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Abstract—Biological robots can be produced in large num­
bers, but are often controlled by uniform inputs. This makes 
position control of multiple robots inherently challenging. 

This paper uses magnetically-steered ciliate eukaryon 
{Tetrahymena pyriformis) as a case study. These cells swim at a 
constant speed, and can be turned by changing the orientation 
of an external magnetic field. We show that it is possible to steer 
multiple T. pyriformis to independent goals if their turning— 
modeled as a first-order system—has unique time constants. 
We provide system identification tools to parameterize multiple 
cells in parallel. 

We construct feedback control-Lyapunov methods that ex­
ploit differing phase-lags under a rotating magnetic field to 
steer multiple cells to independent target positions. We prove 
that these techniques scale to any number of cells with unique 
first-order responses to the global magnetic field. We provide 
simulations steering hundreds of cells and validate our proce­
dure in hardware experiments with multiple cells. 

I. I N T R O D U C T I O N 

There are compelling reasons for creating micro-robotics 
for applications ranging from targeted drug delivery to min­
imally invasive surgery. The potential impact is broad: large 
populations of micro-manipulators would enable surgeons to 
eliminate cancer at the cellular level, let engineers develop 
complex MEMS assemblies, and empower biologists to 
simultaneously sort all the cells on a Petri dish. However, 
the small size of micro- and nano-robots severely limits 
computation, sensing, and communication. This makes im­
plementing controllers difficult. Building autonomous robots 
is currently impractical at the micro-scale, making distributed 
control is infeasible. Centralized approaches are feasible, but 
individually controlling huge populations of robots requires 
an equally large amount of communications bandwidth, 
ultimately limiting the population size. We require a new 
technique for centralized control under the constraint that 
every robot receives exactly the same input commands. 

This paper applies ensemble control to solve this problem 
[1]. Ensemble control is a control technique that uses a 
shared input to drive large populations of robots to arbitrary 
goal states. Our ultimate goal is multi-robot assembly— 
the fabrication of large, complex structures by hundreds or 
thousands of robots—with uniform inputs. To make progress, 
this paper provides a control technique for large numbers 
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Fig. 1. Using two sets of orthogonal electromagnets (left), Ou et al. 
demonstrated steering a living magnetized T. pyriformis cell [9](middle). 
In this paper we exploit differences in magnetism between cells to steer 
multiple cells to arbitrary x, y locations and stabilize them in limit cycles 
at these locations (six stabilized cells shown at right). See multimedia 
attachment at http://www.youtube.com/watch?v=MLr2YvghPns. 

of robots with nonholonomic unicycle kinematics where the 
control input is the desired orientation. 

In previous work [2], [3], we focused on micro/nano-
robotic systems with control inputs (forward velocity and 
turning rate) applied to the local coordinate frame, such 
as electric potential-driven scratch-drive micro-robots [4] -
[6] and some light-actuated, molecular nanocar species [7], 
[8]. These robots have bounded uncertainty in their velocity 
which scales both their forward velocity and their turning 
rate. This inhomogeneity allows control of large numbers of 
robots using the same global signal. We demonstrated that 
position control is possible for these robots. 

Unfortunately, the majority of current micro-robotic sys­
tems apply inputs in the global coordinate frame. Our 
system is shown in Fig. 1. Other examples include magnetic 
micro/nano robots [10]-[20]; magnetic particles studied by 
[21]-[24]; magnetic-field controlled bacteria [25]; electric-
field controlled paramecium [26], [27]; electrokinetic and 
optically controlled bacteria [28]; protists steered by mag­
netic field [9], [29], and electrically driven nano robots [30]. 

In [4]-[6] the authors designed robots with varying hys­
teresis levels so that some could orbit in place while others 
went straight. By cleverly interleaving primitives, they con­
structed shapes composed of multiple robots. Our biological 
organisms are more limited: either all turn in place, or all go 
straight. Our proof of controllability depends on a control-
Lyapunov function. This paper investigates systems where 
the inputs are the desired heading, encoded by a global vector 
field. We focus on artificially magnetotactic Tetrahymena 
pyriformis cells and model them as controllable microrobots. 
71 pyriformis are eukaryotic, pear-shaped cells, « 5 0 /im long 
by 25 /im wide. These cells swim using the numerous cilia 
that cover their cell bodies. T. pyriformis can be grown 
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Fig. 2. Kinematic model of a magnetized T. pyriformis cell. The magnetic 
field exerts torque M a sin(θ - ψ) to align the cell axis θ with the field ψ. 

in large quantities in the laboratory with ease. They have 
been studied under the influence of various taxes, the innate 
behavioral response by an organism to a directional stimulus. 
Galvanotactic control of T. pyriformis has been investigated 
by Kim et al. [32]. Kim et al. also used magnetic fields to 
control the motion of a T. pyriformis by feeding iron-particles 
into the cell body [32]. Feedback control of single cell has 
been developed using rapidly-exploring random trees (RRTs) 
[33] and model predictive control (MPC) [34], [35]. These 
results show promise, but for large-scale micro-assembly 
and micro-manipulation, single-cell motion control is not 
sufficient. We require a control technique that can use a 
global magnetic field to simultaneously control many cells. 

The paper is structured as follows. First, we introduce our 
model for the system (Section II), next we prove this system 
is controllable and provide a feedback control law (Section 
III), validate this control law in simulation and hardware 
experiments (Section IV), and finish with concluding remarks 
(Section V). 

I I . MODELING 

For modeling we will work with a simplified 2 D approach 
that ignores the effects of gravity and collisions. Both are 
well documented, and their effects on control strategies 
warrants further study. Gravity alone would not make the 
system ensemble controllable, but boundary effects may. 
Disturbances from robot-robot interactions are also ignored, 
and may be significant. Extending the model to 3 D requires 
additional states and motion primitives, similar to those used 
for 2D. 

Let the model for the ith cell shown in Figure 2, with 
turning time constant a i , be 

Xi 

Vi 
v i cos θ i 
v i sin θ i 

M a i sin(ψ - θ i) 
(1) 

Here the x i , yi are Cartesian coordinates, θ i is the orien­
tation of the cell, ψ is the orientation of the magnetic field, 
and vi is the swimming speed of the cell. The cell is pulled 
to orient along the magnetic field ψ by a magnetic field of 
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Fig. 3. A cell modeled by (1), under a constantly rotating magnetic field 
ψ(t) = f t will reach a steady-state phase lag of arcsin(f / a ) radians. 
f = M a is the step-out frequency, after which the phase lag grows without 
bound. This growth is approximately linear. 
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Fig. 4. As the magnetic field frequency f increases, the radius the cell 
swims in and the period of rotation decrease in a reciprocal relationship 
until a, the cutoff frequency. The radius values are erratic from a to 1.5a, 
but after 1.5a are linear in a 2 (a linear-fit line is in dashed grey: r = 
1 .45 f / a 2 +-0 .3 /a , T = 1 2 . 9 f / a 2 - 2 . 3 / a ). Shown are a = [4, 6, 8, 10]. 

magnitude M , and the rate of this alignment is given by the 
parameter a i . We assume the relationship is first order for 
some range about 0 and thus can be modeled as an ideal 
torsional spring. As long as the magnetic field is on, in 
steady-state a large group of magnetized cells will share the 
same orientation. No steady-state dispersion in orientation is 
possible when a magnetic field is present. It may be possible 
to command a change in ψ, quickly turn off the magnetic 
field, and get a distribution of orientations parameterized by 
a, but this dispersion will vanish when the magnetic field is 
replaced. 

The nonlinear term sin(θ - ψ) is due to the periodicity 
of the magnetic torque. For small |θ - ψ| we can use the 
small-angle approximation (θ - ψ). 

A. Constantly Rotating Magnetic Field 
As shown previously, to make multiple cells controllable 

by the same magnetic field, we must exploit heterogeneity 
in turning rate. One method is by using a constantly rotating 
magnetic field ψ(t) = f t , where f ∈ R + is the frequency 
of rotation. For f < Ma, the cells will reach a steady-state 
phase lag as they attempt to align with the field. At steady-
state the cells are turning at the same speed as the magnetic 
field 

Ma i sin (θ i(t) - ψ(t)) 
Ma i sin (θ i(t) - f t ) 

f 
arcsin( ) = θ i(t) Ma i 

f t . (2) 

This steady-state phase lag is shown in Fig. 3. The quantity 
M

f
ai is the step-out frequency, after which the phase lag 

grows without bound. This growth is approximately linear 
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Fig. 5. Limit-cycles for cells with different a values at f = 10 rad/s. 
MATLAB code available online [36]. 
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Fig. 6. Shown are the heading angles for two cells with a = {5, 7}. The 
x axis is θi , y axis θ2. Left: simulation for 100 s at increasing rotation 
frequencies f of the external magnetic field. If f and the a values are 
coprimes, the possible angular values span [0, 2π] × [0, 2π]. Right: rotation 
frequency of the external magnetic field f = 20 simulated for increasing 
amounts of time. As time increases, the set of possible angular value pairs 
becomes dense. 

for f > 1.5a, as shown in Fig. 4. The effective period for 
the cell is 

T i 

2π 
f 

1 2 . 9 / ( M a i ) - 2 - 2 . 3 ( M a i ) - 1 

if f < Ma i 

else 
(3) 

We can also compute the effective radius of the limit cycle 
the cell follows. For / < a, the cell completes a cycle every 
2 π / / seconds and the radius is therefore v/f. Past the step-
out frequency, the cells turn in periodic orbits similar to the 
hypotrochoids and epitrochoids produced by a Spirograph® 
toy. Representative limit cycles are shown in Fig. 5. The 
radius of rotation is: 

r i 

v i 
f 

lAhf{Mai)-2 -0.2,{Mai)-1 
if f < M a i 

else 

B. Arbitrary Orientations 
If we could control the orientation of each cell indepen­

dently, the cells could swim directly to the goal. Fig. 6 
shows two cells with different a parameters. If the rotation 
frequency f and the a values are coprime, the range of 
possible θ1 and θ2 values span [0, 2π]×[0, 2π]. By increasing 
f we can control the density we sample these angles. The 
left side of Fig. 6 shows that the time required to span 
[0, 2π] × [0, 2π] increases with f. 

C. Straight-Line Swimming 
By turning the magnetic field off, the cell dynamic model 

simplifies to 
" ViCos9i Xl 

Vi v i sin θ i 
0 

(4) 

Without an external magnetic field, the cells swim straight in 
the direction they were headed when the magnetic field was 
last on. If we store the orientation of the magnetic field when 
the magnetic field is turned off at time t a as ψa = f t a , then 
when we turn the field back on at time tb we can resume 
where we last stopped 

ψ(t) = ψa + f ( t - tb), 

and the cells will continue their limit-cycle behavior, but the 
center of rotation will be translated v i(tb - tb) along the 
vector θ i(t a) . 
D. System Identification 

Our previous technique for system identification required 
manual control of the magnetic field by a human user to keep 
a single cell within the field of view (FOV). Human control 
does not scale to many cells because their differing speeds 
makes it very challenging to maintain even two cells within 
the F O V long enough to perform system identification. Our 
new approach involves using a constantly-rotating magnet 
field to hold the cells in periodic limit cycles. We can then 
analyze the vision data and directly measure the vi and a i 
values from the phase lag and the radius of rotation using 
(2) and (5). 

I I I . FEEDBACK CONTROL 

Our control input consists of an alternating sequence of 
ORBIT and SWIM-STRAIGHT modes. The oscillation fre­
quency f of the magnetic field is constant for every ORBIT 
mode. At the beginning of each ORBIT mode, the phase 
of the magnetic oscillation is resumed from the previous 
ORBIT mode. During the first ORBIT mode, we identify the 
centers of rotation (xc , i , yc , i) of each cell by recording the 
cell positions for at least one period, calculated by (3), and 
computing 

xCji(t) = max(x i(t 
î,Cii(t) = max (ΐ/<(ί 

T:t)) 
T:t)) 

ιηΐη(χ<(ί 

min(î / i ( i 

T:t)) 
T:t)) (5) 

The center of rotation of each cell translates along with the 
cell during each SWIM-STRAIGHT mode (see Fig. 7). 
A. Control-Lyapunov Function 

We use a control-Lyapunov function (CLF) to design 
our control law [37]. A suitable Lyapunov function is the 
squared distance of the center of rotation, [xc , i, yc,i] (5), from 
the origin: 

1 V(t, x,y) = 7:J2 (xl,i(t) + yl/t)) (6) 
i = l 

We construct several control laws that stabilize the system 
with the proposed Lyapunov function. 
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(xi,Vi) 

Fig. 7. Our control input consists of an alternating sequence of ORBIT 
and SWIM-STRAIGHT modes. our algorithms choose the switching time to 
move the center of rotation (x c , i , y c , i ) toward a goal position. 

B. Choosing a Control Law 
Our control law consists of deciding when to turn the 

magnetic field M on. To make V(t, x, y) negative semi-
definite, we choose 

M(t) 
0 if V{t,x,y) < threshold 
1 else 

(7) 

for some threshold < 0 value. With such a M(t), whenever 
M(t) = 0, the Lyapunov function is decreasing at a rate 
< threshold < 0. Note here that V(t,x,y) < 0, but there 
exists a subspace of [xi(t),yi(t)] such that V(t,x,y) = 0. 
Because V(t,x,y) is negative semi-definite, we can only 
claim stability, not asymptotic stability. To gain a proof of 
asymptotic stability, we must choose a threshold function 
such that M is always nonzero only at the origin. 

We present three candidate threshold functions. 
a) GREEDY: The GREEDY approach switches to 

straight-line driving whenever the straight-line driving will 
reduce the error faster than a threshold based on the current 
distance from the goal 

threshold -YviJx.Atf+y.AtY. viyf: (8) 

This approach scales to any number of cells and is robust 
to noise. Simulated results with 250 cells are shown in 
Fig. 8. The time required for convergence as a function of 
the number of cells is shown in Fig. 9, and appears to grow 
linearly. Unfortunately, this approach requires rapidly turning 
the magnetic field on and off. A magnetic field with a large 
time constant cannot faithfully implement this controller. 
A second potential problem is that while this controller 
monotonically reduces the sum of squared errors, it may not 
monotonically reduce the squared error for each individual 
cell—a small fraction of the cells may temporarily move 
away from their goals. The next controllers alleviate these 
problems. 

b) STEEPESTDESCENT: The STEEPESTDESCENT ap­
proach only switches to straight-line driving when all the 
cell’s headings point toward the target. This maximizes the 
gradient of the Lyapunov function. It is generally difficult, 
and often impossible to make all the cells head directly to 
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Fig. 8. 250 cells initialized at x = 20 mm, y evenly spaced [-20, 20] mm, 
with v i , a i values distributed uniformly randomly in [0.5, 1 ]mm/s×[3 , 10] 
under control law (7) with threshold (8). Code available online [36]. 

8000 

6000 

4000 

2000 

20 40 60 80 100 
Number of cells n 

Fig. 9. Convergence time as a function of population size for simulated 
cells. Cells initializes at x = 20 mm, y evenly spaced [-20, 20] mm, with 
v i , a i values distributed uniformly randomly in [0.5, 1]mm/s × [3, 10] 
under control law (7) with threshold (8). The best-fit line slope is 57s/robot. 

the target, so we set a tolerance region for the mean squared 
angular error 

1 ^ arctan2(sin(é»i(t) - eiitarget), 
i=l 

cos(0i(i) H,tar get ) KtolerancesD 

Because the cells all have different speeds v i, they do not 
arrive at the target at the same time. As cells overshoot 
the target, the Lyapunov function increases. We use the 
threshold value in (8) to resume constant rotation. 

This approach is designed to minimize the required field of 
view because the experimental setup F O V is limited. Fig. 10 
compares the GREEDY and STEEPESTDESCENT controllers. 
The STEEPESTDESCENT approach is unsuited for control­
ling large populations (more than 5 cells). Aligning n cells at 
desired heading angles is demonstrated in Fig. 4, and quickly 
becomes challenging as n increases. STEEPESTDESCENT 
provides favorable results in simulations with two cells. 

c) HYBRID: The HYBRID approach attempts to com­
bine the advantages of feedback ensemble control and a 
constant magnetic field. With a constant magnetic field, all 
the cells swim along the same heading angle. We can use 
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Fig. 10. Left: simulation trajectory of four cells under GREEDY and 
STEEPESTDESCENT feedback control. The cells start in a vertical line at 
{[10, 5], [10, 6], [10, 7], [10, 8]} mm and are steered to orbit goal positions 
in a horizontal line at {[-6 ,0] , [-2,0], [2,0], [6,0]} mm. The magnetic 
field has frequency 15 rad/s, the a values are {5, 6, 7,8}, and the speeds 
v are {0.8,0.5,0.6,0.7} mm/s. These tests required {200,930} s for all 
cells to converge within 0.2 mm of their goal positions. Right: Lyapunov 
function (sum squared distance error) of the four cells as a function of time. 

a constant magnetic field to control the mean position of a 
large group of cells. In our future applications we want to 
use large numbers of cells to manipulate objects. The force 
applied to an object is proportional to the number of cells 
that can be brought in contact with the object with the same 
heading angle, and a constant magnetic field allows all the 
cells to push in the same vector direction. 

1 
sx J2(xi Sy = 

sx + sy < toleranceH, 

where (x, y) is the center of mass of the group. The HYBRID 
approach uses a rotating magnetic field to gather cells 
together and uses an unchanging magnetic field to swim 
cells to the target. In this case, if the cells’ positions are 
too sparse (σ > tolerancen) we gather the cells using 
GREEDY or STEEPESTDESCENT by defining the target as 
(x,y). Once the cells gather within tolerance H, we switch 
to a constant magnetic field and the cells swim in unison 
toward the target. This technique could be used as a primitive 
operation for micro-manipulation tasks. Figure 11 shows a 
simulation where multiple cells are steered to push a disc. 

C. Comparison between the Control Laws 
A comparison between the three control schemes is shown 

in Table I. Each simulation uses cells with identical turning 
rates a, velocities v, and initial positions and orientations. In 
each test, the cells were successfully steered to end within 
2 mm of the origin. These results are representative: the 
time consumption for GREEDY is the smallest, since this 
method does not require the cells to spin until all the cells 
are oriented toward the goal. The feedback ensemble control 
methods STEEPESTDESCENT and HYBRID require a smaller 
field of view to gather cells to the target. This is important 

Convergence 
Max. robots 

Robustness 

Field of 
view 
Uniform 
movement 
Toggling 
mag. field 
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slower slowest 
n ≤ 5 n ≤ 5 
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N/A movement with 
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T A B L E I 

COMPARISON OF THE THREE CONTROL STRATEGIES. 
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Fig. 11. Preliminary study on manipulation using multiple cells to push a 
micro-structure. Left: simulation trajectory of four cells under the HYBRID 
feedback control algorithm. The cells have the same initial positions and 
parameters as in Fig. 10, but the control objective is to push a 0.5 mm 
radius disc centered at [0, 0] and drawn in green. This simulation required 
85.5 s to reach the disc. Right: Lyapunov function (sum squared distance 
error) of the four cells as a function of time. 

because the field of view is limited in our experimental 
setup. HYBRID has the slowest convergence time, but its 
advantage occurs when applying an unchanging magnetic 
field to make the cells head to the target. In this case, the 
cells move in the same vector direction, which may be useful 
for micromanipulation tasks. 

IV. EXPERIMENTS 

A. Hardware Setup 
T. pyriformis are cultured in solution of 1% (w/v) tryp-

tone (Sigma Aldrich) and 0.1% (w/v) yeast extract (Sigma 
Aldrich) and incubated at 28 °C. Cells are inoculated weekly. 

Cells were placed in a multi-functional orthogonal coil 
chamber, where two pairs of electromagnets are evenly 
spaced, as shown in Fig. 1, with each pair corresponding to 
the x or y axes. Variable rotating magnetic fields are supplied 
using inputs from two power supplies controlled with Lab-
V I E W software and National Instruments controllers. The 
chamber is placed on a stage of an inverted microscope 
(Leica D M IRB), where samples are observed through a 4x 
objective. Images are captured using a Photron FASTCAM 
SA-3 high-speed camera at 125 frames per second. Cells are 
placed inside a P D M S microfluidic channel measuring 3 mm 
wide and 100 μm deep. 

In these experiments, we must avoid large magnetic fields 
M. Under large M, turning rapidly in circles damages 
cells when the internalized iron-oxide particles rotate quickly 
inside the body, resulting in abnormal swimming. 
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B. System Identification 
To choose the optimal frequency of the rotation magnetic 

field requires knowing the a values for the set of cells we 
want to control. We employ the method of least squares to 
determine the a» values. First we discretize the continuous 
plant model (1) 

Xi(k+l) 1 Γ ViATcos0i(k) 
yi(k+l) = ViATsin0i(k) , (9) 
0i(k + l) \ [ M o u s i n g ) - 0 i ( J f e ) ) 

where AT is the sampling time and Oj = aiAT. 
To identify the a» parameter for each cell, we record 

position and orientation measurements under a constantly 
rotating magnetic field. We record the discrete-time cell 
orientation information as 04(Ο), 0<(1),..., O^k),..., 04(π), 
and the magnetic field orientation as ψ(0), ψ(1), · · ·, i>(k), 
... ,ψ(η). The following equation is derived from (9). 

0<(1)-0<(Ο) 
0<(2)-0<(1) 

Γ -

0i{k-l 

ßi(n) - 0i(n - 1) 

8 1 1 1 ( ^ ( 0 ) - ö i ( 0 ) ) 
s i n ^ l ) - ö i ( l ) ) 

l ) - ö i ( j f e - l ) ) r - 1 ) -

s i n ( V > ( n - l ) - 0 i ( n - l ) ) 

« j 

(10) 
We rewrite this equation as Y = Φα^. Then, using the 
method of least squares, the parameter set with the best fit 
to the data is given by ai = Φ^Υ, where Φ^ = (ΦΤΦ)_ 1ΦΤ 

is the pseudoinverse of Φ. The cell’s a^ value is derived as 

The Oj value can also be measured directly by inverting 
(2). If the frequency of the rotation magnetic field is below 
the step-out frequency, the cells turn in a circle with a 
constant phase lag 0j iag. The turning-rate parameter is then 
ai = - / / s i n ( 0 i , i a f l ) . ' 

Under a constantly rotating magnetic field, T. pyriformis 
cells follow circular limit-cycles. We record the positions as 
functions of time and the magnetic-field phase, and process 
this data to perform system identification of multiple cells in 
parallel. From the experimental data shown in the right panel 
of Fig. 1, we identify the following parameters for the cells: 
a values of {5.82, 2.94, -8.56, 5.45, -5.45} and speeds of 
{172,155,133,165,167} px/s. In our setup each pixel is 0.23 
μm wide, giving speeds {39.6,35.7,30.638.0, 38.4} μm/s. 

C. Validation of Key Modeling Assumptions 
The key assumptions in our model are: (i) the cells follow 

periodic orbits under a constantly rotating magnetic field, 
and (ii) in the absence of magnetic field, the cells swim 
straight. These assumptions have been experimentally vali­
dated. Fig. 12 shows cells under the influence of a magnetic 
field rotating at 6 rad/s. The cells turn in tight limit cycles, 
as predicted by our model (1). 

Fig. 13 shows the paths traveled by six cells from the 
previous experiment, after turning the magnetic field off. A 
majority (62%) of the cells swim in a straight line. The path 
traces show 1.6 seconds of movement. 

Fig. 12. Experimental results for nine T. pyriformis cells under the 
influence of a magnetic field rotating at 6 rad/s. The cells turn in tight 
limit cycles, as predicted by our model. The field was on for a duration of 
6.6 seconds. 

Fig. 13. This frame shows the paths traveled by six cells from Fig. 12 after 
turning the magnetic field off. A majority of the cells swim in a straight 
line. The path traces show 1.6 seconds of movement. 

V. CONCLUSION 

We have provided an algorithm for steering multiple 
micro-robots to arbitrary ending positions when the only 
control input is the global desired heading. We demonstrated 
a technique for performing model-learning on a large epop-
ulation of cells simultaneously, using video data. 

An obvious extension is to apply this work to artificial 
micro robots controlled by magnetic fields [10]–[19], [21]– 
[24]. In many of these systems [16] the robot speed is also 
controllable, allowing the robots to be turned in-place. 

These results can be directly extended to 3 D by augment­
ing the state and error signals with z and using angles in 
SO(3). This can be implemented trivially by first using con­
trol laws from Section III to move to desired x, y positions, 
and finish by moving to the desired z positions, requiring 
≈ 1.5× as many operations as in 2 D . 

Preliminary hardware experiments with multiple cells are 
promising. This paper represents a step toward our future 
goal of using multiple cells to manipulate many objects 
simultaneously. 
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