2014 American Control Conference (ACC)
June 4-6, 2014. Portland, Oregon, USA

Combining Analytical Technique and Randomized Algorithm in

Safety Verification of Stochastic Hybrid Systems

A. Agung Julius and Alessandro D’Innocenzo

Abstract— We consider the problem of probabilistic safety
verification for stochastic hybrid systems. In particular, we pro-
pose a method that combines two existing approaches, namely,
analytical techniques and randomized algorithms. Analytical
techniques, such as using stochastic approximate bisimulation,
are able to handle non-deterministic initial states. However,
their practical applicability is limited to relatively simple
stochastic dynamics. On the other hand, randomized algorithms
are able to handle more complex dynamics. However, it typically
requires running a large number of simulations, and cannot be
used for non-deterministic initial states.

Our combined approach basically uses an analytical tech-
nique when the stochastic dynamics is simple, and switches
to a randomized algorithm when the dynamics is nonlinear.
The main idea is that by using the analytical technique, we can
bound the gaps between the probability density functions corre-
sponding to the family of non-deterministic initial states. This,
in turn, enables randomized algorithms that provide upper-
and lower-bounds on the safety and unsafety probabilities.
We illustrate our approach with an example from air traffic
management.

Keywords: hybrid systems, verification, randomized algo-
rithms.

I. INTRODUCTION

We discuss the notion of probabilistic safety for stochastic
(hybrid) systems. That is, assessing the probability that a
system’s execution trajectory enters an unsafe set. In this
paper, we distinguish between two types of initiation of
stochastic hybrid systems, as illustrated in Figure 1. The first
type is systems without non-determinism (Figure 1(a)). In
this case, the initial state of the system is assumed to be
distributed according to some probability distribution of the
state-space. To simulate execution trajectories of this system,
a random initial state is drawn from this distribution. Then,
the dynamics of the state is described by a continuous time
stochastic process, which can involve a combination of ordi-
nary differential equations, stochastic differential equations,
and stochastic point processes (see e.g. the review in [1]).
The other type of stochastic hybrid systems is those with
non-determinism. In this case, the initial state can assume
any value in an Init set (see Figure 1(b)). Since the dynamics
of the system is still stochastic, we still use the notion of
probabilistic safety. However, in the safety verification task,
we want to verify that the probabilistic safety property holds
for any possible initial state.
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Fig. 1: Illustration for probabilistic safety verification
for stochastic (hybrid) systems. (a) System without non-
determinism. The initial state is assumed to have a prob-
abilistic distribution. (b) System with non-determinism. The
initial state is not random but can assume any value in Init.

A lot of effort has been devoted to safety verification
of stochastic hybrid systems. In [2] a procedure has been
proposed to derive a finite Markov Chain abstraction with
guaranteed approximation error of a discrete-time stochastic
hybrid system, while in [3] the notion of approximate proba-
bilistic bisimulation has been used to relate the above approx-
imation error with a notion of robustness for probabilistic
model checking (and therefore for safety verification). In [4]
probabilistic hybrid systems are considered and a general
abstraction technique (based on tools for the analysis of
non-probabilistic hybrid systems) for verifying probabilistic
safety problems developed. In [5] stochastic continuous-
time hybrid systems characterized by non-determinism are
considered, and an abstraction and evaluation method is
proposed that establishes safe upper bounds on reachability
probabilities. In [6] a discrete abstraction of a stochastic
discrete-time system describing human motion has been used
to estimate the probability of an accident in working environ-
ments where human operators and robotic manipulators co-
operate. In [7] the authors address the problem of verifying
in stochastic hybrid systems temporal logic properties whose
probability of being true is very small (rare-events) using
a cross-entropy method, since it is well known that Monte
Carlo techniques do not perform well for estimating rare-
event probabilities. In [8] existing sequential Monte Carlo
simulation approaches to estimate rare event probability have
been extended towards rarely switching diffusions. In [9]
a novel particle filter for a discrete-time stochastic hybrid
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system, referred to as the interacting multiple model (IMM)
particle filter, is developed.

Because safety verification of stochastic hybrid systems
typically involves heavy computation, especially for complex
systems, there have also been effort in formalizing abstrac-
tion of stochastic hybrid systems. In particular, researchers
have looked into ways to create approximate abstraction of
stochastic hybrid systems. There are roughly two types of
methods for this purpose. The first type relies on analytical
results to bound the accuracy of the approximation (see
e.g. [10], [11], [12]). The second type relies on randomized
algorithm to establish a probabilistic bound of the accuracy
of the approximation (see e.g. [13]). There are advantages
(and disadvantages) associated to each approach. The ad-
vantages of the analytical approach are (i) when possible, it
offers a direct answer (e.g. “the second order moment of the
error between the trajectories of the concrete model and the
abstract model is less than x”) (ii) it does not involve a large
number of simulations, and (iii) it can be used for systems
with non-determinism (see e.g. [14]). However, the analytical
approach is typically only applicable to a narrow class of
systems. For example, stochastic differential equations with
linear drift [12]. The advantages of the randomized algorithm
approach are (i) it is relatively simple to implement, and (ii)
it applies to a wider class of systems since it is simulation
based. The disadvantage of using the randomized approach
are (i) it can only provide probabilistic answer (e.g. “the
second order moment of the error between the trajectories
of the concrete model and the abstract model is less than x
with probability at least p”), (ii) it typically requires a large
number of simulations to get statistically significant answer,
and (iii) it does not support non-determinism.

The main idea, and the contribution of this paper can be
explained as follows. We seek to combine the strengths of the
two approaches above. We consider stochastic hybrid sytems
where the continuous dynamics is described as stochastic
differential equations (SDE) [15] with non-determinism in
the initial conditions. Since the continuous dynamics vary
with the location/discrete state, in some locations we might
be able to use the analytical approach for safety verification,
while in other locations we have to resort to randomized
algorithms. We develop a framework for combining the
results of the two approaches.

II. PROBLEM FORMULATION

In this preliminary study, for simplicity, we assume that:
A1. The stochastic hybrid system only has two locations. One
location, where the initial state can be, has linear continuous
dynamics that makes it amenable to analytical technique. The
other location, where the Unsafe set is defined, has nonlinear
dynamics that requires the use of randomized algorithm.
A2. The transition between one location to another is time-
triggered.

Later, we discuss ways to generalize these assumptions.
A mathematical description of the problem is as follows.We
consider a switched stochastic system with time-triggered

switching:

(AX; + b)dt + DAW,
F(X)dt + G(X,)dW,

0<t<ts,

t>t,, M

dXt,a:o = {
with initial state Xo ,, = xo, where X; ,, € R", W, is an
m—dimensional standard Brownian motion, and A, b and
D are constant matrices with appropriate dimensions. We
assume that the system is non-deterministically initialized in
a compact initial set ¢ € Init C R™. We also assume that
a set of unsafe states, Unsafe C R™, is given.

To guarantee the existence and uniqueness of the solution
of (1), we assume that (c.f. [15]):
A3. F and G are locally Lipschitz: For any R € R, there
exists a K(R) € Ry such that

@1l 22| < R =
|F(21) — F(x2)| + |G(z1) — G(a2)]| < K(R).

A4. F and G satisfy linear growth condition: There exists a
K’ such that for all z € R",

IF@)+ 1G@)]| < K'(1+[l])).

Problem 1 (Probabilistic Safety Verification (PSV)):
Given the system (1), n > 0 and T" > ¢, verify whether
for any initial state o €Init, the resulting state trajectory
Xt., remains safe for ¢t € (¢5,7] with probability larger
than 1 — 7.

Observe that the safety property that we want to verify
in PSV is a mixed of worst-case (for any initial condition)
and probabilistic (it should hold with probability larger than
1 — ¢). The first part of the stochastic dynamics in (1)
is assumed to be linear affine. This type of dynamics is
known as Ornstein-Uhlenbeck process [15]. Because of its
simplicity, many analytical results are known about this
process, including the evolution of its probability density, and
characterization of its approximate bisimulation function as
quadratic functions [16], [12]. The second part is assumed to
be a well-posed but nonlinear dynamics, for which analysis
we will apply a randomized algorithm.

III. TECHNICAL APPROACH

In principle, this verification task can be completed using
the probabilistic testing framework, as reported in [14]. How-
ever, this approach requires the computation of stochastic
bisimulation functions for both of the dynamics in (1).
Assuming that the dynamics after ¢ = t5 is some general
nonlinear dynamics, computing a stochastic bisimulation
function might not always be possible. Our idea is to exploit
a randomized algorithm (see e.g. [17]) to deal with this
dynamics.

A. Review of Randomized Algorithms for Probabilistic Safety
Verification

Consider a probability space P = {Q, F,Pr}, where Q
is the sample space, F is the set of events, and Pr is the

probability measure. For any event e € F, the probability
measure Pr(e) can be estimated by independent samples
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of Bernoulli trials involving this event. First, we define the
indicator function 1. : @ — {0,1} as

A 1, we€e,

Le(w) = { 0, wéde.
Then, we can draw N independent samples from 2 and
denote them as {w;};=1,.. n.To these samples, we can

associate N independent and identically distributed (i.i.d)
binary random variables {s;};=1.... n, where

S; é 16(0.)2-).

Clearly, by definition above

Pr(e) = Els;], i=1,---,N. (2)
It is well known, and relatively easy to show that
1 X
~ A )
b= Ngsl 3)

is an unbiased estimator of Pr(e) (see e.g. [18]). The variance
of the estimation error is given by

E [(Pr(e) - p)ﬂ - % (Pr(e) — Pr(e)?). (&)

To assess the accuracy of the estimator p, we can use
results such as the Chebyshev inequality[18].

(Pr(e) — Pr(e)?)

Na? ®)
1

S INaz (6)

Consider a stochastic process X; ., t € [0,7] with fixed
initial state at zp € R™. We can associate this process
with a probability space P,, = (Quy, Fao, Pla,), Where
Q, contains all realizations of the process. For probabilistic
safety verification of this process, we define an event Safe,,
as “the trajectory X;,, does not enter the Unsafe set in
[0,T]". We assume that the Unsafe set and the process are
defined in such ways that Safe;, is measurable. The object
of probabilistic safety verification of this process is to assess
Pr,, (Safe,, ), which can be done following the idea above.
In this case, the independent samples of Bernoulli trials are
N independent simulations of X ;, for ¢ € [0, T].

In case the initial state is random, i.e. zy is randomly
distributed on a set Init with fx(-) : Init — R as the
probability density function, the same idea can be applied.
In this case, we define a probability space P = {Q, F,Pr}
where the sample space ) consists of pairs (¢, X;), with
zo € Init and Xt is a realization of the stochastic process
starting at Xo = z0. The Safe event is “the state trajectory
X, starting from random initial state X, does not enter the
Unsafe set in [0,77]”, which can be characterized as

Safe = U {zo} x Safe,,. @)

zoE€lnit

Pr{| Pr(e) — bl > a} <

Again, we assume that Safe is measureable. The safety
probability Pr(Safe) can be characterized as

Pr(Safe) = F [1safe] (8)

where 1gaf :  — {0, 1} is the Safe indicator function. That
is,
1, w € Safe,

Isare(w) = { 0, w ¢ Safe. ®)

Using the laws of conditional expectation, we can rewrite (8)
as

Pr(Safe) = F [E [1gate|z0]] = F [Pr(Safemo)} , (10

(1)

x

:/ Pr(Safe,) fx (z) dx.
Init

Now, if we define yy to be another random variable with
probability density function fy () in R™, we can interpret
(11) as

Pr(Safe) = /1 . l?!r(Safey)fX(y) ;:EZ; dy, (12)
= fx(y)
a /Init Izr(safey) fY (y) fY (y) dy (13)

From (13), we can define a randomized algorithm to estimate
Pr(Safe), as shown in Algorithm 1. Here, we can see that
(13) provides us with an alternative formulation of (11) in
case that the random initial state samples are drawn from a
different (but known) distribution from the actual distribution
of the initial state.

Algorithm 1 Randomized algorithm to estimate Pr(Unsafe)
using N samples.

Require: An Init set with finite nonzero Lebesque measure
and a probability density function fx(-) on Init for the
initial state, and a probability density function fy (-) on
Init for the samples,

1: for alli € {1,...,N} do
2:  Draw a random initial state y; from the probability
density function fy (-) on Init.
3:  Draw Xti, which is a realization of the stochastic
process X; starting at X} = y;.
4:  Define a variable s;, where s; = }ci 8‘3 if Xt’ is safe,
and s; = 0 otherwise.
end for
6: An unbiased estimator of Pr(Safe) is given by

1 N
NN )
p_NZ, 1‘9"
P

W

(14)

The use of randomized algorithms in lieu of analytical
techniques, such as approximate bisimulation [16], [12], for
computing approximate abstraction of stochastic systems has
been previously done in [13]. However, plain randomized
algorithms are not applicable in PSV. This is because the sys-
tem contains non-determinism in the initial condition, while
randomized algorithms cannot handle non-determinism. One
approach is to assume that Init is endowed with an arbitrary
probability measure, e.g. uniform distribution [19]. However,
it is clear that this does not address the PSV problem.
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Fig. 2: An illustration how the mean and covariance of the
Ornstein-Uhlenbeck process changes with initial condition.

B. Combining Analytical and Randomized Algorithms

We propose a novel method that combines an analytical
method with a randomized algorithm to solve PSV.

1) Calculating the Mean and Covariance of the Ornstein-
Uhlenbeck Process: First, we focus on the dynamics of the
system in (1) for ¢ € [0,¢;]. This is an Ornstein Uhlenbeck
process [15]. The probability density function of X ,, for a
given initial condition xo € Init and ¢ € [0,,], p(x,t; o),
can be expressed as:

p(x,t;x0) = N (z; u(t; 20), B(1)),

where N (; u, @) is the normal probability density function
with mean vector p and covariance matrix ¢. The mean of
p(x,t) is given by

15)

¢
w(t; zo) = elag +/ eAt="p dr. (16)
0
The covariance matrix ®(t; xg) satisfies the ODE
dd(t
% = Ad(t) + ®(t)AT + DDT, (17)
®(0) = 0. (18)

2) Bounding the Impact of Initial State Variation: If we
vary the initial state from o to xf, (17) indicates that the
covariance matrix will not be affected. The mean trajectory
will evolve as (see Figure 2)

w(t; ) — p(t; z0) = e (xf — x0) . (19)
We define the final set
Final £ {x | 3z¢ € Init s.t. p(ts;z0) = 2} . (20)

Notation 1: We introduce the following shorthand nota-
tions for the subsequent discussion.

lzlle = /2T @ (L),

Bo(o,7) 2 {w € R" | [l —aolly <7}
Next, we define the radius of the Final set as

2n
(22)

Tmax = min {r > 0 | 3z € R" s.t. Final C Be(x,r)},
(23)
and its center x. as

Final C Bs (xca Tmax)- 24

In the following, we shall bound the difference between
the density functions p(x,ts; 7o) and N (z;z., ®(Ls)), for
any xo in Init.

Theorem 1: For any x € R",

2
p(@,ts;wo) 2 = wellg — ful(x)
soetnit N (z; 20, ®(ts)) P ( 2 ’
(25
2
o platsiwo) & = zellg — f*(x)
S Y P T B ( 2 ’
(26)
where
S . . 2
fu(2) = min o -yl 27)
fr(@) & max eyl (28)
y€EFinal
Proof: By definition,
p(l‘,ts;xo) _ N(x;y,@(ts))
max ——————~ = max ———————1,
zo€lnit N(m,xc,@(ts)) y€Final N((E,"Ec,q)(ts))
= ellg — llz — il
= . 29
P ( 2 >
We can prove (26) in a similar way. [ ]

Remark 2: The calculation of f,.(z) and f*(z) involves
maximization or minimization of a quadratic cost over
a general set, which might be non-convex optimization.
However, if Init is a polytope (and so is Final), these
optimization problems have linear constraints, which can be
solved reliably [20]. In particular, both f.(x) and f*(x) are
piecewise quadratic functions.

3) Proposed Algorithm: We can adapt Algorithm 1 to
solve the probabilistic safety verification by computing a
lower bound for the safety probability and an upper bound
for the unsafety probability as shown in Algorithm 2.

Theorem 3: Consider p.(Safe) and p*(Unsafe) obtained
from Algorithm 2. For any xzy € Init and o > 0, the
probability that the state trajectory X ,, remains safe for
t € (ts,T] is larger than (p.(Safe) — o) with probability
larger than (1 — ;5= ). Also, the probability that the state
trajectory X ., is unsafe is larger than (p*(Unsafe) + «)
with probability larger than (1 — 3=z ).

Proof: The first part can be proved as follows. For any
xo € Init, let us define p,, (Safe) as the output of Algorithm
2 if we replaced (30) with

(i, ts; o)
N(yi; Te, @(ts)) ’

Following Algorithm 1, we note that p,(Safe) is an unbi-
ased estimation of the safety probability of X ,,. Further,
from (6) we can infer that the safety probability of X,
is larger than (p,,(Safe) — o) with probability larger than
(1 — ﬁ) Combining this with (26), we can infer that
Pz, (Safe) is lower bounded by p.(Safe). The second part of
the theorem can be proved similarly. [ ]

li = (34)
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Algorithm 2 Computation of a lower bound of the safety
probability with N random samples

Require: A Final set, and a probability density function
N (x; 2., ®(t,)) for the samples,
1: for alli € {1,...,N} do
2: Draw a random initial state y; from the probability
density function N (z;x., ®(t,)).
3:  Draw th, which is a realization of the stochastic
process X for t € (¢, T starting at th = y;.
4:  Define a variable [;, where
f (yz)) (30)

2
-

if X/ is safe, and [; = 0 otherwise.
5.  Define a variable u;, where

2
U; = exp (Hyl xCH; f*(%)) a3n
if X; is unsafe, and u; = 0 otherwise.

end for
7: A lower bound of Pr(Safe) is given by

(Safe) Z l;.

8: An upper bound of unsafety probability Pr(Safe) is
given by

=)

(32)

p*(Unsafe) & (33)

HMZ

Note that, although it might be intuitive to expect that
because the probabilities of safety and unsafety add up to 1,

E [p*(Unsafe)] + E [p.(Safe)] =1 (35)

This is generally not the case. This is true, however, if
Tmax = 0, which would imply

2 *
|z —zclly = fu(z) = f*(2).
IV. EXAMPLE

We present a realistic case study in air traffic management.
Assume that an aircraft, starting from a non-deterministic
initial position within a compact set, navigates at con-
stant cruising speed, altitude and heading angle. During the
straight cruise phase the aircraft behavior is quite robust with
respect to disturbances and can be appropriately modeled
using a Brownian Motion where the drift is given by affine
dynamics. After a predefined time t;, the aircraft performs
a veer because of its flight plan. During the veer the aircraft
behavior is quite more complex and can be appropriately
modeled using a Brownian Motion where the drift is given
by nonlinear dynamics.

Given an unsafe area where the system is not allowed
to fly (see [21] for details), we wish to compute the worst

case probability (for any initial condition) that the aircraft
will enter the unsafe area within a given time horizon to >
t1. Because of the mixed stochastic and non-deterministic
structure of the model and for the reasons discussed above
classical techniques are not applicable, thus we will use the
new procedure developed in this paper.

We use a point mass model for the aircraft dynamics and
assume that the altitude is constant and equal to flight level
350 (35000 feet). When the aircraft is performing a veer we
adopt from [22] and [21] the following Brownian Motion
model where the drift is given by nonlinear dynamics:

dX =V cos(v) cos(y)dt + dydw

dY = Vsin(¢) cos(y)dt + dadws
. V2 T
V= —klf — gSiIl(’Y) + —
m m

b = ks L sin(g)
m
m = —uT.

The state space * € R consists of X,Y the horizontal
position, V' the true airspeed, v the yaw angle and m the
aircraft mass. The input space consists of 7' the engine thrust,
¢ the roll angle and ~y the pitch angle. During the veer we will
assume that the inputs are constant: 7' = 3000 Kg m/ s2,
¢ = 0.1 rad (5.7 deg) and v = 0 rad. g is the gravity
acceleration, k1 = 1.31 Kg/m, k2 = 25.545 Kg/m, and
1 =0.001 s/m. Wind is considered as a disturbance on the
aircraft dynamics, and is modeled as a Brownian motion with
dy = dy = 13.9 m/s. The values for the above simulation
parameters have been taken from the database BADA (Base
of Aircraft DAta) [23].

When the aircraft is navigating at constant cruising speed,
altitude and heading angle, we adopt the following simplified
Brownian Motion model where the drift is given by affine
dynamics:

dX =Vdt + didw;
dY = 7)\2Ydt + dgd’u}g

V=0
=0
m = —ul,

with A2 = 0.01. During the cruising phase we will assume
that the inputs are constant: 7' = 3000 K g m/s?, ¢ = 0 rad
and v = 0 rad.

We assume that the aircraft initial position belongs
non-deterministically to the set Init = {z € R®
X (0) € [-500,+500] m, Y (0) € [-500,+500] m,V(0) =
237 m/s,4(0) = 0 rad,m(0) = 150000 Kg}, that the
unsafe set is give by Unsafe = {z € R% : X > 890000 m A
Y < 2000 m} and that t; = 1h, to = 1lhbmin. We
implemented the procedure described in the above sections
on MATLAB and used a polytopic overapproximation of the
set Final of Equation (20), which made the computation
of f.(x) in Algorithm 2 easily solvable using quadratic
programming. Using just 250000 runs we were able to verify
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Fig. 3: Two sample trajectories from the set F'inal for ¢t €
[t1,t2], one safe (blue) and one unsafe (red).

the following proposition: the probability that, for any initial
state in Init, the trajectories of the aircraft remain safe for
t € [0,t2] is larger than 0.9894 with probability (confidence)
larger than 0.01.

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper we present a method to combine the use
of analytical techniques and randomized algorithms in prob-
ability safety verification of stochastic hybrid systems. In
particular, the analytical technique allows us to deal with the
case where the initial states are non-deterministic, and we
are interested in the worst case safety probability.

As this is a preliminary work towards this interesting di-
rection, we setup a relatively simple problem, which is bound
by the assumptions in Section II. In particular, we assume
that the simple dynamics is affine linear and its location does
not have Unsafe set. Also, we assume for time triggered
transition, as opposed to event/guard triggered transition.
These assumptions were made to ensure that we can compute
the evolution of the probability density function analytically.
If we had defined event/guard triggered transitions or Unsafe
set at the first location, then the evolution of the probability
density function would satisfy the Fokker-Planck equation
with the guard and/or the Unsafe set acting as an absorbing
or Dirichlet boundary condition [15]. While the computation
of the density functions in this case is not as simple as the one
in this paper, it is interesting to explore if we can establish
a bound similar to Theorem 1.

Another interesting direction to explore is tightening the
bound given by the Chebyshev’s inequality in (6) by using
other results, such as Chernoff’s inequality.
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