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Abstract— As microscale robots are becoming increasingly 

popular due to their potential for medical and industrial 

applications, various designs of microscale robotic system have 

been developed. However, there has not been much work on 

autonomous control algorithms for microscale robots in 

microfluidic environments. In this paper, we introduce an 

autonomous navigation algorithm for the bacteria-powered 

microrobots (BPMs) in a workspace with moving obstacles. A 

BPM consists of a rigid inorganic body with bacteria attached 

on the surface. The attached bacteria provide propulsive force 

and are controllable using electric fields, which had been 

demonstrated in previous work. We take the controllability of 

BPMs and the unpredictable motion of dynamic obstacles into 

account to develop a dynamic obstacle avoidance approach. 

Moreover, we use finite element simulation to observe an 

electric field around a moving obstacle to model the field’s 

deformation. Demonstration of dynamic obstacle avoidance 

approach through simulation results and experimental data are 

presented in the paper.  

I. INTRODUCTION 

Microrobots have been shown to be capable of conducting 
microscale tasks such as drug delivery, cell manipulation, 
microassembly, and biosensing [1-4]. As an example, in vitro 
targeted delivery was demonstrated using magnetotactic 
bacteria under a gradient DC magnetic field in a clinical 
magnetic resonance imaging system [5]. Others have also 
explored microrobots for transporting cargos such as 
chemicals and live cells using magnetic fields [6, 7]. 
Furthermore, microgrippers have been used to improve the 
functionality of microrobots [8-11].  All of these technologies 
have the potential to be utilized for enhancing the 
effectiveness of medical treatments and manufacturing tools 
by localizing the operations at the selected target area. 

There are several studies inspired by microorganisms such 
as flagellated bacteria for using their capability to swim at low 
Reynolds number [12-18]. In this environment, viscous forces 
dominate and a swimmer must use nonreciprocal motion for 
locomotion; one such example is the rotating motion of the 
bacterial flagella [19]. Bacterial flagella rotate clockwise (CW) 
and counterclockwise (CCW) to move forward and change 
swimming direction, respectively [20]. Bacteria attached to 
the surface of microfabricated parts, referred to as 
bacteria-powered microrobots (BPMs), are shown to naturally 
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impart a predominantly rotational motion, largely due to the 
result of the massive arrays of flagella working  cooperatively 
on a monolayer of swarming bacteria [21].  The BPMs used in 
this paper utilize a hybrid actuation system, in which we 
exploit both the natural motility of the bacteria and 
electrophoretically induced mobility by a DC electric field.  

The intrinsic motion of BPMs and the motion control of 
BPMs are described in our previous work [16, 18, 22]. The 
application of BPMs such as phenotypic biosensing and 
visual-based feedback control of micromanipulation had been 
exploited as well [16, 22]. For the BPMs to perform more 
complicated tasks, such as micro-assembly and manipulation, 
the use of an autonomous navigation system will be essential 
in environments with various obstacles in order to allow the 
BPMs to complete their missions without collision. In 
particular, the dynamic obstacles will increase collision risk 
and stop the BPMs from finishing tasks. In addition, the 
autonomous navigation will help BPMs to save energy and 
time to approach the goal position. To address scenarios where 
obstacles are moving, we developed a dynamic obstacle 
avoidance algorithm. The algorithm is based on our previous 
work with static obstacles [23]. In addition, numerical 
simulations and experiments were carried out to show the 
feasibility of our algorithms.  

The first section of this paper reviews the kinematic model 
of the BPMs. The next section describes the dynamic obstacle 
avoidance approach. The last section demonstrates the 
approach in simulations using random parameters and in a real 
experiment. 

II. BACTERIA-POWERED MICROROBOTS (BPMS) 

A. Cell Culture and Preparation of BPMs for Experiment 

BPMs were manufactured by blotting Serratia marcescens 
onto the surfaces of SU-8 structures. S. marcescens were 
cultured on an agar plate which was prepared by pouring 30 
ml of the agar solution (1.5 g Difco Bacto agar, 1.25 g yeast 
extract, 1.25 NaCl, 2.5 g trypton, and 600 ml of 25% glucose 
solution into 250 ml of deionized water) into a 15 cm Petri 
dish. Once the agar solution solidifies into gel, 5 µl of S. 
marcescens was inoculated on the edge of the agar plate. The 
inoculated agar plate was placed inside the incubator at 34°C 
for 12 hours to create a swarming colony. SU-8 structures 
were blotted on the edge of the colony.  

B. Fabrication of BPMs 

The BPMs are fabricated by attaching bacteria onto 
untethered microstructures. First, a water-soluble dextran 
sacrificial layer is spin-coated on a substrate by procedure. 
Then a 3μm layer of SU-8 is spin-coated on top of the dextran 
layer and made into rectangular microstructures (30 µm × 32 
µm) using photolithography. Bacteria are attached using a 
blotting method in which the microstructures are inverted onto 
a swarm plate of  S. marcescens. Bacteria attach favorably to 
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the microstructure upon physical contact due to the 
polysaccharide-rich pink slime produced by swarmer cells of 
S. marcescens. Once blotted, the microstructures are placed 
inside of a water-filled test chamber where the dextran layer is 
dissolved, thus, releasing the blotted microstructure. The 
released blotted structures are BPMs. Fig. 1(a) shows a BPM 
after blotting and releasing. The randomly distributed long 
rods are the bacteria, as shown in Fig. 1(a). On the surface of 
the BPM is a monolayer of highly packed swarmer bacterial 
cells, which is called as bacterial carpet. The use of bacteria as 
the motion actuators reduces the cost and complexity of the 
fabrication procedure. Furthermore, the negative charged 
bodies of S. marcescens are ideal for controlling BPMs using 
electrical stimulation. 

C. Kinematic Model for BPMs 

When  released in fluid, a BPM exhibits self-actuated 
rotational motion presumably due to large-scale global 
coordination of bacterial carpet flagella [24]. The motion of 
the self-actuated structure has two distinct velocity 
components, translational and rotational, which depends on 
x-axis and y-axis position in the local coordinate frame with 
respect to its center of mass [18]. The equations of translation 
are given as follows: 

       Vx = 𝑝̅𝛽1, 𝑤ℎ𝑒𝑟𝑒  𝛽1  ∶=
1

𝑘𝑇
∑ cos 𝜃𝑖

𝑁𝑏
𝑖=1                    (1) 

       Vy = 𝑝̅𝛽2, 𝑤ℎ𝑒𝑟𝑒  𝛽2  ∶=
1

𝑘𝑅
∑ sin 𝜃𝑖

𝑁𝑏
𝑖=1                      (2) 

where  𝑁𝑏 is the number of bacteria that are attached, and 𝑘𝑇 
and 𝑘𝑅 are the translational viscous drag coefficient and the 
rotational viscous coefficient respectively. 

 

Figure 1. BPM kinematic system coordinates (a) Bacterial carpet on the 
structure, (b) A schematic of the BPM.  

Fig. 1(b) indicates the coordinate system for (1) – (3). The 
velocities are proportional to the mean of propulsion forces 𝑝̅ 
and β1,2. The parameters β1,2 are related to the amount of 
attached bacteria and their respective orientation θi. 
Furthermore, the rotation is defined as follow:  

∆α = 𝑝̅𝛽3, 𝑤ℎ𝑒𝑟𝑒  𝛽3  ∶=
1

𝑘𝑅
∑ (𝑏𝑖,𝑥 sin 𝜃𝑖 − 𝑏𝑖,𝑦 cos 𝜃𝑖)

𝑁𝑏
𝑖=1 (3) 

where 𝑏𝑖 is the vector of 𝑖-th bacterium in the local body-fixed 
coordinate. Combining with a stochastic model for 
electrokinetic actuation in previous work [25], we can 
describe the BPM’s position, using a global coordinate 
system, as follows:  

(

𝑥𝑖

𝑦𝑖

𝛼𝑖

) = (

𝑥𝑖−1

𝑦𝑖−1

𝛼𝑖−1

) + [
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos  𝛼 0

0 0 1
] [

𝑉𝑥

𝑉𝑦

∆𝛼

] 𝑡 + (
𝑈𝑥

𝑈𝑦

0

) 𝛽4          (4) 

where 𝑈𝑥 and 𝑈𝑦 are the input voltages for x direction and y 

direction respectively, 𝛽4 is related to the charge of cell bodies 
that causes the electrophoretic force.  The velocity of the BPM 
is proportional to the magnitude of the applied voltages. The 
displacement at instantaneous input voltages is estimated by 
𝛽4. We can evaluate 𝑉𝑥, 𝑉𝑦 , and  ∆𝛼 as follow: 

                               [
𝑉𝑥

𝑉𝑦

∆𝛼

] = 𝑝 ̅ [

𝛽1

𝛽2

𝛽3

]                                   (5) 

Through the kinematic model of the BPM, the trajectory 
was calculated by 𝑈𝑥 and 𝑈𝑦 continuously and our proposed 

obstacle avoidance method calculates the input voltage 𝑈𝑥 and 
𝑈𝑦 at present situation. The kinematic modeling of BPMs can 

be useful to develop robotic algorithms with high reliability. 

D. Validation and Simulation Configuration 

The kinematic model, as shown in (4), was verified by 
comparison between the estimated position of the BPM from 
the motion model and experimental data from tracking [26]. 
The errors for the x and y positions are 0.02 ± 0.92 µm and 
0.22 ± 1.13 µm, respectively, indicating the simulation closely 
matched the experimental values (Fig. 2).  

 

Figure 2. Comparison in errors between the real motion of the BPM and the 
model. 

To simulate the proposed approach in Section IV, the 
model of the BPMs was used to calculate the corresponding 
position under the control inputs determined by our algorithms. 
The required parameters including 𝛽1 , 𝛽2 ,  𝛽3 , and  𝛽4  were 
randomly chosen and the size of BPM is the same as the BPMs 
from the experiments. The dynamic obstacles are controlled 
manually during the simulation.   

III. DYNAMIC OBSTABLE AVOIDANCE APPROACH 

The motion planning in dynamic environment is based on 
the Dynamic Window Approach (DWA) [27] and the Vector 
Field Histogram (VFH) [28] approach. An additional 
objective function was added in the resultant objective 
function to achieve accurate motion control. VFH is also 
utilized to restrict the range of control input from DWA which 
heads to dynamic obstacles. 

A.  Considering Constraint Elements for Control of BPMs 

The motion planning algorithm reflects several constraint 
elements with regard to the characteristics of BPMs and their 
electrophoretic mobility under an electric field in order to 
perform optimal motion control. First, the motion of BPMs is 
omnidirectional which means that they can move in any 
direction in accordance with the applied electric field. Second, 
the natural motion of the BPMs, described as self-actuation, is 
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not controllable and varies among BPMs [16, 18, 22]. This 
inherent uncontrollable motion increases the probability of 
collision with the dynamic obstacles. To address this concern, 
a robust kinematic model for a BPM which accounts for this 
self-actuation behavior is reflected on the control input to 
reduce the probability of collision by predicting the next 
displacement of a BPM after 𝛽1 ,  𝛽2 , 𝛽3  are determined by 
observing the motion of a BPM. Third, the applied electric 
field will be distorted around the dynamic obstacles. This 
deformation could result in undesired motion when a BPM is 
located on the deformed electric field.  To verify this issue, we 
simulated an electric field with moving obstacle using 
COMSOL Multiphysics (Fig. 3) and characterize the 
deformation. 

The simulation results of COMSOL enable us to model an 
electric field around the boundaries of a circular dynamic 
obstacle, as shown in Fig. 3.  The electric field (10 V/cm) was 
applied in the x-direction. A moving mesh was used to 
simulate the movement of the dynamic obstacle in the –x 
direction with a speed of 10 µm/s. In the simulation, we 
regarded the obstacle as an insulator. The direction of the 
electric field is represented by arrows at 0s, 10s, and 20s 
respectively in Fig. 3. The electric field was deformed around 
the obstacle and the most of distortion happened in front of the 
obstacle and behind of the obstacle.  

 

Figure 3. COMSOL Multiphysics simulation results. (a) Electric potential 
flow at 0s, (b) 10s, and (c) 20s. 

To ensure the BPMs follow the desired control input, the 
deformed area should be avoided so that the BPMs can be 

steered to the desired direction instantly. As the dynamic 
obstacle continues to be moving, the deformed electric 
potential area becomes conical shaped in front of the obstacle, 
as shown in Fig. 4(c). The affected area gets wider behind the 
obstacle (Fig. 4). 

 

Figure 4. COMSOL Multiphysics simulation results. (a) Non-uniformity of 
electric potential field at 0s, (b) Non-uniformity of electric potential field at 
10s, (c) Non-uniformity of electric potential field at 20s. 

B. Proposed Approach to Avoid Dynamic Obstacles 

We combine the Dynamic Window Approach (DWA) and 
Vector Field Histogram (VFH) methods together for dynamic 
obstacle avoidance using a single BPM. Using the two 
approaches, the navigation algorithm prioritizes eliminating 
collisions with obstacles and searching for an optimal input. 
The constraint elements, mentioned above, are included in the 
objective functions which are head, clearance, velocity, and 
control functions. Each objective function calculates the most 
valuable control input for each purpose and the resultant 
control input is decided from an integral function which 
consists of these four functions. The control function is 
designed to take into account the controllability we defined as 
the ability to follow the electric field.  However, even though 
the proposed objective function computes the safe motion 
control input using clearance function, the dynamic obstacles 
can promote collisions due to their unpredicted motion. Thus, 
we utilized VFH approach as a complementary method to 
prevent collision from moving obstacles. The redefined VFH 
in our algorithm is to drive a BPM toward less cluttered spaces 
by restricting the control inputs that cause the BPM to head 
toward obstacles.  

Comparing with previous work [23], this VFH approach 
excludes all inputs that return a heading direction toward 
obstacles. Then, the implemental control input has been 
chosen from our objective function. This method is repeated 
until the BPM reaches a goal position.  

C. Explanation of Main Function 

In case of the objective function for the DWA, the main 

objective function is composed of four sub-functions that 
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represent each expected outcome: orientation towards the 

target position (head), movement by input (movement), 

collision clearance (clearance), and the controllability of the 

BPM (control). It is given as follows: 

𝑓(𝑈𝑥 , 𝑈𝑦) = 𝛼 ∙ ℎ𝑒𝑎𝑑(𝑈𝑥 , 𝑈𝑦) + 𝛾 ∙ 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑈𝑥, 𝑈𝑦)

            +𝜔 ∙ 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑈𝑥 , 𝑈𝑦) + 𝛿 ∙ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑈𝑥 , 𝑈𝑦)     (6) 

where, the 𝑈𝑥 and 𝑈𝑦 are input voltages on x-axis, and y-axis 

respectively.  

The head function is used to represent the alignment of a 
BPM with the goal direction. The function is calculated from 
the angle Φ between two vectors,  υ and ρ (Fig. 5(a)), which 
are the direction vector from current position to next position 
by input 𝑈𝑥, 𝑈𝑦, and the direction vector from next position to 

goal pose, respectively. The closer Φ is from 180°, the larger 
the cost of head function become. The return values of the 
head function are represented by Hcost in Fig. 5(c). 
Consequently, the head function works for a BPM to move 
toward the goal position. 

 

Figure 5. Scheme of our approach. (a) Obstacle occupied situation and head 
cost, (b) Boundary information around BPM at (a), (c) Integral objective 
function cost, (d) VFH approach. (Ccost : clearance(Ux,Uy), Hcost : head(Ux,Uy), 
Mcost : movement(Ux,Uy), Ecost : control(Ux,Uy)) 

The movement function measures the displacement of the 

BPM using the control input value at a chosen sampling time. 

High voltage input generates a long displacement. The cost of 

movement is given as follows: 
 

   𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑈𝑥 , 𝑈𝑦) = 𝛽4√𝑈𝑥
2 + 𝑈𝑦

2/𝑑𝑖𝑠𝑡𝑚𝑎𝑥           (7) 
 

where 𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 𝛽4√𝑈𝑚𝑎𝑥𝑥
2 + 𝑈𝑚𝑎𝑥𝑦

2  is the maximum movement 

by the maximum input voltage 𝑈𝑥 and 𝑈𝑦.  

The control function evaluates the predicted controllability 
through the electric field at the predicted position by 𝑈𝑥, 𝑈𝑦. It 

is difficult to recalculate intrinsic electric potential every 
sequence because the intrinsic electric potential is changed 
when dynamic obstacle moves. Thus, we used the 
characteristics of potential field around obstacles. The 
gradient potential caused by deformation of the electric field is 

characterized through the COMSOL Multiphysics simulation. 
Using the gradient profile around obstacles, the control 
function calculates the distortion of electric force based on the 
gradient potential at the predicted position. Therefore, the cost 
will be higher at the area where high gradient potential exists. 
The resultant cost from the control function is indicated as 
Ecost in Fig. 5(c).  

The clearance function is to determine the collision 
probability for a trajectory. In our algorithm, the boundary 
distance (BD) from the center of a BPM is used to check 
whether the BPM collides with dynamic obstacles at the 
resultant motion. Using the BD, we can identify the 
occurrence of a collision with an obstacle at the predicted 
position. Fig. 5(b) shows the boundary information of the 
scenario in Fig. 5(a) within a 200 µm range with respect to 
0~360º. The clearance cost measures the shortest distance 
from the BPM to obstacles while considering movement from 
self-actuation. The clearance cost is 1 in the case of no 
collision (Fig. 5(a)) and 0 for a collision.  

At last, those components will be normalized to [0,1].  The 
result of four objective functions is described in Fig. 5(c) and 
the control input is selected by choosing the highest cost value 
from the sum of each objective cost. The peak of the objective 
function can be changed depending on the weighting 
parameters α, β, γ, and ω. In Fig. 5(c), the weight values are 
equal and the direction of final control input is 87º. However, 
even if the determined motion control made no collision at 
next position, BPM would be close to the area occupied by 
two dynamic obstacles and collision might be expected. To 
make sure that a BPM stays out of the occupied area in the 
future. As a result of the VFH method, we can exclude the 
control inputs between 50 ~ 110º in Fig. 5(d) and prevent the 
BPM from heading towards the dynamic obstacles in advance. 
Thus, the optimal input voltage of rest control space, which is 
not excluded by VFH method, will be obtained from the main 
objective function. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

We demonstrate the feasibility of our obstacle avoidance 
algorithm using simulations and experiments. In the 
simulations, we used several parameters to simulate our 
algorithm and the chosen parameters matched that of the 
experiments. Moreover, standard deviations of 1.5, 1.3, 0.09, 
and 0.06 for parameters 𝛽1, 𝛽2, 𝛽3, and 𝛽4, were used in the 
normal probability distribution model respectively to compute  
BPM locomotion with a mean propulsion, 𝑝̅ of 0.41 pN in our 
simulation. The input velocity space is related to voltage 
ranges which have an upper limit of 20 V. The experiment is 
done using a vision-based system. The dynamic obstacles are 
not affected by the electric field. The sampling time was 0.16s 
for both simulations and experiments. 

A. Simulation Result  

We simulated the dynamic obstacle avoidance method 
using circle shape obstacles in 2D with various parameters to 
investigate the reactivity of the objective function. The 
parameters are 0.5 for 𝛽1, 0.7 for 𝛽2, 0.51 for 𝛽3, and 0.44 for  
𝛽4. The performance of the obstacle avoidance depends on the 
weighting parameters. We focused on the functionality of the 
control, head, and clearance functions. Fig. 6 illustrates the 
resultant path based on the varied weights. In these sets of 
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simulations, α, ω, and δ were varied. The parameter γ was held 
near constant since it affects mainly velocity and has little 
impact on the final trajectory. In order to properly compare 
performance based on different weight values, all of the 
simulations used performed using the same trajectory of the 
dynamic obstacle.  

In the first simulation, which also serves as the control, the 
dynamic obstacle moved at a speed of 5 µm/s using manual 
control from the time between t0 and t3 (red circle). The 
weighting of head function is 0.5. In the next simulation, the 
weights of the head and control functions were decreased to 
0.3 and increased to 0.7, respectively. As a result, the motion 
planning of the BPM had a wider trajectory (blue triangle in 
Fig. 6(a)). The trajectory (blue triangle) in Fig. 6(a) did not 
move into the deformed area. The BPM kept moving forward 
left (asterisk in Fig. 6(a)) because of the low cost of head 
function with high clearance cost. When dynamic obstacle 
turns right at t2, the BPM begins to head to the goal position 

from 𝑡2
∗ to 𝑡4

∗
 (Fig. 6(a)).   

 

Figure 6. Simulation results showing different trajectories based on different 
weight values. (a) Path with different α, ω, and δ values, (b) Path with 
different α, γ, ω, and δ values (t* : time for asterisk (black) trajectory, tº : time 
for circle(red) trajectory, tʺ : time for triangle(blue) trajectory, number of  ‘t’ 
represents the same time) 

However, similar path was generated between t1 and t3 if 
the weighting of the head function increases (Fig. 6(b)). In the 
case of α = 0.7, the BPM’s trajectory (red circle, blue triangle) 
have a much smaller curvature, as shown in Fig. 6(b). For 
simulations with similarly high δ, an increase of α results in a 
more aggressive trajectory (asterisk in Fig. 6(b)). 

The simulation results confirm that the dynamic obstacle 
avoidance approach allows BPMs to avoid obstacles.  

B. Experimental Setup 

 

Figure 7. Experimental devices and control system 

Our system is composed of a CCD camera mounted on an 
inverted microscope, a PDMS experimental chamber, and four 
power supplies. Two of power supplies are used to generate 
electric fields to control the BPMs on the xy plane. The others 
two power supplies are used to power the electromagnetic coil 
for controlling the magnetic dynamic obstacles. Fig. 7 shows 
the vision-based feedback control experimental setup. We 
used 45~50 µm paramagnetic beads as the dynamic obstacles. 

C. Experimental Results for Magnetotaxis of BPMs 

To confirm that magnetic field does have an influence on 
the BPMs, we observed the trajectories of self-actuated BPM 
under magnetic field for 5 min. Self-actuation motion of the 
same BPM has been observed with and without an applied 
magnetic field, as shown in Fig. 8(a) and 8(b), respectively. 
There is no qualitative difference with the presence of a 
magnetic field. 

 

Figure 8. Self-actuation of BMPs. (a) Self-actuation without a magnetic field, 
(b) self-actuation under a magnetic field. 

D. Experimental Results of Dynamic Obstacle Avoidance 

The experiment was carried out using 30 µm × 32 µm 
rectangular BPMs and spherical magnetic particles in 50 µm 
diameter (as obstacles). The goal position was selected 
arbitrarily.  The parameters for 𝛽4 was 0.32 to initialize the 
dynamic window input. The weight values α, γ, ω, and δ were 
0.5, 0.4, 0.4 and 0.5 respectively. 

 

Figure 9.Experimental result with dynamic obstacles. 

The moving obstacles were manually controlled toward 
the BPM using a magnetic field generated by a set of Maxwell 
coils for the x and y axes. The dynamic obstacle can have only 
2D motion. The strength of magnetic field is fixed at 18 mT. 

The BPM started to move down at first and the algorithm 
led the BPM to right side in order to clear the obstacle. The 
obstacle began to move at 19.14s. We tried to steer the 
obstacle to the BPM’s position. As the obstacle approaches, 
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the algorithm calculated the optimal control input which 
allowed the BPM to successfully avoid the moving obstacle 
and reach the target position. The resulting trajectory of the 
BPM and the obstacles are depicted in Fig. 9. The input 
voltage for motion control in the experiment is described in 
Fig. 10. When the BPM was close to the first obstacle at 
around 10s in Fig. 9, the algorithm computed a strong value 
for the control input which tried to make the BPM move 
toward the empty area to the right. This result in making the 
BPM moved far away from the nearest obstacle during 10~20s 
as shown in Fig. 10. Once the obstacle moved toward the BPM 
at 33~44s, the computed control input made BPM move to the 
right side again. 

 

Figure 10. Control input voltages during experiment 

V. CONCLUSIONS 

In summary, we have demonstrated the possibility to 

develop a dynamic obstacle avoidance method for BPMs. 

There are several constraint elements to consider including 

the kinematics of the self-actuation motion. In addition, the 

motility of dynamic obstacle is stochastic. Thus, we 

combined an additional obstacle avoidance method, VFH, 

with the modified DWA method to reduce the probability of 

collision. Our algorithm chooses the optimal velocity from 

the admissible velocity space in order to avoid collision. The 

simulation result supports the presented algorithm for our 

robust collision avoidance algorithm. We further validated 

our algorithm through experimental result.  
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