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Ahstract- Disruption of the circadian rhythm is detrimental 
to human well being, with consequences ranging from lower 
productivity, sleep disorder, to more serious health problems. 
Accurate estimation of circadian argument is critical to the 
assessment and treatment of circadian disruption. Circadian 
argument estimate is also essential for light-based circadian en­
trainment. Direct measurements of circadian rhythm markers 
such as dim light melatonin onset are inconvenient and acquired 
at best at low rate. Wearable continuous measurement such as 
actigraph is convenient but is masked by many other factors. 
In this paper, we present a new circadian rhythm estimation 
scheme based on a type of frequency tracker, called adaptive 
notch filter (ANF) which is commonly used in signal processing. 
ANF is designed to track the gain and phase of a single 
sinusoid from noisy data. We extend the classic ANF to mUltiple 
harmonics needed in circadian rhythm tracking. The local 
stability and high order harmonics robustness are analyzed. 
The highly noisy indirect measurements result in unreliable 
amplitude estimate, but the phase estimate is generally quite 
robust. We use this phase estimate combined with the light 
input to construct a black-box linear time varying (LPV) 
system description, parameterized by the phase estimate. The 
LPV model predicts the circadian rhythm response to light 
inputs and can be used for the design of light-based feedback 
control. The proposed modeling and control method is applied 
to three different models of circadian rhythm: Kronauer's 
human circadian model, Leloup's Drosophila circadian model 
and Neurospora circadian model. Simulation shows that our 
approach can generate reliable circadian argument estimation 
and effective gain-scheduled control of the circadian rhythm 
without any knowledge of the underlying model. The ability 
to generate circadian estimate, model, and control based only 
on input/output data opens up the tantalizing possibility of 
personalized circadian rhythm estimator and light therapy. 

I. INTRODUCTION 

Disruption of the synchrony between the solar day and 
human internal master clock that regulates and generates 
circadian rhythms has been linked to a variety of maladies. 
Circadian disruption, as experienced by night shift workers 
or by those traveling multiple time zones can lead to low 
productivity, digestive problems and decreased sleep effec­
tiveness. Long term effects of circadian disruption have been 
linked to serious health problems, such as increased risk of 
cancer, cardiovascular disease, diabetes and obesity. 

Various groups have proposed the use of light to entrain 
the circadian rhythm [1]-[8]. Circadian regulation using 
chemical intervention (e.g., melatonin, modafinil) has also 
been studied [9]-[11]. Most of the work on light-based 

circadian rhythm regulation is open loop in nature, based 
on the response curve (PRC) , the amount of the steady 
state phase shift due to a specified light pulse input at 
different circadian phase [9], [12]. Optimal control has only 
been recently considered [8], [13], [14]. There are also 
commercial products for self-administered light therapy to 
address seasonal affective disorder [15], [16]. They are low 
cost and convenient, but only provide rough guideline on 
their usage for circadian rhythm regulation. Feedback control 
of the light therapy is attractive as it could accommodate 
variations between individuals and disturbances from the en­
vironment. Some closed loop strategies have been suggested 
and demonstrated in simulation [7], [17], but a reasonable 
estimation of the circadian argument based on physiological 
sensor measurements is needed for deployment. 

The circadian rhythm may be assessed by measuring the 
circadian data. For humans, certain hormones related to 
circadian rhythm such as melatonin, cortisol, alpha amyloid, 
have also been used as circadian data. These types of direct 
measurements are intrusive in terms of collection (blood 
serum, saliva), time consuming and expensive in terms of 
analysis. As a result, the sampling rate is very low, at best 
once per several hours, over a limited duration in experimen­
tal trials. More common types of circadian data are the use of 
indirect markers, such as body temperature, heart/pulse rate, 
activity level, etc. Locomotor activity, in particular, together 
with tools such as actogram (or actigraph), has long been 
used in Drosophila, rodent, and human studies [18]-[23]. 

Numerous techniques for circadian data analysis have been 
proposed (see review in [24]). Most are batch in nature, 
meaning that the circadian argument is extracted in postpro­
cessing of a batch of circadian data. These techniques include 
manual inspection of actogram [25], statistical method [26], 
Fourier analysis [24], cosinor [27], and activity onset [28]. 
A number of recursive methods, where circadian rhythm 
estimate is updated with new measurements, have also been 
proposed. There are two classes of algorithms, depending on 
if an underlying input/output model is assumed. Extended 
Kalman Filter (EKF) [29] and Particle Filter [30] are model­
based method using the empirical nonlinear oscillator model 
(relating input light intensity to the output core body tem­
perature). Gliding cosinor is a model-free approach which 
works the same as cosinor but for a fixed window of the 
past data [31]. 
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In this paper, we present a model-free circadian argument 
estimation scheme by using a type of frequency tracker, 
called adaptive notch filter (ANF). Based on the filter 
proposed in [32], we modify the ANF to accommodate 
the non-zero mean and non-sinusoidal waveform of the 
circadian data. We establish the local stability and robustness 
properties of the extended ANF algorithm. The effectiveness 
of ANF on Drosophila and rat locomotor activity data is 
demonstrated in [33]. 

Using the light pulse applied at different circadian ar­
guments as input and the estimated circadian arguments 
using ANF as output, we identify a family of linear time 
invariant (LTI) systems to model the cascaded system of 
the circadian response and the ANF. This family of LTI 
models, parameterized by the circadian argument, form a 
linear parameter varying (LPV) system. The LPV description 
allows prediction of the circadian response under different 
lighting conditions. The LPV system may also be used 
to construct a corresponding family of LTI feedback light 
control based on the ANF output feedback. Such gain sched­
uled control allows effective entrainment of the estimated 
circadian argument to the desired profile. 

To generate test data and evaluate the performance of the 
proposed method, we use three accepted circadian models 
in the literature, including an empirical model for human 
circadian response to light input proposed by Kronauer [34], 
and biochemical models for Drosophila and Neurospora 
[35]. 

II. CIRCADIAN ARGUMENT ESTIMATION 

The circadian data is approximately a periodic signal. Its 
waveform varies with the species, individuals in the species, 
types of physiological measurement, and environment con­
dition. We assume the signal may be represented by a finite 
Fourier series, and the circadian argument is represented by 
the argument of the fundamental harmonic. As a reliable 
model, whether mechanistic or phenomenological, is almost 
never available for circadian rhythm, estimation of the circa­
dian phase based on direct extraction of the harmonics from 
measurements is a reasonable and robust approach. Assume 
the following form of the circadian signal y: 

N 
y(t) = L aksin(kw*t + q>d +d + w(t) 

k=1 
where d is a constant bias, w is a zero-mean white noise. 
Define the arguments of the harmonics as 

We will work with 81 (t) directly in terms of estimation and 
control since it is difficult to reliably estimate time varying w 
and q>1(t) (e.g., under varying light input) separately. There 
are several algorithms for adaptive frequency estimation [36] 
with relative performance trade-oft's in terms of the rate of 
convergence, domain of convergence, and robustness with 
respect to noise and distortion, etc. We will focus on the 
ANF approach in this paper because of its stability property 
and superior convergence property under good initial guess 

of the period (roughly 24 hours). The original ANF proposed 
in [32] can only track a single sinusoid with zero mean. 
To address more general waveforms, we modify the ANF 
by adding a constant bias and higher order harmonics. We 
will present below local stability and robustness analysis 
of the ANF with second order harmonics. Similar stability 
and robustness results may be obtained for higher order 
harmonics. The proposed second order ANF is given by: 

with 

A(w) 

B(w) 

f(y, w,x) 

y 

A(w)x+B(w)y, 
Ywf(y, w,x). 

1 ° ° (t -2Sw ° -Sw 
° ° 1 

-8Sw -4w2 -4Sw 
-� ° _ SYd 

w 
[0, w2, 0, (2w f, Ydf, 

2 2SX2 2SX4 -XIW (y- xs------) 

2SX2 2SX4 
Xs+--+--w 2w 

w 2w 

w 

(2) 
(3) 

o ) 
-w2 

° , 
-4w2 

-Yd 

where x E IRS, w and Xs are the estimated frequency of the 
fundamental harmonic and the constant bias, respectively; y 
is the circadian data; the filtered circadian data y is the output 
of ANF; Yw and Yd are the adaptation rate, and S is a tunable 
parameter of the filter. Yw, Yd and S are all positive. 

Theorem 1: For the system defined by (2) and (3) with 
input y(t) =L�=laksin(kw*t+q>k)+d, the parameter adap­
tation (3) has a stable equilibrium at 

w = w*, (4) 

and the steady state response of (2) is 
al cos ( w*t + q>J) al w* sin ( w*t + q>J) 

XI = -
2S ' X2 = 

2S 
, (5) 

__ a2cos(2W*t+ f/>2) _ a2w*sin(2w*t+ f/>2) -d X3 - 2S ' X4 -
S ' Xs - . 

(6) 

Proof In order to use the integral manifold of slow 
adaptation [37] to show the local stability of (2)-(3) with 
periodic input y, the adapted constant bias Xs is considered 
as a state variable. With a frozen parameter w, the dynamics 
of (2) is LTI system. Defining 

H(WI,ill2) = (iWt1-A(ill2))-IB(ill2), (7) 

we can verify that the steady state response of the LTI system 
(2) is 

2 
XO(t,W,w*) = L[ak9i(H(kw*,w))sin(kw*t+q>k) 

k=1 
+ak�(H(kw*, w)) cos(kw*t + q>k)] + [0,0,0, o,df· 
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If the state vector x is deviated from xo, we introduce the 
deviation of x from xo as a new state variable 

and the ANF can be rewritten as 
'" _ a xo (t, w) ° _ . ° _ x=A(w)x- aw Ywf(y,w,x +x),w=Ywf(Y,w,x +x) 

(8) 
The existence of the integral manifold for (8) can be shown 
by using Theorem 3.1 in [37], and the three assumptions of 
the theorem are all satisfied: 

1) A (w) is exponentially stable. 
o( ) dXO(1 w w') 2) x t, W, w* and aw' are bounded and the latter 

is Lipschitz in w. 
3) f(y, w,xo + x) is continuous and Lipschitz in w and y. 

Assuming the deviation x is small, the update law can be 
approximated by 

W = Ywf(y(t),w,xo(t,W,w*)). (9) 

For N = 2, it can be verified that the w = w* is an equilibrium 
of (9). Defining OW as the deviation of w from w*, we 
linearize (9) at w = w*: 

ow = a(t)ow. (10) 

h ( )  (df j!LdXO(/,W,W*))1 B ( )  w ere a t = Yw dw + dXO dW w=w*· ecause y t 
and xO(t,w,w*) are both periodic with period T = ��, a(t) 
is also periodic. It can be verified that j.I+T a2 

I a(s)ds = -YwT W*
;2 < 0 

The solution of (10) is ow(t) = ow(to)eJ;� a(s)ds. As t --+ 00, 

11 ( l�J (a*)2 ) 
lim a(s)ds = lim - L. YwT ---72 + 0 = -00. 

l--t= 10 l--t= n=l w*." 

where 0 = �/-Tl� J a(s)ds is bounded. So ow(t) --+ 0 as 
t --+ 00, and the parameter W converges to w*. The steady 
state response xO(t,w*,w*) can be verified to be (5) - (6). 

• 

Remark 1: Using the same procedure, it can be shown 
that for ANF with third order harmonics and input y(t) = 
L�=l aksin(kw*t + (Mt)) + d, (4) - (6) and the local stability 
results still hold. 

Remark 2: According to (5), we proposed the circadian 
argument estimate as 

e = -tan-l (2) WXl (11) 

Circadian data may have higher order harmonics, so we 
further analyze the local stability of the proposed ANF under 
higher order harmonics: 

Theorem 2: For the system defined by (2) and (3) with 
input y(t) = L�=l aksin(kw*t + cf>k) +d, if there exists w; such 

Fig. I. gk(wa),k E {I .. lD} for' = 0.3, w* = �(rad/h) and Yd = 0.001. 

that the following are satisfied: 

where 

N 
L.a�gk(w�) =0, k=l 

a L�=l a�gk( wa) 
I _ ,  < 0 

aWa wa-wa ' 

gk(wa ) =-R1k l--R2k--R4k- Rsk 
t:, ( 21; I; ) 

wa wa 

-hk (-21; hk - i...-/4k -ISk) ; wa wa 

(12) 

(13) 

Rmk and Imk are the real part and imaginary part of the mth 
element of H(kw*, wa) defined by (7), there exists a Ywa such 
that when 0 < Yw < Ywa, (2)-(3) is locally stable at 

w = w;, 
N 

x(t) = L.[ak9\(H(kw*,w�))sin(kw*t+cf>k) k=l 
+ak�(H(kw*, w�)) cos(kw*t + cf>dl + [0,0,0, o,df· 
Proof This is an implementation of Theorem 4.1 in 

[37]. Note that the parameter update law (9) is approximated 
using averaging method: 

1 j.I+T N 
wa = - Ywf(y(t), wa,xo(t, wa, w*)) = Yww; L. a�gk( wa). 

T I k=l 
• 

Remark 3: The robustness of ANF against the higher or-
ders of harmonics in the input can be observed by visualizing 
the functions g k ( wa), k E {I, . . .  10} using the parameters 
I; = 0.3, w* = �J (rad/h) and Yd = 0.001 (Figure 1). From 
the plot, it is clear that for the ANF with second order 
harmonics, g l ( wa) and g2 ( wa) dominate the neighborhood 
of w* = fi � 0.2617. The root of (12) is contributed mostly 
by g l (wa). If the amplitudes of the higher order harmonics 
are small comparing with the amplitude of the fundamental 
harmonic, (12) has a root that satisfies (13). 
The results of two simulations are plotted in Figure 2 and 3. 
In Figure 2, the input has ten harmonics, and the amplitude 
of each harmonics is 2. The waveform is severely distorted 
from sinusoid, but the modified ANF is still locally stable 
because (12) has a root and (13) is satisfied. In Figure 3, the 
sixth harmonic's amplitude is way too large, and (12) loses 
its root near w*, so the ANF is not locally stable near the 
fundamental harmonic. 
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to w'. Upper right: L�� t (aZ)2 gk (wa) = 0 has no real roots near w'. Lower 
left: comparison of the input y and the output of the ANF y. Lower right: 
estimated argument (wrapped to 2Jr). 

In addition to the higher order harmonics, we empirically 
observed the stability of the ANF under noisy input 

N 
y(t) = L aksin(km*t+(/>k)+d+w(t). 

k=l 

where w(t) is white noise with zero mean. Figure 4 shows 
the simulation results of the impact of white noise with 
large variance comparing with the amplitude of fundamental 
harmonic. We are currently working on rigorous analysis of 
the robustness of ANF against noise. In [33], we demon­
strated the effectiveness of ANF on Drosophila and rat 
locomotor activity data. Using batch method as baseline, 
we compared the performance of ANF and gliding cosinor. 
For much less computation cost, ANF has similar estimation 
error as gliding cosinor, and much faster convergence after 
initialization. 

11f11j 
time (h) time (h) 

Fig. 4. ak = [2 222222222] for k E {l.. .1O}. d = 5. Var(w) = 100. 
The ANF is still tracking the fundamental harmonic. 

ANF Initialization and Parameter Tuning 
ANF has very good convergence property, and the state 

variables are easy to initialize. For circadian estimation, 
where the period is approximately 24 hours, m can be initial­
ized to be �� (rad/hr). The state variables Xl,X2,X3,X4 can all 
be set to zero. The only parameter that needs initial guess 
is the constant bias Xs, which can be obtained from some 
sample data. For example, for human core body temperature, 
Xs can be initialized at 37. The adaptation rates rd and rw 
can be tuned using some sample data. The theory of integral 
manifold used for stability analysis is only valid for slow 
adaptation, so during the tuning process, the adaptation rates 
can be set to be very small in the beginning, and increased 
gradually until the performance are satisfied. S influences 
the performance of the fast dynamics. For S = 0.3, ignoring 
the much slower dynamics of parameters adaptation, the 

-I convergence rate is approximately e to.thr . 

III. CIRCADIAN CONTROL BASED ON ANF 
There are multiple attractive features of the proposed 

circadian argument estimator: it does not require the knowl­
edge of a highly complex nonlinear model; it can handle 
parameters' change and noisy signal, and has well defined 
tunable parameters for the trade-off between convergence 
rate and noise rejection. 

The ANF extracts the circadian argument from past mea­
surements, and it lacks predictive capability to the evolution 
of the circadian rhythm under different light inputs because 
there is no structure of the underlying mechanism linking 
light input to the measurements. However, if we combine the 
circadian system with the ANF as the plant, the model of the 
combination can be identified using the light input and ANF's 
argument estimation. The overall architecture of the closed 
loop system is shown in Figure 5. The major advantage of 
this method is that we do not need to know the underlying 
circadian dynamics model, which is complex and usually not 
available; all we need are the lighting that can stimulate the 
circadian rhythm, and continuously measured circadian data 
which can serve as a circadian marker. In this paper, the 
proposed method is evaluated using three existing circadian 
models: Kronauer' human circadian model [34], Leloup's 
lO-state Drosophila biochemical model and Leloup's 3-state 
Neurospora biochemical model [35]. 

,------------------I 
( . 
I 

Fig. 5. Architecture of preliminary control investigation. Three assumed 
models have been used: the 2-state empirical nonlinear oscillator model 
by Kronauer, the lO-state drosophila gene network model, and the 3-state 
neurospora gene network model. 
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A. Linear Parameter Varying Model Identification 
All three circadian models can be expressed in the follow­

ing form: 
t.=f(z,u) (14) 

where z is the vector of state variables, and u is the bounded 
control input related with lighting. In darkness, every model 
has a stable limit cycle with period r. 

Assume that we do not know the circadian dynamics 
model(14). We can only control the input u by tuning the 
light and continuously measure some physiological output 
y = h(z) as the circadian data. For the three circadian models, 
we make the following assumptions about the measurable 
physiological output: 

• For the simplified Kronauer's human model, y is the 
core body temperature (CBT) which can be approxi­
mated as y = 37 + [1, O]z. 
For the Drosophila model, y = [0,1,1,1,0,0,0,0,1, l]z 
is the total concentration of protein PER. 

• For the Neurospora model, y = [0, 1, l]z is the concen-
tration of the protein FRQ. 

y is the input of the ANF which estimates both e and e. 
If e(t) is used for modeling, the identified system would 
be unstable since the argu�ent increases in magnitude with 
time. We therefore choose e as the model output (which may 
be directly obtained from (11) without numerical differenti­
ation). In this case the identified system is stable. 

We identify the system using a batch of impulse response 
curves. 10-min light pulses are aI?plied at phase argument 
epulse, and the impulse response e is fit to a second order 
discrete time LTI model suing subspace identification: 

Xk+l = A(epulse)Xk+B(epulse)Uk 

ek = C( epulse )Xk + efree running 

(15) 

(16) 

where efree running = 2: . For different epulsel we obtain a 
batch of LTI models. In observer canonical form, all these 
LTI models have the same C(epulse) and similar A(epulse), 
but B( epulse) matrices are varying with epulse' Combine the 
LTI models into a LPV model with the following form 

Xk+l =AXk+B(e)Uk 

ek = CXk + efree running 

(17) 

(18) 

where A is the average of A(epulse), C = [0,1] and B(e) is 
a function of the estimated circadian argument e during the 
light pulse. 

To validate the LPV model, we apply multiple light pulses 
with random timing and random duration to the Kronauer's 
model, the Drosophila model and the Neurospora model. 
The results show that LPV model identification has good 
predictive capability on e (Figure 6). 

B. Light Based Circadian Phase Control 
Once the LPV model is obtained, we can use the model to 

design light input to achieve the desired objective. This prob­
lem has typically been posed as a phase shift control problem 

(a) Human model (b) Drosophila (c) Neurospora 

Fig. 6. The LPV model identified by using the output of the Kronauer 
model and the LeLoup models cascaded with the ANF 

and the phase response curve has commonly been used as 
the basis for circadian rhythm control [3], [4], [6], [17], [34], 
[38]. Since PRC is a steady state characterization, there is 
no transient regulation. One can achieve the required phase 
shift asymptotically, but there is no guarantee on how fast 
that could be attained. Furthermore, there is no disturbance 
rejection during the transient. Our preliminary approach is to 
use a gain scheduling controller to let e (t) track a reference 
argument er(t), which is increasing with the rate er = 2: . 
We design an output feedback controller for each LTI model 
in the LPV model description. These LTI controllers are then 
combined together through interpolation using the estimated 
argument e(t) (essentially a gain scheduling controller). 
The control input u is bounded. The closed loop circadian 
argument regulation results for the three cases are plotted in 
Figure 7. With some controller tuning, the system exhibits 
asymptotic stability when the desired circadian argument er 
is shifted to simulate the situation of the jet lag. 

Fig. 7. Preliminary result on LPV-based lighting control with the Kronauer 
model (left), the Leloup Drosophila model (middle), and the Leloup 
Neurospora model (right) as the circadian rhythm truth model. The reference 
circadian argument fJr is commanded with 7r phase shift to simulate the jet 
lag recovery. Using the LPV approximation and ANF circadian argument 
estimate, the gain scheduling controller reduces the argument tracking error 
to zero. 

IV. CONCLUSION AND FUTURE WORK 

This paper presents an adaptive circadian argument estima­
tor which extracts the argument of the fundamental harmonic 
in the circadian data. The estimator is based on adaptive 
notch filter. The local stability is analyzed. Taking advantage 
of the proposed circadian estimator, a modeling and control 
method based on LPV is presented. The major advantage of 
this method is that the biological system can be considered 
as a black box, and no model of the circadian dynamics 
is required. The controlled plant is the combination of the 
biological system and the estimator. The input of the plant 
is light, and the output is circadian argument estimation. 
The LPV model of the plant is identified using a batch 
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method, and gain scheduling is used to regulate the estimated 
circadian argument to the desired circadian argument. The 
proposed modeling and control method is applied to the 
human circadian model, the Drosophila circadian model and 
the Neurospora circadian model. In all the three cases, the 
circadian arguments can be stabilized. In the future, we will 
work on the Drosophila experiment demonstration of the 
proposed circadian estimation/control strategy, and develop 
a recursive identification method of the LPV model. 
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