
Algorithms for Simultaneous Motion Control of Multiple T. Pyriformis
Cells: Model Predictive Control and Particle Swarm Optimization

Yan Ou1 and Peter Kang1 and Min Jun Kim2 and A. Agung Julius1

Abstract— This paper investigates the use of single control
signal (magnetic field direction) and PSO-MPC algorithm to
control multiple magnetized Tetrahymena pyriformis (T. pyri-
formis) cells to move from their initial positions to their
target positions simultaneously while avoiding the obstacle. The
magnetized T. pyriformis cells are generated by adding iron-
oxide spherical particles into the cells. We control the cells’
moving direction by changing the magnetic field direction.
Based on Model Predictive Control (MPC) algorithm, we define
a cost function which is composed of the target cost function
and the obstacle potential function. The target cost function
is to measure the sum of differences between cells’ predicted
positions and their target positions. The obstacle potential
function is used to measure the repulsive force of the obstacle.
The input variables of the cost function are the sequence of
control signals. We use Particle Swarm Optimization (PSO)
method to find a cost value which is close to the global minimum
of the cost function. In the experimental result section, we show
the control of three m3pi robots to move from their initial
positions to their target positions with avoiding the obstacle.
Since the similar control strategy has successfully controlled
one T. pyriformis cell in our previous work, we believe our
PSO-MPC algorithm is applicable on the multiple T. pyriformis
cells’ control task.

I. INTRODUCTION
In micro-scale robotics, micro artificial robots and micro-

biorobots are most widely investigated. It is much easier
to model micro artificial robots [1], [2], [3], [4], [5] than
microbiorobots. The models of the micro artificial robots
have less uncertainty and they are more controllable than
the microbiorobots. However, there are two drawbacks of
the micro artificial robots. On one hand, their manufacturing
costs are relatively higher than the microbiorobots. On the
other hand, to power the micro artificial robots is not easy
[6]. The rise of microbiorobots’ research in recent years
has overcome these drawbacks. Microbiorobots have found
applications in many areas including micro-delivery [7],
parallel assembly [8], [9], and micro-manipulation [10].

Microorganisms [11], [12], such as Escherichia coli, are
easy and cheap to produce. In the low Reynolds number
environment, the biomolecular motors embedded in the mi-
croorganisms, such as cilia and flagella, generate swimming
force by consuming chemical energy from the fluidic en-
vironment. Using multiple stimuli, such as magnetic field,
microorganisms can be controlled as microbiorobots.

1Yan Ou, Peter Kang, and A. Agung Julius are with the De-
partment of Electrical, Computer, and Systems Engineering, Rensse-
laer Polytechnic Institute, Troy, NY 12180, USA, Email: ouy2@rpi,
kangp3@rpi.edu, agung@ecse.rpi.edu

2Min Jun Kim is with the Department of Mechanical Engineering
and Mechanics, Drexel University, Philadelphia, PA 19104, USA, Email:
mkim@coe.drexel.edu

T. pyriformis is a eukaryotic pear-shaped cell with size
50 µm long and 25 µm wide. T. pyriformis cell is larger
than many other microorganisms, such as Escherichia coli
[13]. Therefore, it is easy for us to receive imaging feedback
information of T. pyriformis cells and then control them. The
body of T. pyriformis is covered by approximately 600 cilia,
both oral and locomotive. The locomotive cilia facilitate the
swimming behavior of T. pyriformis, which can be influenced
by the external stimuli, such as magnetic field [14].

Researchers have used many path planning and control al-
gorithms to control the T. pyriformis cells as microbiorobots.
Kim et al [15] use real-time feedback control and the
Rapidly-exploring Random Tree (RRT) for path planning to
control the magnetotactic T. pyriformis as a microbiorobot.
Ou et al [14] investigate the motion control of the T.
pyriformis cell using Model Predictive Control algorithm. In
our previous work [16], we use Feedback Ensemble Control
algorithm to control multiple T. pyriformis cells simultane-
ously using single control input, magnetic field direction. A
Control Lyapunov Function (CLF) is defined to measure the
sum of distances between the robots’ current positions and
the target positions. The control algorithm consists of two
control modes: the mode with rotating magnetic field and
the mode with the magnetic field turning off. The rotating
magnetic field is used to make the robots turn in a spiral
pattern to find the feasible moving directions in order to
reduce the CLF value. The mode without magnetic field
makes the robots move straight to reduce the CLF value until
the CLF value has an increasing tendency. The control signal
is changed between those two modes in order to gradually
reduce the CLF value. However, there are three drawbacks
of the Feedback Ensemble Control algorithm. Firstly, the
high-frequency rotating magnetic field is harmful to the cells.
Secondly, the Feedback Ensemble Control technique requires
a large experimental space for the motion of the cells. Since
it is hard to generate a stable magnetic field in a relatively
large space with constant intensity, the Ensemble Control
technique is not applicable in the experiment of multi-cell
motion control. Thirdly, using this algorithm, the robots
move to their targets with large steady-state errors.

In this paper, we use PSO-MPC algorithm to control
multiple robots simultaneously to move from their initial
positions to their target positions with avoiding the obstacle.
MPC stands for Model Predictive Control [17] while PSO
stands for Particle Swarm Optimization [18]. Using this
method, we will not generate the rotating magnetic field
which is harmful to the cells. We can achieve our control
objective within a smaller field of view, which makes it easier

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 3507

to do the experiment than the case when we use the Feedback
Ensemble Control algorithm. With PSO-MPC algorithm, the
cells end up with smaller distances to their targets than those
of the Feedback Ensemble Control algorithm. We use an
obstacle potential function to represent the repulsive force
of the obstacle. We prove the effectiveness of our control al-
gorithm by running an experiment using the m3pi robot. The
ratio between the area of the field of view of the m3pi robots
to their speed is set roughly the same with the corresponding
ratio in the system that controls the T. pyriformis cells [14].
Since the similar control strategy has successfully controlled
single T. pyriformis cell experimentally in our previous work
[14], we believe the PSO-MPC control strategy for multiple
m3pi robots is applicable on the T. pyriformis cells. Please
refer to Section IV for details about PSO-MPC algorithm.

This paper is structured as follows. Section II shows the
problem formulation. Section III shows the approach to deal
with our control objective. Section IV shows the PSO-MPC
algorithm. Section V describes the Simulation results and
Experimental results of controlling the m3pi robots.

II. PROBLEM FORMULATION

A. Plant Model

In our previous work [19], we introduce the experiment
setup to control T. pyriformis cells as microbiorobots as well
as the system identification of T. pyriformis cells. The plant
model of the T. pyriformis cell is as follows,

ẋi = νi cos(θi), (1)
ẏi = νi sin(θi), (2)

θ̇i = ai sin(u−θi), (3)

where xi is the x axis position of the ith cell; yi is the y axis
position of the ith cell; θi is the ith cell’s orientation; u is
the magnetic field direction (the magnetic field strength is
set to be constant); νi is the speed of the ith cell, which is
constant during the experimental process.

By discretizing the continuous-time plant model of the
T. pyriformis cell, we get the following discrete-time plant
model,

xi(k+1) = xi(k)+T νi cos(θi(k)), (4)
yi(k+1) = yi(k)+T νi sin(θi(k)), (5)
θi(k+1) = θi(k)+Tai sin(u(k)−θi(k)), (6)

where k is the control step; T is the sampling time of the
control algorithm.

B. Control Objective

As is shown in Figure 1, we are trying to use single control
signal (magnetic field direction) to control multiple robots
to move from their initial positions to their target positions
simultaneously while avoiding the obstacle.

III. APPROACH

In this paper, the control objective is twofold. On one hand,
we want to control multiple T. pyriformis cells to move from
their initial positions to their targets simultaneously using

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000
Simulation Result of Controlling3 m3pi

x−axis (mm)

y−
ax

is
 (

m
m

)

Initial State
Target State

Fig. 1: Simulation result. In this figure, the circles with
green, blue, and red colors are initial positions of the
robots; the squares are the target positions of the robots; the
yellow circle is the obstacle. All the robots are controlled
using the single control input. And they reach the targets
simultaneously with avoiding the obstacle.

single control input (magnetic field direction). On the other
hand, the cells need to avoid the obstacle in the field of view.

Considering the target cost function and the obstacle
potential function that measures the obstacle repulsive force,
we can define the following cost function,

J(u) ∆
= f (u)+ωpP(si(k+1|k), . . . ,si(k+h+1|k)), (7)

f (u) ∆
=

N

∑
i=1
‖si(k+h+1|k)− tari‖2, (8)

P(si(k+1|k), . . . ,si(k+h+1|k)) ∆
=

N

∑
i=1

(
h+1

∑
j=1

p(si (k+ j|k))

)
,

(9)

si(k+ j|k) ∆
= [xi(k+ j|k),yi(k+ j|k)], (10)

tari
∆
= [xtar,i,ytar,i], (11)

u ∈ [lb,ub], (12)

where k is the control step; J is the cost function which
needs to be minimized to achieve the control objective; P
represents the sum of the obstacle potential functions for all
the robots at each control step; f is the cost function that
measures the sum of distances between robots’ positions after
h control steps and their target positions; h is the predicted
horizon; u ∆

= [u(k),u(k+1), . . . ,u(k+h)] is the sequence of
control signals; lb = [−π,−π, . . . ,−π] is the lower bound
and ub = [π,π, . . . ,π] is the upper bound of the sequence
of control signals; p is the obstacle potential function as is
described above; si(k + h + 1|k) is the ith robot’s h + 1th
step predicted position in the kth control step, which is
gotten based on Equations (4)-(6); tari is the ith robot’s
target position; N is the cell number; xtari is the target x
axis position and ytari is the target y axis position of the
ith cell; ωp is the weighting factor for the obstacle potential
field function, which is chosen to achieve a balance between

3508

reaching the targets and avoiding the obstacle.
In the kth control step, if a certain sequence of control

signals ugb makes f (ugb) close to 0, ugb is a good candidate
to control the robots to their targets. In the condition without
modeling error, measuring error, and environmental distur-
bance, we can generate ugb once and then use it to control
the robots to move to their targets. However, we have to find
ugb at each control step to compensate the errors.

Many potential field functions [20], [21], such as Impulse
function and Exponential function, can be used to represent
the obstacle’s repulsive force to the robots. In this paper,
in order to reduce the computational time, we choose the
impulse function as the obstacle potential function. The
obstacle potential function is as follows,

p(s) =
{

1 if s ∈ O,
0 if s /∈ O,

(13)

where p is the obstacle potential function; s ∆
= [x,y] is the

position of the robot; O is the obstacle.

IV. PSO-MPC ALGORITHM

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [18] is a random-walk
optimization method that finds a small value which is close
to the global minimum of a non-convex cost function. PSO
generates a swarm of particles, and moves them in the search
domain of the cost function. The velocity (vn) of each particle
(un) depends on its local best coordinate (ulb,n) and global
best coordinate (ugb). ulb,n is the minimum cost value of a
particle along its searching history. ugb is the minimum cost
value among all particles’ local best values. n is the index
of the particles. The particles are guided by PSO to move
toward the small value which is close to the global minimum
of the cost function as shown in Figure 2 [22]. The values
of un, vn, ulb,n, and ugb are updated based on Equations
(14)-(19). PSO does not require the calculation of the cost
function gradient, which makes it capable of generating a
control strategy within the sampling time, which is 100ms in
our project.

The equations to update the coordinates and the velocities
of the particles are as follows,

vnew
n = ωvvz

n + c1r1(uz
lb,n−uz

n)+ c2r2(uz
gb−uz

n), (14)

vz+1
n = max(−|ub− lb| ,min(vnew

n , |ub− lb|)), (15)

unew
n = uz

n +vz+1
n , (16)

uz+1
n = max(lb,min(unew

n ,ub)), (17)

uz+1
lb,n = {un|min(J(uz+1

n),J(uz
lb,n))}, (18)

uz+1
gb = {un|min(min

n
J(uz+1

lb,n),J(u
z
gb))}, (19)

where z is the iteration step; f is the cost function that
measures the difference between the predicted final states
and the target states; ωv, c1, and c2 are positive numbers; ωv
is the momentum value; c1 is the weighting factor of ulbi; c2
is the weighting factor of ugb; r1 and r2 are random numbers
with uniform distribution in the range of [0,1]; un ∈ [lb,ub] is

𝑽𝒊
𝒌

𝒖𝒏
𝒌

𝒖𝒈𝒃
𝒌

𝒖𝒏
𝒌+𝟏

𝒖𝒏
𝒌−𝟏

𝒖𝒏
𝒌−𝟐(𝒖𝒍𝒃,𝒏

𝒌)

𝒗𝒏
𝒌+𝟏

𝒗𝒏
𝒌

Fig. 2: Particle Swarm Optimization. In this picture, each
green circle represents the current coordinate of a particle;
the purple circle and the black circles are the history coor-
dinates of a particle, among which the purple circle is the
local best coordinate (uk

lb,n) of the particle; the blue circle
is the global best record of all the particles (uk

gb); the gray
circle is the global minimum of the cost function.

the coordinate of each particle; vn ∈ [−|ub− lb| , |ub− lb|]
is the velocity of each particle, ulb,n ∈ [lb,ub] is the local
best coordinate of each particle; ugb ∈ [lb,ub] is the global
best coordinate of the particles; n = 1,2, . . . ,np represents
the particle index and np is the number of the particles; lb =
[−π,−π, . . . ,−π] is the lower bound and ub = [π,π, . . . ,π]
is the upper bound.

1) Pseudo-code of PSO: In summary, PSO with the stop
criterion is presented in Algorithm 1.

Algorithm 1 pso(u0
gb)

1: Initialize un, vn, and ulb,n with uniformly distributed
values in their searching spaces.

2: if u0
gb == NULL then

3: ugb = {ulb,n|min
n
(J(ulb,n))}

4: else
5: ugb = u0

gb
6: end if
7: for z = 1,2, . . . ,zmax do
8: Update v, un, ulb,n, and ugb based on Equation (14)-

(19).
9: if z > 10 and the stop criterion (20) is met then

10: break
11: end if
12: end for
13: return ugb

2) Stop Criterion: Since Particle Swarm Optimization is
a random-walk optimization strategy, there is no standard
stop criterion with a proof of global convergence to find the
global minimum. Here, we use a stop criterion based on the

3509

decrease tendency of the cost function value as follows,

Cz =
∑

z
m=z−10 log(J(um

gb))

2
,

∆
z =

z

∑
m=z−9

(log(J(um−1
gb)− J(um

gb)))

if z > 10and∆
z <Cz, stop the optimization process, (20)

where z is the iteration step; Cz is the stop criterion value;
∆z represents the decreasing tendency. From Equation 20,
we find that as the decrease of the cost function value, the
stop criterion value also decreases. As shown in Figure 3,
the J(ugb) value decreases exponentially with the iteration
step.

Figure 3 shows the decreasing tendency of the cost func-
tion value in all iteration steps. At the initial iteration steps,
the cost function value decreases quickly. But the decreasing
tendency of the cost function value becomes smooth and
steady after few iteration steps. If the decreasing tendency
of the past 10 steps’ cost function values (∆) is smaller than
a certain stop criterion value (C), the iteration is stopped.

0 5 10 15 20
0

100

200

300

400

500

600

Iteration Step

C
os

t V
al

ue
 (µ

m
)

Stop Criteria

Fig. 3: The stop criterion of the Particle Swarm Optimization
method. Asterisks represent f (Xgb) values in different itera-
tion steps; the f (Xgb) value decreases gradually and satisfies
the stop criterion in step 20.

B. Model Predictive Control

MPC has long been designed as a controller for industrial
applications and academic studies [17]. In this paper, a cost
function (7) is defined to measure the sum of differences
between the final predicted positions and the target positions
at each control step. Many optimization methods can be used
to find the global minimum (sequence of control signals) of
the cost function. After the optimization process, the current-
step control signal is exerted to the system. However, it is
hard and takes long time to find the global minimum of the
cost function (7). The difficulty is twofold. On one hand,
since all the robots receive the same control signal, it takes
a long control horizon to move the robots from their initial
positions to the target positions simultaneously, which makes
the cost function high dimensional. On the other hand, the
cost function has multiple local minima with different cost

values. As a real-time optimization solver, PSO rapidly finds
a small value which is close to the global minimum of a
high-dimensional cost function. Using the PSO algorithm, it
is easy for us to experimentally control multiple robots using
the single control signal.

1) Choosing the Control Horizon: At each control step,
we need to choose a suitable control horizon. The control
horizon is the length of the sequence of control signals
that make the robots move to their targets. As is shown
in Algorithm 2 Part I, we can find the global minimum of
the cost function given different control horizons and then
choose the global minimum with the smallest cost value as
the sequence of control signals. However, it takes a long time
to find the global minimum of each cost function. At the 0th
control step, we can make the robots turn in a square shape
repetitively while calculating the best control horizon. After
we find the best control horizon and the robots move back to
their initial states, we exert the control signal to the system.
This method, if applied at each control step, would be time-
consuming. Therefore, from 1st control step, we need to find
a method to generate the control signals by trying shorter
control horizons.

Warm Start method [23] can be used to reduce the
computational time at each control step. In the previous
(k − 1th) control step, we already know a set of con-
trol signals (u(opt)) that move the robots to their targets.
Therefore, in the current (kth) control step, u(warm) =
[u(opt)(2),u(opt)(3), . . . ,u(opt)(end)] would be a good candi-
date as the sequence of control signals. We can set u(warm) as
a good initial guess of the global minimum and run the PSO
iteration from this initial guess. As is shown in Algorithm 2
Part II, we can run the optimization function with the control
horizons around the horizon of u(warm), then find the best
control horizon as well as the sequence of control signals
(u(opt)).

2) Pseudo-code of MPC: In summary, the MPC algorithm
is presented in Algorithm 2.

V. EXPERIMENTAL RESULT

Experimentally, we test the effectiveness of the PSO-MPC
algorithm using the m3pi robots. The m3pi robot consists of
a 3pi robot base and a m3pi expansion board. As is shown
in Figure 4, with the xbee module and the mbed micro-
controller, m3pi robot can move on the ground based on the
received signal from xbee. xbee is a wireless communication
module. Using xbee, we can easily send wireless signal from
PC to the m3pi robot.

The model of the m3pi robot is as follows,

ẋi = (νr,i +νl,i)cos(θi)/2, (21)
ẏi = (νr,i +νl,i)sin(θi)/2, (22)

θ̇i = (νr,i−νl,i)/(2r). (23)

where νli is the left wheel speed; νri is the right wheel speed;
(xi,yi) is the coordinate of the ith robot;θi is the orientation
of the robot; r is the distance from the wheel to the center
of the robot. In order to control the m3pi robot as the T.

3510

Algorithm 2 mpc

1: // Part I: At the 0th control step, try the possible control
horizons and generate the set of control signals.

2: for h = 1,2, . . . ,hmax do
3: u(h) = pso(NULL)
4: end for
5: u(opt) = {u(h)|min

h
J(u(h))}

6: u(warm) = [u(opt)(2),u(opt)(3), . . . ,u(opt)(end)]
7: Exert u(opt)(1) into the system. // Here, u(opt)(1) is the

0th step control signal.
8: // Part II: From the 1st control step, use u(warm) to

generate the set of control signals.
9: for k = 1,2, . . . ,kmax do

10: H = length(u(warm)) // length() is a function to find
the dimension of a vector.

11: for h = H−1,H,H +1 do
12: Obtain the feedback information of the robots.
13: if The robots are close enough to the target then
14: break
15: end if
16: if h == H +1 then
17: u0

gb = [u(warm),0]
18: else
19: u0

gb = [u(warm)(H − h + 1),u(warm)(H − h +
2), . . . ,u(warm)(H)]

20: end if
21: u(h) = pso(u0

gb)
22: end for
23: u(opt) = {u(h)|min

h
J(u(h))}

24: u(warm) = [u(opt)(2),u(opt)(3), . . . ,u(opt)(end)]
25: Exert u(opt)(1) into the system. // Here, u(opt)(1) is

the kth step control signal.
26: end for

pyriformis cell, we need to transform the T. pyriformis cell’s
model to the m3pi robot model as follows,

νl,i = νi−air sin(u−θi), (24)
νr,i = νi +air sin(u−θi), (25)

Figure 5 shows the experimental result of the motion
control of 3 m3pi robots using signal control input.
We use the OptiTrack system with 120Hz sampling
frequency to get the feedback of the robots. The
control frequency is 5Hz. The initial positions of
the robots are [(900,800),(900,1200),(900,1600)]mm.
The target positions of the robots are
[(1700,500),(1700,1500),(1700,2000)]mm. a values
of the robots are [6,4,3]rad/s. The speeds of the robots
are [180;200;150]mm/s. The obstacle is located at
[left,bottom,width,height]= [1200,1100,200,200]mm. Using
the PSO-MPC algorithm, we are able to control the robots
to move to their targets simultaneously with the total
steady-state error 858.8mm while avoiding the obstacle. The
total steady-state error is the sum of distances between the

𝑟

𝑣𝑚𝑟 𝑣𝑚𝑙

(𝑥𝑚, 𝑦𝑚)

𝜃𝑚

m3pi

Fig. 4: m3pi robot. The left figure is the front view of the
robot while the right figure is the back schematic view of
the robot.

robots’ final positions and the target positions. We repeat
this experiment for 20 times. Among these 20 experiments,
the mean value of the total steady-state error is 648.6mm
and the standard deviation is 225.1mm. Since the total
steady-state error is 858.8mm and we control 3 robots as
is shown in Figure 5, each robot has a steady-state error
around 280mm. The speed of the T. pyriformis cell is around
300µm/s. Considering the speed ratio between the m3pi
robot and the T. pyriformis cell, if we use the PSO-MPC
algorithm to control T. pyriformis cells, we will possibly
have steady-state error around 400µm for single cell. This
steady-state error roughly equals to 8 T. pyriformis cell’s
body lengths, which is really small compared to our previous
work [16]. The size of the field of view that controls the
m3pi robots is 1600×1800mm. The size of the field of view
that controls the T. pyriformis cells is 5000µm× 5000µm.
Considering the speed ratio as well as the ratio of the field
of view, we believe that the algorithm proposed in this
paper can be applied to the T. pyriformis cells’ control task.

Fig. 5: Experimental result. In this figure, the circles with
green, blue, and red colors are initial positions of the robots;
the squares are the target positions of the robots; the yellow
square is the obstacle. All the robots are controlled using the
single control input. And they are trying to reach the targets
simultaneously with avoiding the obstacle.

3511

VI. CONCLUSION AND FUTURE WORK

In this paper, we control multiple robots simultaneously
using the uniform control signal (magnetic field direction).
All the robots are controlled to move from their initial
positions to their target positions while avoiding the obstacle.
Model Predictive Control is used to generate the control
signal at each control step. The cost function is composed of
the target cost function and the obstacle potential function.
The variables of the cost function are the sequence of control
signals. The target cost function is defined to measure the
sum of distances between the robots’ final predicted positions
and their target positions. The obstacle potential function
is used to measure the repulsive force of the obstacle.
We use the Particle Swarm Optimization method to find a
cost value that is close to the global minimum of the cost
function and generate the current step’s control signal. We
test the effectiveness of this control algorithm by controlling
3 m3pi robots to move from their initial positions to their
target positions with avoiding the obstacle. In the future,
we are trying to implement this control algorithm to the
microbiorobots control task.

ACKNOWLEDGMENT

The authors would like to acknowledge the support
from the NSF through grants number CMMI-10000284
and CMMI-10000255, and the ARO through grant number
W911NF-11-1-0490 for the research reported in this paper.
We are also thankful to Aaron Becker and Dalhyung Kim
for the constructive discussions, from which this research
benefited.

REFERENCES

[1] J. J. Abbott, Z. Nagy, F. Beyeler, and B. J. Nelson, “Robotics in the
Small, Part I: Microbotics,” IEEE Robotics Automation Magazine,
vol. 14, no. 2, pp. 92–103, 2007.

[2] C. Pawashe, S. Floyd, and M. Sitti, “Multiple magnetic microrobot
control using electrostatic anchoring,” Applied Physics Letters, vol. 94,
no. 16, p. 164108, 2009.

[3] L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, H. Zhang, K. E.
Peyer, and B. J. Nelson, “Micromanipulation using artificial bacterial
flagella,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.
1401–1406, 2009.

[4] M. R. Edwards, R. W. Carlsen, J. Zhuang, and M. Sitti, “Swimming
characterization of serratia marcescens for bio-hybrid micro-robotics,”
Journal of Micro-Bio Robotics, vol. 9, no. 3, pp. 47–60, 2014.

[5] Z. Ye, C. Edington, A. J. Russell, and M. Sitti, “Versatile non-contact
micro-manipulation method using rotational flows locally induced by
magnetic microrobots,” in Advanced Intelligent Mechatronics (AIM),
2014 IEEE/ASME International Conference on. IEEE, 2014, pp.
26–31.

[6] S. Kernbach, R. Thenius, O. Kernbach, and T. Schmickl, “Re-
embodiment of honeybee aggregation behavior in an artificial micro-
robotic system,” Adaptive Behavior, vol. 17, no. 3, pp. 237–259, 2009.

[7] S. Martel, “Targeted delivery of therapeutic agents with controlled
bacterial carriers in the human blood vessels,” IEEE Conf. on Bio-
Micro- and Nanosystems, p. 9, 2006.

[8] B. R. Donald, C. G. Levey, and I. Paprotny, “Planar microassem-
bly by parallel actuation of MEMS microrobots,” Journal of
Microelectromechanical Systems, vol. 17, no. 4, pp. 789–808, 2008.

[9] S. Yim and M. Sitti, “Softcubes: Stretchable and self-assembling
three-dimensional soft modular matter,” The International Journal of
Robotics Research, p. 0278364914527630, 2014.

[10] I. W. Hunter, S. Lafontaine, P. M. F. Nielsen, P. J. Hunter, and
J. M. Hollerbach, “Manipulation and dynamic mechanical testing of
microscopic objects using a tele-micro-robot system,” IEEE Control
Systems Magazine, vol. 10, no. 2, pp. 3–9, 1990.

[11] A. Itoh, W. Tamura, and T. Mishima, “Motion control of euglena
group by weak laser scanning system and object manipulation using
euglena group,” Proceedings of IEEE/ASME Int. Conf. on Advanced
Intelligent Mechatronics, pp. 43–47, 2005.

[12] A. Itoh, “Motion control of protozoa for bio-MEMS,” Proceedings
of IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp.
27–32, 1999.

[13] B. Volkmer and M. Heinemann, “Condition-dependent cell volume
and concentration of escherichia coli to facilitate data conversion for
systems biology modelling,” PLoS ONE, vol. 6, no. 7, 2011.

[14] Y. Ou, D. H. Kim, P. Kim, M. J. Kim, and A. A. Julius, “Motion
control of magnetized Tetrahymena pyriformis cells by magnetic field
with Model Predictive Control,” Int. Journal of Robotics Research,
vol. 32, no. 1, pp. 130–140, 2013.

[15] D. H. Kim, S. Brigandi, A. A. Julius, and M. J. Kim, “Real-time
feedback control using artificial magnetotaxis with rapidly-exploring
random tree (RRT) for Tetrahymena pyriformis as a microbiorobot,”
IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3183–3188,
May 2011.

[16] A. Becker, Y. Ou, P. Kim, M. J. Kim, and A. A. Julius, “Feedback
control of many magnetized: Tetrahymena pyriformis cells by exploit-
ing phase inhomogeneity,” IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), pp. 3317–3323, 2013.

[17] C. E. Garca, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practicea survey,” Automatica, vol. 25, no. 3, pp. 335–348,
1989.

[18] R. C. Eberhart and S. Yuhui, “Particle swarm optimization: devel-
opments, applications and resources,” Proceedings of Congress on
Evolutionary Computation, vol. 1, pp. 81–86, 2001.

[19] Y. Ou, D. H. Kim, P. Kim, M. J. Kim, and A. A. Julius, “Motion
control of magnetized tetrahymena pyriformis cells by magnetic field
with model predictive control,” The International Journal of Robotics
Research, 2012.

[20] H. H. Wesley, R. F. Brett, R. F. Jonathan, and H. W. William, “Visual
navigation and obstacle avoidance using a steering potential function,”
Robotics and Autonomous Systems, vol. 54, no. 4, pp. 288 – 299,
2006.

[21] E. Rimon and D. E. Koditschek, “Exact robot navigation using artifi-
cial potential fields,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[22] B. Yang, Y. Chen, and Z. Zhao, “Survey on applications of particle
swarm optimization in electric power systems,” IEEE Int. Conf. on
Control and Automation, pp. 481–486, 2007.

[23] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” Control Systems Technology, IEEE Transactions on,

vol. 18, no. 2, pp. 267–278, March 2010.

3512

