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Abstract— Circadian rhythm is the biological process critical
to the well being of all living organisms. The circadian rhythms
oscillate with a period of approximately 24 hours due to the
light-darkness pattern of the solar day. Circadian disruption,
as experienced by night shift workers, travelers, submariners
or miners, can lead to lower productivity, sleep disorder, and
other more serious health problems. Using artificial light to
regulate the circadian rhythm has long been proposed. The
common approach is to use the phase response curve — the
amount of steady state phase shift due to light pulses applied
at specified times. In this paper, we consider a commonly
used nonlinear second order oscillator model for the circadian
rhythm response with light intensity as the input. Our first goal
is to establish a performance bound by solving the minimum
time control problem for a specified phase shift with contrained
light intensity. The result is a much faster phase shift as
compared to natural light-darkness pattern. We further extend
the optimal control to vigilance, which is regulated in part by
circadian rhythm, to maximize a vigilance lower bound for
specified time and duration. Based on the two-process model of
vigilance, the problem is formulated as an optimal control of
switched system, and the optimization strategy is demonstrated
via a simulation example.

I. INTRODUCTION

Due to the 24-hour lighting-dark cycle on earth, circadian
rhythm regulates the biochemical processes of almost all
living organisms, including plants, insects, and mammals.
Maintaining the regular cyclicity of this internal clock, called
entrainment, is important to the well being of all organisms.
For humans, circadian disruption can lead to lower pro-
ductivity, digestive problems, decreased sleep efficiency and
other health problems [1], [2]. The 24-hour pattern of light
and dark is the strongest synchronizer of circadian rhythms
to the solar day, and the human circadian system is most
sensitive to blue light. Therefore, light stimuli may be used
as treatment for circadian disruption. Commercial products
such as Philips goLITE use self-administered blue LEDs to
try to achieve better performance and better mood [3]. There
have also been control-theoretic approaches to determine the
timing and dose of the light stimulus to achieve the desired
circadian state. A common approach is to use the Phase
Response Curve (PRC), which relates the steady state phase
shift of the circadian rhythm as a function of the time during
a day when a light pulse with given amplitude and duration
is applied. Light-dark pattern for jet lag treatment has been
proposed [4] based on the PRC generated from an empirical
nonlinear oscillator model for human circadian rhythm (the

Kronauer model) [5]. A closed loop phase shift control
based on PRC generated from Drosophila melanogaster gene
network model is developed in [6]. The drawback of the
PRC based method is that only the timing of the individual
pulses can be adjusted because PRC does not capture how
the duration and the intensity of the pulses influence the
circadian rhythm.

A variety of biochemical models have been proposed
to describe the circadian rhythm. Based on the study of
Drosophila melanogaster, a 10-state biochemical model has
been proposed in [7], [8]. More complex mammal biochem-
ical model has been proposed in [9], but such complex
model has not been used in control analysis. The output
of these complex biochemical models mostly consists of
concentration of chemicals in cells, which is difficult to
measure continuously for control applications. An alternative
approach of modeling the circadian rhythm is phenomeno-
logical models [5], [10]. The Kronauer model [5] uses core
body temperature (CBT) as the circadian rhythm marker, and
captures the essential behavior of the human CBT oscillation
and the effect of light on the phase and amplitude of this
oscillation. As demonstrated in [11], the model may be
considered as the asymptotic case of the biochemical model
in an averaged sense. One advantage of the model is that the
output of the model, CBT, may be estimated continuously.
This model has been used for model-based estimation and
control [12].

The feedback entrainment control strategy based on Kro-
nauer’s model has been proposed in our previous work
[13]. In simulation, jet lag recovery can be shortened using
reference tracking control. In this paper, we establish the
performance bound by formulating the entrainment process
as a minimum time control problem. A novel shooting
method is developed to solve the two-point boundary value
problem (TPBVP) from the Pontryagon Minimum Princi-
ple. We compare the entrainment time for three different
strategies: natural light-dark pattern, our previous feedback
strategy in [13], and the minimum time control in this paper.

We also show our initial results in extending lighting con-
trol beyond circadian rhythm entrainment towards vigilance
enhancement. Experimental data in the literature have indi-
cated that circadian rhythm also contributes to the vigilance
level. The Kronauer model is the basic components of the
two-process model for human vigilance [14], [15]. By using
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the proposed shooting method, we extend the optimal control
to maximize the lower bound of vigilance level for specified
time and duration (e.g., for examination, military mission,
etc.) by controlling light intensity and sleep timing.

II. MINIMUM TIME ENTRAINMENT OPTIMAL CONTROL

A. Problem Formulation

Models of varying complexity have been proposed for
circadian rhythm oscillation. We use the Kronauer’s model
[5] which is a phenomenological model consisting of a
second order nonlinear oscillator with a 24.2-hour period,
called the P-process, driven by a photoreceptor model, called
the L-process. The L-process converts the light stimuli to
a drive u, analogous to the bleaching of photopigments
in retinal photoreceptor by photons. The photopigments
remain unusable for further photon response until they are
regenerated. A simple population model is used in [5]:

ṅ = 60[α(n−1)−βn],

u = Gα(1−n)
(1)

where α = α0(
I
I0
)q,α0 = 0.16min−1,β = 0.013min−1,G =

19.9,q = 0.6, I0 = 9500 lux.
For a fixed intensity light input I, n→ α/(α +β ) with rate
60(α + β ). Comparing with the circadian dynamics which
has a 24.2-hour period, the L process is much faster. In this
paper, we assume that the L-process is sufficiently fast so
that we can just focus on the dynamics of the P-process.
As n converges to a steady state, the corresponding u→
Gαβ/(α +β ), which is a monotonically increasing function
in α . We fix the maximum light intensity that can be used
in the light treatment Imax = 9500 lux. The corresponding
maximum drive is umax = 0.2392. Light intensity cannot be
negative, so the input bound is 0 ≤ u ≤ umax. The drive
u feeds into the P-process which is a nonlinear oscillator
representing the circadian pacemaker. The model for the P-
process is given by [5] (the unit of time is hour):

ż = f0(z)+ f1(z)u. (2)

where

z =
[

x1 x2
]T

, f0(z) = Az+Bg(BT z)

A =
π

12

[
µ/3 1

−(24/(.99729τx))
2 0

]
, BT =

[
1 0

]

g(x) =
π

12
µ

(
4
3

x3
1−

256
105

x7
1

)
f1(z) =

π

12
[

1 qx2 + kx1
]T

(1−0.4x1)(1−0.4x2).

The state x1 corresponds to the CBT variation which is used
as the phase marker of the circadian system.

For rapid entrainment, we aim to establish a lower bound
on how fast light control can shift the circadian cycle by a
specified phase. A motivating example is a traveler traveling
through multiple time zones. Upon arrival at the destination,
the traveler’s circadian rhythm will be different from that
of the local population who are entrained to the local time.

Our goal is to find out the light pattern which can help the
traveler’s circadian rhythm catch up with the local circadian
rhythm rapidly. We pose this problem as a minimum time
control problem. Denote the traveler’s circadian rhythm z as
in (2), and the local circadian rhythm zr as the reference.
The dynamics of z is given by (2) and zr is given by:

żr = f0(zr)+ f1(zr)unatural (3)

where unatural is the local light cycle modeled as a 12-hour
light (9500 lux) and 12-hour dark pattern:

unatural =
umax

2
(1+ sgn(sin(

π

12
(t + t0)))).

If the local light profile is known, it may be used instead.
The time shift t0 is determined by the initial temporal phase
difference between z and zr. The goal is to find u(t), 0 ≤
u(t)≤ umax to minimize the time for z to catch up with zr:

J = t f =
∫ t f

0
1dt. (4)

where t f is the final time to be determined as part of the
solution. The boundary conditions are:

Initialcondition : z(0) = z0, zr(0) = zr0, (5)
Terminalcondition : zr(t f ) = z(t f ). (6)

where z(0) and zr(0) are specified.

B. Solution of the Minimum Time Control Problem

The necessary condition for the minimum time control
problem can be readily stated using the Pontryagin Minimum
Principle [16]. The Hamiltonian of the system is

H = 1+ pT ż = 1+ pT ( f0(z)+ f1(z)u). (7)

where p is the Lagrange multiplier for the constraint of the
system dynamics, called co-state and satisfies

ṗ =−∂H
∂ z

=−∂ ( f0(z)+ f1(z)u)T

∂ z︸ ︷︷ ︸
f2(z,u)

p. (8)

The optimal control u∗ minimizes H and is given by the
following “bang-off” control (assuming no singular arcs):

u∗ =
umax

2
(1− sgn(pT f1(z)). (9)

Since t f is free, the time varying (through zr(t f )) terminal
constraint leads to the transversality condition:

1+ pT (t f )(ż(t f )− żr(t f )) = 0. (10)

Substituting the optimal control into the state and co-state
equations, we obtain the following two-point boundary value
problem (TPBVP):

ż = f0(z)+ f1(z)
umax

2
(1− sgn(pT f1(z)), (11)

ṗ = f2(z,
umax

2
(1− sgn(pT f1(z)))p. (12)

where z(0) = z0 is specified, the terminal state is given
by z(t f ) = zr(t f ) with zr satisfies (3), and t f satisfies the
transversality condition (10).
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There are multiple techniques to solve the TPBVP nu-
merically. One may regard the problem as having n+ 1 =
3 unknowns, (p(0), t f ), and three algebraic equations, the
terminal state constraint (6) and transversality condition (10).
Standard nonlinear programming falls into local minima
depending on the initial guess, however it is very hard to
exhaust all the initial guesses in R3 to find the smallest
local minimum. Standard boundary value problem solver
runs into numerical difficulty due to the unstable co-state
equation propagation. Another approach is to convert the free
terminal time problem to the fixed terminal time through the
normalization τ = t/t f . This results in an order 2n+ 1 = 5
TPBVP. Direct numerical solution technique such as multiple
shooting method [17] also requires a reasonably good initial
guess of the state trajectory, which is difficult to obtain in
general. Other approaches such as direct update of the switch
times (similar to [18]) and continuation method (starting
from the solution for a linear oscillator and then propagating
along the parameter to add in the nonlinear terms) have also
been attempted but with only limited success.

We propose an alternative approach in this paper, by first
making the following observation about the TPBVP (without
the transversality condition):

Proposition 1: If (z(t), p(t)) is a solution of (11)-(12),
then so is (z(t),α p(t)) for any positive constant α .
Proof: Let (z(t), p(t)) be a solution of (11)-(12). For any
α > 0,

umax

2
(1− sgn(pT f1(z)) =

umax

2
(1− sgn(α pT f1(z)).

Hence z also satisfies

ż = f0(z)+ f1(z)
umax

2
(1− sgn(α pT f1(z)), z(0) = z0.

Now scale both sides of (12) by α , we get

α ṗ = f2(z,
umax

2
(1− sgn(α pT f1(z)))α p.

which is the same as (12) with p replaced by α p. Hence
(11)–(12) are satisfied by (z(t),α p(t)). �

Based on the above Proposition, we note that if the
initial co-state p(0) is scaled by a positive constant α , the
trajectory of z(t) will not change, and the co-state trajectory
p(t) will also be scaled by α . Since p(0) = [p1(0), p2(0)]T

is a 2×1 vector, we can parameterize it in the polar co-
ordinate as p(0) = α[cos(φ),sin(φ)]T , and only the angle
φ = tan−1( p2(0)

p1(0)
) affects the trajectory of z(t).

This observation leads to the following strategy for solving
the TPBVP:
1. Search φ ∈ [0,2π) in p(0) = [cos(φ),sin(φ)]T to satisfy
the state terminal constraint (6). The numerical threshold
‖z(t)− zr(t)‖< ε will be used as the termination condition.
2. Let φ ∗ be the angle from step 1 that corresponds to the
smallest t f and satisfies p(t f )

T (ż(t f )− żr(t f )) 6= 0.
3. Choose α = −(p(t f )

T (ż(t f )− żr(t f )))
−1 to satisfy the

transversality condition.

C. Minimum Time Circadian Rhythm Entrainment

In this section, we consider the entrainment for a specified
phase shift. The initial condition of the controlled oscillator
is set to z(0) = [1.06,0]T which is on the limit cycle of
the circadian rhythm oscillator entrained to natural light
pattern. The initial condition of the reference oscillator
zr(0) is also on the limit cycle, but it has a temporal
phase difference from z(0). The convergence criterion ε is
arbitrarily chosen as 0.1. The upper bound for the minimum
time is set at t fmax = 200hr (8 1

3 days) since we know that
natural entrainment for 12 hour phase shift is about 7 days.
The plots of mint∈[0,t fmax ]

‖z(t)− zr(t)‖ and the corresponding
time tφ = argmint∈[0,t fmax ]

‖z(t)− zr(t)‖ versus the co-state
angle φ for a 6-hour phase shift are shown in Figure 1.
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Fig. 1. Terminal state constraint and convergence time vs. co-state angle
for 6 hour phase shifts.

For the entrainment to a specified phase shift, we compare
the minimum time solution with two other methods:

1) The natural 12-hr light-dark cycle entrainment,
2) The feedback algorithm that we have previously pre-

sented [13]: u = umax
2 (1+ sgn((zr− z)T f1(z))).

From the comparison plot shown in Figure 2, we make the
following observations:
• The minimum time solution is significantly better than

the natural entrainment. For the 12-hour phase shift,
natural entrainment takes about 7 days and optimal
entrainment takes about 2 1

2 days. For the worst case
16-hour phase delay (or 8-hour phase advance), the
difference is the largest: 10 days vs. 3 days.

• The entrainment time is larger for phase advance (going
in the same direction as earth rotation), than for phase
delay (in the opposite direction as earth rotation). This
is due to the fact that the light input is more efficient
in delaying the phase of human circadian rhythm than
advancing the phase, which is captured in the Kronauer
model.

• The feedback algorithm performs at similar level as the
optimal control for phase delay, but worse for phase
advance (but still better than the natural light-dark cycle
entrainment).
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The optimal light input, the corresponding state trajectories,
and the local light pattern for different specified phase delays
are shown in Figure 3. Note that light input may be required
at inconvenient hours such as early in the morning and light
(blue wavelength) may need to be blocked during the local
day time.

5 10 15 20
0

50

100

150

200

250

Phase delay (hour)

T
im

e 
co

st
 (

ho
ur

)

Comparison of entrainment time cost (terminate at |∆ X| = 0.1)

 

 
Natural light pattern
minimum time optimal control
reference tracking

Fig. 2. Comparison of the time cost as a function of the specified phase
shift under minimum time control, feedback control and natural light pattern.
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Fig. 3. Minimum time control and state trajectories for 6 hour, 12 hour,
and 18 hour phase shifts, compared with the natural light pattern.

III. EXTENDING TO HUMAN VIGILANCE CONTROL

A. Problem formulation

Quantified human alertness may be measured by sub-
jective alertness rating, psychomotor vigilance test (PVT),
cognitive throughput test, Electroencephalography (EEG)

and Electrooculography (EOG). Experimental data indicate
that human vigilance is related to circadian rhythm and
sleep homeostasis [14] [15] [19]. Among the seven bio-
mathematical human vigilance models reviewed in [20],
the model proposed by Achermann [14] is the only one
that integrates circadian rhythm with vigilance and provides
the thresholds for spontaneous sleeping and waking. We
therefore choose the Achermann model as the basis for our
vigilance optimal control study. The Achermann vigilance
model combines the sleep homeostasis, sleep inertia and
circadian rhythm. The circadian rhythm dynamics is based
on the model proposed by Kronauer in 1990 [21]. This model
has since been revised and refined in 1998 and 1999, so we
replace the circadian dynamics in the Achermann model with
the refined circadian dynamics in (2).

The modified Achermann vigilance model is of the fol-
lowing form:

ż = f0(z)+ f1(z)(1−β )u, (13a)

Ḣ =−βH/τd− (1−β )(H−1)/τr, (13b)

Ẇ =−1−β

τW
W, (13c)

B = H−Acx1 (13d)

A = (1−β )(1−B−W ) (13e)

where β (t) denotes the sleep state at time t: β = 1 if the
person is asleep and β = 0 otherwise, (13a) is the circadian
dynamics (same as (2)), H characterizes the sleep homeosta-
sis, W is the sleep inertia (modeling the low vigilance just
after waking up), B is sleepiness, and A is vigilance. Note
that H, A, B are all normalized between 0 and 1. In Kronauer
model, positive x1 corresponds to circadian day and negative
x1 is the circadian night. Sleepiness, B, is therefore simply
sleep homeostasis added with the circadian contribution. The
model parameters are given by

τd = 4.2Hr, τr = 18.2Hr, τW = .662Hr,Ac = 0.1333.

At the moment of waking, W is reset to 0.32. The sleep onset
threshold is denoted by Hm, meaning that sleep can occur if
B > Hm. The waking threshold is denoted by Lm, meaning
that spontaneous waking occurs when B< Lm. The thresholds
in the Achermann model are Hm = 0.67 and Lm = 0.17. We
treat the sleep state as a variable that can be controlled, based
on the state of sleepiness. If B ≥ Hm, then the person falls
asleep if allowed. If B ≤ Lm during sleep, then the person
awakes spontaneously. However, if B> Lm during sleep state,
the person may still be awaken (e.g., by an alarm clock).

Global economy and military preparedness require best
human performance during a mission. However, performance
may be compromised if the mission time coincides with the
endogenous nadir in vigilance. Examples include military
missions scheduled during circadian night, multi time-zone
travelers attending business meetings while suffering jet lag,
and night-owl teenagers preparing for morning exams. For a
mission scheduled during [tM, t f ], we assume [t0, tM] is the
preparation episode, with (t0, tM, t f ) all fixed. During the
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Fig. 4. Sleep cycle during mission preparation.

mission, the lighting is fixed to be umission and the person
is awake. The lighting u(t) may be controlled whenever the
person is awake during the preparation episode.

We pose the mission preparation problem as a max-min
problem: maximizing the minimum vigilance during the
mission by control the lighting u(t) and sleep switching times
Tsl during the preparation episode. As shown in Figure 4, Tsl
consists an increasing sequence of time instants with an even
number of elements. The odd element indicates the onset of
sleep (β switching from 0 to 1), and even element indicates
the termination of sleep (β switching from 1 to 0). We pose
the max-min vigilance optimal control problem as follows:

Jopt , max
u(t),Tsl, t∈[t0,tM ]

min
t∈[tM ,t f ]

A(t). (14)

In addition to the physiological dynamics (13a, 13b and 13c),
the boundary conditions and constraints include (assume K
sleeping episodes):

z(t0) = z0 (15a)

H(t0) = H0, W (t0) =W0 (15b)

0≤ u(t)≤ umax (15c)

B(Tsl2i−1)≥ Hm, i = 1, . . . ,K (15d)

B(Tsl2i)≥ Lm, i = 1, . . . ,K (15e)

t0 ≤ Tsl1 ≤ ·· · ≤ Tsl2K ≤ tM. (15f)

The initial state may be determined by the previous sleep-
awake pattern and vigilance measurements. Note that when
a person is schedule to sleep, the sleepiness measure B must
be sufficiently high (greater than Hm), otherwise the person
may not be able to fall asleep. The scheduled waking up
should be earlier than the spontaneous waking (otherwise
the person would have already be awake), so the sleepiness
measure B at waking time must be greater than Lm.

B. Optimal control of switching system

We decompose the optimal control problem as two sub-
problems:
• Subproblem 1: For a fixed Tsl , find the optimal light in-

put u(t), t ∈ [t0, tM] to maximize mint∈[tM ,t f ] A(t) subject
to (15a)–(15c):

J1(Tsl), max
u(t), t ∈ [t0, tM ]

min
t∈[tM ,t f ]

A(t). (16)

• Subproblem 2: Maximize J1(Tsl) by selecting the sleep
timing subject to the constraint (15d)–(15f):

Jopt = max
Tsl

J1(Tsl). (17)

Solution of Subproblem 1: During the mission, the person
is awake; therefore, the sleep homeostasis converges to 1
and the sleep inertia decays to 0, both exponentially. The
alertness during the mission is

A(t) = e−
t−tM

τr (1−H(tM))−e−
t−tM

τw W (tM)+[Ac,0]z(t). (18)

In Subproblem 1, Tsl, H0 and W0 are given, so H(tM) and
W (tM) are determined by (13b) and (13c). The light input
during the mission is constant, u = umission. For tM ≤ t ≤ t f ,
the state variables of the circadian rhythm z(t) is determined
by z(tM). The objective function mint∈[tM ,t f ] A(t) is a function
of z(tM) only, and may be computed from (18); we define
it as h(z(tM)). The optimization problem is then to find
{u(t), t0 ≤ t ≤ tM} to minimize −h(z(tM)) subject to the
initial condition and input constraint. The Hamiltonian of
the system is given by

H =−h(z(tM))+ pT ż =−h(z(tM))+ pT ( f0(z)+ f1(z)u).
(19)

where p is the co-state. The optimal control and co-state
equations are exactly the same as before, given by (8) and
(9), respectively. The terminal condition for the co-state is
given by

p(tM) =−h′(z(tM)). (20)

Together with the initial state condition, we now have a fixed
terminal time TPBVP. The equations of co-states are homo-
geneous, and the optimal control is ”bang-off”, so Proposi-
tion 1 again holds. Parameterize p(t0) as α[cos(φ),sin(φ)]T ,
then α does not change the state trajectory, z(t), and only
scale the co-state p(t). To find (α,φ) to satisfy the terminal
condition (20), we first search over the interval φ ∈ [0,2π)
so that p(tM) and h′(z(tM)) are pointing in the opposite
direction, i.e.,

p(tM)

[
0 1
−1 0

]
h′(z(tM)) = 0, pT (tM)h′(z(tM))< 0. (21)

Once φ is found, α is then chosen to scale p(tM) to the
same magnitude as h′(z(tM)). Note that h′(z(tM)) will need
to be computed numerically. Finally, the optimal light input
for given Tsl is given by (9).

Solution of Subproblem 2: Subproblem 2 involves finding
the sleep times Tsl subject to the constraints (15d, 15e and
15f) to maximize J1(Tsl). We use the gradient descent to ad-
just the sleep times, with the gradient computed numerically.
The algorithm is described below:
• Initial guess of Tsl: We choose a sufficiently large

number of short sleep episodes to guarantee sufficiently
high homeostasis so that (15d)–(15e) are satisfied.

• Update the Tsl by following the descent direction of
the numerical gradient. Project the gradient to ensure
the sleepiness constraint is not violated. The numerical
gradient is needed for ∇J1 and ∇B(Tsli), i = 1 . . .2K
with respect to Tsl.

As a simulation example, let tM = 60 hr, t f = 70 hr, and
there are two sleep episodes during the preparation episode
(K = 2), the optimization result is shown in Figure 5. As
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Fig. 5. Sleep schedule optimization with 100 iterations. Left: the vigilance
lower bound in mission vs. optimization iteration. Middle: the sleep schedule
vs. optimization iteration. Right: Sleepiness constraints during optimization.

the iteration number increases, the duration of the fist sleep
episode is compressed to almost zero and the beginning of
the second sleep episode is postponed. The sleep deficit
is so high that the second sleep episode is extended and
consolidated. The constraint (15d) is not violated; the person
is sleepy enough at the sleep onset and wakes up before the
sleepiness drops below the spontaneous waking up threshold.
However the optimized sleep schedule is uncomfortable
because the person needs to stay awake for an extended
period. In the future, we plan to take into account factors such
as comfort and sleep efficiency, as well as more complex
mission schedules such as rotating shift work.

IV. CONCLUSIONS

This paper considers the optimal control for rapid circa-
dian rhythm entrainment and vigilance improvement. From
the analysis of the nonlinear circadian rhythm model, the
necessary conditions for the minimum time tracking problem
are obtained. A modified shooting method is presented to
solve the nonlinear TPBVP. We demonstrate this method
on the minimum time circadian phase shift problem, and
compare it with our previous feedback method and the
natural light-dark pattern. Utilizing a two-process human
vigilance model, we also extended the modified shooting
method to the optimal control of lighting and sleep timing
for improved vigilance during mission.
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