observers for hybrid systems,” in Proc. Hybrid
Syst.: Comput. and Control, Stanford, CA, 2002, pp. 76–89.

[7] M. Bayoudh, L. Travé-Massuyes, X. Olive, and T. A. Space, “Hybrid
systems diagnosis by coupling continuous and discrete event tech-
niques,” in Proc. IFAC World Congr., Seoul, Korea, 2008, pp. 7265–
7270.

[8] P. Collins and J. H. van Schuppen, “Observability of piecewise-
affine hybrid systems,” in Proc. Hybrid Syst.: Comput. and Control,
Philadelphia, PA, 2004, pp. 265–279.

[9] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp.
782–798, May 2007.

[10] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas,
“Robust test generation and coverage for hybrid systems,” in Proc.
Hybrid Syst.: Comput. and Control, Pisa, Italy, 2007, pp. 329–342.

[11] J. J. Gertler, “Survey of model-based failure detection and isolation
in complex plants,” IEEE Control Syst. Mag., vol. 8, no. 6, pp. 3–11,
Dec. 1988.

[12] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans.
Autom. Control, vol. 40, no. 9, pp. 1555–1575, Sept. 1995.

[13] Y. Deng, A. D’Innocenzo, M. D. Di Benedetto, S. Di Gennaro,
and A. A. Julius, “Verification of hybrid automata diagnosability
with measurement uncertainty,” IEEE Trans. Autom. Control, to be
published.

[14] M. D. Di Benedetto, S. Di Gennaro, and A. D’Innocenzo, “Verification
of hybrid automata diagnosability by abstraction,” IEEE Trans. Autom.
Control, vol. 56, no. 9, pp. 2050–2061, Sept. 2011.

[15] S. Tripakis, “Fault diagnosis for timed automata,” in Formal Tech-
niques in Real-Time and Fault-Tolerant Syst., ser. Lecture Notes in
Comput. Sci. Berlin, Germany: Springer, 2002, vol. 2469, pp. 205–
221.

[16] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Comput. Sci., vol. 138, no. 1,
pp. 3–34, Feb. 1995.

[17] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Comput. Sci., vol. 126, no. 2, pp. 183–235, Apr. 1994.

[18] Y. Deng, A. Rajhans, and A. A. Julius, “Strong: A trajectory-based
verification toolbox for hybrid systems,” in Proc. Quantitative Evalu-
ation of Syst., Buenos Aires, Argentina, 2013, pp. 165–168.

[19] J. Lofberg, “Yalmip : a toolbox for modeling and optimization in
matlab,” in Proc. 13th IEEE Int. Symp. Comput. Aided Control Syst.
Design, Taipei, Taiwan, 2004, pp. 284–289.

947

