51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

Learning Potential Functions by Demonstration for Path Planning

Andrew Winn and Xuemei Gao and Sandipan Mishra and A. Agung Julius

Abstract— Potential functions can be used to design efficient
path planning schemes. However, it is often difficult to design
appropriate potential functions to mimic desired behavior of
the agent. Instead of using a pre-designed potential function for
path planning, this paper presents an algorithm that learns the
underlying potential function from a given sample trajectory
generated by a ‘“expert” (say, a human). This underlying
potential function implicitly incorporates obstacle avoidance
information that may be intuitive or experience-based. The
potential function to be learned is parametrized and the
parameter weights are obtained through minimization of a well-
designed cost function via a gradient descent search algorithm.
Once learned, this potential function can be used for path
planning in case of alternative (and more complex) scenarios,
such as those with multiple obstacles. The paper presents the
theoretical foundation and numerical validation of the proposed
algorithm.

I. INTRODUCTION

Path planning plays a significant role in robotics. The path
that is being planned is essentially a sequence of actions
to determine how an agent or a manipulator transforms
from one configuration to another. Currently existing path
planning methods can be divided into sampling-based path
planning and combinatorial path planning (as in [1]) based
on whether the continuous configuration space is discretized.
Combinatorial path planning is limited due to spatial degree
restrictions. Sampling-based path planning of a variety of
types have been developed, like rapidly exploring random
trees (RRT) [2], path-length localized RRT-like searches [3]
and probabilistic roadmaps (PRMs) [4]. Potential function is
special in path planning since it can be used in both ways.
For example, randomized potential field [5] was one of the
first sampling-based planning algorithms, while navigation
functions is built upon potential functions in a continuous
configuration [6]. However, the key step of construction of
potential functions [7] has been typically heuristic in nature.

To enable an agent to adapt to unforeseen circumstances,
machine learning algorithms, such as structured machine
learning algorithms [8] and more recently, deep learning al-
gorithms [9] have been developed upon sampling-based path
planning. These machine learning algorithms learn structured
hypotheses from data, which includes structured inputs and
outputs, as well as internal structure usually in the form of
one or more statistical inference relations. Apprenticeship
learning (also called learning from demonstration) [10] is

A. Winn and A. Julius are with the department of Electrical, Computer
and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
{winna, juliuva2}@rpi.edu

X. Gao and S. Misrha are with the department of Mechanical Aerospace
and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
{gaox4,mishrs2}@rpi.edu

978-1-4673-2066-5/12/$31.00 ©2012 IEEE

an example of this class of methods. Most approaches in
apprenticeship learning attempt to imitate the expert by
learning a direct mapping from inputs to outputs with either
an explicitly expressed supervised reward function, such
as [11] and [12], or an unknown reward function, like
apprenticeship learning via inverse reinforcement learning
[10], [13]. Since machine learning research involved struc-
tured representations from the beginning [8], changes beyond
structured environmental features may lead to a failure in the
application of learning results.

Most of the work in the field of design and analysis of
potential functions has focused on the benefits of different
types of potential functions, and require manual tuning of
functions to generate a desired behavior of the system. A
few automated tuning methods have also been explored,
such as adjustable navigation functions for unknown sphere
world [14]. However, a systematic learning-based approach
to design potential fields is generally lacking.

In this paper, we propose a learning method that de-
termines a suitable potential function from a given sam-
ple trajectory for a “simple” navigation task. The learned
potential function can then be employed to handle more
complex navigation task. This idea is inspired by a human’s
learning process, i.e., starting to learn from simple cases and
constructing complex environments using these structured
blocks.

The proposed method learns from a trajectory demon-
strated by an expert, such as a human. With a cost func-
tion, the proposed method takes a desired expert-generated
trajectory and iteratively adjust a parameterized space to
reshape the potential function to capture the essence of this
path planning, such as obstacle avoidance and destination
reaching. The benefit of learning potential functions is that it
provides us more flexibility to apply the learned result from
simple situations to do path planing in more complicated
situations, like multiple obstacles.

II. NOTATION
Traj. generated by nominal/perturbed PFs, resp.
Expert-generated (desired) trajectory
Lifted form of trajectories
Component (obstacle, goal, etc.) and total PFs, resp.
Perturbation potential function
Difference between perturbed and nominal traj.
Sample time
Cost functional
Linear mappings
Potential function parameters
Update direction in parameter space
Moore-Penrose Pseudoinverse of C'
Tikhonov regularization constants

SRPTeISS
o3 A=l

¥

h

RS
w3,
Qs

2 Qg
™

4654

Fig. 1. Learning Scenario: Path Planning from Point A to Point B with One
Obstacle In-between, and a Sample Trajectory is Provided by an Expert.

III. PROBLEM DESCRIPTION

Potential functions can be used to generate a path between
an initial point and a goal point for an agent in different ways
[15], [16]. For this paper, we will consider a method in which
the negative gradient of the potential function determines the
velocity of the agent at that point.

Consider an agent traveling in a two-dimensional space
shown in Fig. 1. There is one obstacle between the starting
point A and the goal B. We have a desired trajectory, n*,
provided by an expert between point (A) and point (B).
Starting with some initial potential field ® composed of an
obstacle potential function ¢, and a goal potential function
¢g4, as well as the trajectory 7 that ® generates, we seek
a method to iteratively update the potential field to have
7 match the desired trajectory as closely as possible with
respect to some cost function.

Let n = [x y] be the trajectory that the agent traverses.
This trajectory is generated by the potential functions in the
discrete domain by

nn + 1] — nln]

T = V), 0

where ®(n[n]) is the sum of the obstacle and goal potentials
functions at the point n on trajectory n (denoted as 7)[n)).
Rearranging the terms yields the following state equations

nln +1] = nln] = Ve(yln]) - T.)

We define the cost functional, J(n*, ®), to be

N
T, @) £ |Inln] =" [n]ll3 3)

where N is the number of points in the desired trajectory
n*, and 7 is the trajectory generated by the potential field ®.

The objective is to search for an optimal potential field,
®, that minimizes the cost function J(n*, ®). This potential
field ® can be used to do path planing in different and more
complicated situations.

IV. ALGORITHM FOR LEARNING POTENTIAL FUNCTION

The goal of the proposed algorithm is to learn a potential
function that captures the essence of an expert’s approach
to path planning. Sections IV-A and IV-B build up the
theoretical foundation for a viable algorithm, and Section V-
C presents the resulting algorithm. Section IV-D provides

solutions to overfitting and ill-conditioned problems possibly
encountered in the process of potential function learning.
Note that in describing the algorithm, we use boldface to
denote the lifted form of the given sequence, wherein the
sequence is lifted into a column vector. For example,

n = " [1l,n" 2, 0" [N
A. Gradient Descent Search
To minimize the functional J(n*, ®), we want to calculate

the functional derivative (Gateaux differential) of this func-
tional with respect to the total potential function. We find
Jn*, @ +€eF)— J(n*, @
dI(y*, ®, F) 2 li L2) Z IO)

e—0 €

is the differential of J in the direction of F'. Our goal is to
update the potential function with some F' that makes this
differential negative. To this end, let us define 7} to be the
perturbed trajectory generated by ® + €F', which by (2) we
find to be

filn+1] = fln] — V (®(7[n]) + eF(Gn])) - Ty (5)
7[0] £ n[0]. (6)

We can define A, to be the difference between the perturbed
and nominal trajectory, i.e.,

Ac[n] = qjn] = n[n]. (7
Expanding this relationship with (2) and (5) substituting
filn] = nln] + Ac[n] yields
Acn+ 1] = Acn] — TsVO(n[n] + An]) +
€T VF(n[n] + Acln]) + Ve(n[n]). (®)
We would like to expand the gradients into Taylor series

about n[n] and separate the o(e) terms. In the extended
version of this article [17], we show that

An+ 1] = —eTsVF(n[n])

(i

I - TsH<I>(77[i]))> VF(n[k]) + o(e).

=0 \i=k+1
)
Using lifted form, we can represent A, as
A, = —€eT,AVF + o(e), (10)
where A is defined to be

0 0 - 00

I 0 - 00
(I=T, Ho(n[1]) I L an

: : .00

L5 U-TH2 (i) TIS, (I-TH2(ni])) ~ 10

and VF is the lifted form of VF.

Using notations in lifted form transforms the ¢2 space to
the Euclidean space. Examining (4), we are able to show
(see [17]),

dJ(n*,®,F) = —2T,(n —n")"AVF.

Thus our goal is to find a potential function F' such that
—2Ts(n —n*)TAVF < 0.

(12)

4655

B. Parameter Update Law

F is a function of class C? in our system space. Without
any constraint, our search space for F' would be infinite
dimensional and intractable; further, we would expect an
arbitrary potential function to be able to produce the expert
generated path exactly, which may not generalize well to
other scenarios due to overfitting (e.g., see [18]). If, however,
we define our potential function ® to be a sum of obstacle
and goal potential functions that are specified by a finite
number of parameters, we constrain F' to a set of functions
that represent changes in those finite (and possibly bounded)
parameters. Further, if the gradient of F' at any point can
be represented by a linear combination of these parameters,
then F' can be found using the tools of linear algebra. For the
rest of this discussion we only consider potential functions
of this form.

Since we are assuming the gradient of F' can be deter-
mined by a linear combination of the changes in the potential
function parameters, we can represent this as the following
matrix equation,

VF = Bip (13)

where Jp is the corresponding changes in the parameters
p, both of which are lifted into column vectors. B is the
linear mapping between dp and the gradient of F'. Then in
order to guarantee a negative cost differential, we propose
the following update law,

Pj+1 = Pj +€-0p; (14)

where j is the iteration index for the learning algorithm, €
is the iteration step size, and

sp=Cl(n—n*),

Any standard gradient descent algorithm can now be used
to iteratively find the optimal potential function. In this paper
we use a gradient descent algorithm with an adaptive step
size.

C £ AB. (15)

C. Algorithm

In light of the previous results, we propose the following
algorithm:
1: Choose initial ®(p), e
2: Cost = J(n*, ®(p))
3: while Cost > Threshold do
. Calculate A from (11)
Calculate B from (13)

4
5:
6 dp=(AB)I(n—n)
.
8
9

p=p+e-0p
if J(n*,®(p)) < Cost then
: € = P, Bg>1
10: else
11: € = Qe, 0<ax<l
12: end if

13: Cost = J(n*, ®(p)
14: end while
This learning process is shown in Fig. 2.

Initial
Potential
Functio

Generate

a trajectory,
Collecte,

update Law
No) D . (x1)=D,(x +AF
(where dAD, /)<0)

Performance
satisfied?

End

Fig. 2. Flow Chart of Learning Potential Functions from Demonstration

D. A Note on Regularization

If the class of potential functions is sufficiently large, then
the potential function can start matching subtle undesired
aspects of the expert-generated trajectory; this is analogous
to overfitting. Another concern is that CT(C, whose inverse
is required for (15) may be poorly conditioned. If this is the
case, then large, sudden changes may occur in the dp vector,
and the result may be erratic.

One method of handling ill-conditioned matrices is to use
truncated singular value decomposition (TSVD) [19], [20],
which takes the singular value decomposition of CTC' and
sets the inversion to

(CTO)*I — ‘/I‘Et_lUt*

Where ¥; is a t x t matrix consisting of the singular
values for whose normalized value is greater than some
tolerance. V; and U; consist of the first ¢ columns in from
the singular value decomposition matrices of CTC. This
prevents the code from breaking if CTC is singular, and
provides automatic regularization.

This issue of overfitting may be also handled using
Tikhonov regularization [21]. In this case, the update law
with regularization is given by

Pj+1 = Pj +0p;

5p = (CTC+TT)"'CT(n—n") (16)
where I' is some suitably chosen matrix, often chosen to be
al for a > 0.

In the Sec. V, both methods are employed in conjunction.

V. IMPLEMENTATION EXAMPLE

For our simulation, we aim to generate a potential function
in two-dimensional space that starts at some initial point X;y;;
and terminates at some goal point x, while avoiding some
number of circular obstacles centered at x, ;, where ¢ is the

4656

index of the obstacle. We represent our potential function by

Nobs

D+ Goatala]

where ¢4(n[n]) is the potential function associated with the
goal point, and ¢, ;(n[n]) is the potential function associated
with the i*" obstacle. We take our obstacle and goal potential
functions to be radially symmetric about the corresponding
obstacle or goal points. This is by no means necessary, but
provides some convenient simplifications. In this case, the
potential functions can be represented by functions of the
radius, that is, ¢¢(ryr), and ¢, (7o), Where 7,4, is the
distance from n[n] to the goal, and r,; ,, is the distance from
n[n] to the i*" obstacle. Define v, ,, = nn] — x, to be the
vector from the goal point to n[n] and v, ; », = 1[n]—x%, ; the
vector from the center of the i*" obstacle to n[n]. With this
we find that the gradient and Hessian of the goal potential
function are given by

1 do,

®(nln]) = (17)

— d2¢g 1 d¢9 T
Hggy(nln]) = (dg(rg,n) - Tom dr (7g, n)) VgnVgn
1 dgy
LS (19)

with analogous results for the obstacle potential functions.
We represent ¢q(ry,) by a cone parametrized by a
steepness coefficient A,

bg(rgn)

We represent the obstacle potential function by an arbitrary
function of radial distance. There are several ways to do
this. For each obstacle in our simulation we choose an
effective radius reg ;, outside of which the potential is zero
everywhere. We then partition the range R; < 7; < reg
into intervals of size dr, where R; is the radius of the

circular obstacle. We then attempt to learn a step function

for dd);’ * on this range with these intervals. In this case we

calculate the potential and the gradient, ¢, ; and d‘b;l, via

numerical integration with the constraint that ¢, ;(Tef,;) = 0
d¢o i

and (rem,i) = 0.

The only step left to perform is to determine the B matrix
in (13) that maps changes in the parameters to changes in
the gradient of F' at each point 7[n|. From (18) we see that
for the goal potential function the effect on VF(n[n]) by a
change in the steepness coefficient §\ is given by

VE,(nln]) = v, 0.

Tgn

= Argn. (20)

21

This implies that the matrix B, which transforms J\ into its
corresponding change in the lifted VF' is
T

T
g_d)\[Yoi ... Yam

Tg,0 Tg,1 Tg,n

(22)

We determine the obstacle potential function VFj, ;(n[n])
by d¢° : (ro in), Which is integrated from our learned func-

tion d d 2. With the boundary conditions that the potential

function and its derivative must be zero at the effective
radius, this is equivalent to summing —5rd d‘ﬁ;i backwards
from reg; to the interval that contains 7, ; ,,, call it the kth
interval, and adding (., — (k + 1)6r)d2q:§”‘ [k]. Assume
that the n'” point on the trajectory falls within k" radial
interval for the i*" obstacle. Thus for the columr21 vector of

d dfg'i [k] we

find
VFo,i(n[n]
v dd,.;
0,%,n Q00 Toim—(k+1)3r —br o —br) ¢O”.
To,i,n dr
k 1 times

(23)

This implies that the matrix B, ; which transforms § dz(fg"i [k]
into its corresponding change in the lifted VF' is

T

B = [B;,[0] B3 [1] BoNl]. 24

Thus, if we define our lifted differential parameter vector
from (13) to be

(25)

dr? dr? dr?

2 2 2 T
5p = {5d bo1 5002 . sdbon 6)\.}.
The B matrix that satisfies the relationship in (13) is given
by

B=[B,1 B,y B,n By]. (26)

We now have the necessary components to implement our
algorithm as described in Section IV.

For regularization we define two regularization constants,
one that weighs all of the obstacle function’s parameters
equally, and the other that weighs the goal parameter sepa-
rately, so that we can control the regulation on the obstacle
and goal potential functions separately. If there are n pa-
rameters that define the obstacle potential function, then this
yields a Tikhonov regularization matrix of

OéIan 0n><1
I'= .
|:01><n 5 :l

We now have an appropriate framework and an adequate
setup to perform validation of this theory in MATLAB. For
the first set of simulations, we consider a two-dimensional
task space with a single obstacle that occludes the goal
point from the initial point. The obstacle is taken to have
a bounding radius R, = 2 and an effective radius Reg = 7,
outside which the potential field is zero. We set the TSVD
tolerance defined in section IV-D to 1071°, o to 1, B8 to 1
(from (16)), and our update step size € to 0.01. These values
are found heuristically to yield good results. In all cases we
initialize our potential functions to

27)

d2¢o,init(T) _ _2 _ T
dr? ~ (kor)?’ N LEJ ’ 28)
Gg.init (1) = 1.2r, (29)

4657

Resulting Trajectories

Initial Trajectory
Desired Trajectory
T - a=1,B =1

a=1,p=100

Fig. 3. Results for Human Trajectory

where |- | denotes the largest integer less than or equal to
3-- Note that the obstacle’s potential function is determined
by integrating (28) with the constraints that its value and
derivative at R.g are both zero. We present it in this form
because this is the form learned by the algorithm.

VI. SIMULATION RESULTS

Our initial simulation tested our algorithm on trajectories
generated from known potential functions; by doing this, we
know the desired potential function a priori and can better
gauge the quality of the results. We also examined the results
with and without regularization which validate the use of
them. These results can be found in the extended version of
this paper [17]. The results presented here are the subsequent
simulations that used trajectories generated by human users.

A. One Obstacle with a Human-Generated Trajectory

For this simulation, we consider learning on a human-
generated trajectory, one that may not be realizable by the
choice of potential functions. To this end, we provide a user
interface that is initialized with a straight-line trajectory from
the initial point to the goal point with 30 evenly spaced
points that can be moved along this line. The user is able to
use these 30 points to arbitrarily shape the trajectory; cubic
splines are then used to generate the desired resolution.

The results on a demonstration trajectory using two dif-
ferent sets of regularization parameters, « = 1,5 = 1
and « = 1,5 = 100 are given in Fig. 3. Clearly the
results for the first set of parameters are worse. This is
because the parameter on the goal potential function learns
too fast compared to the parameters on the obstacle potential
function. It seems possible that the goal potential function
changes too much initially to minimize the error that it pulls
the trajectory into a local minimum that prevents the obstacle
potential function from continuing to change. When 8 was
drastically increased to 100, the final trajectory matched the
initial trajectory quite closely, as also shown in Fig. 3.

This puts us in a good position to examine the effect of
a on the resulting trajectory. Looking at Fig. 3, one can
see that the final trajectory starts to match some of the

(a) Two Aligned Obstacles

(b) Two Obstacles

Fig. 4. Modified Superposition Method

non-smoothness of the demonstration trajectory. This may
not generalize to other scenarios well and thus may not be
desirable. We have found that increasing a has a smoothing
effect on the final trajectory, whereas decreasing o allows
the human’s trajectory to be followed more closely. Figures
demonstrating this result are included in the extended version
of this paper [17].

B. Handling Multiple Obstacle Scenarios

The potential function learned from the human-generated
trajectory can be used to handle a situation with multiple
obstacles of the same type, which is often an important
skill for unmanned vehicles. Since we learned the potential
function for an obstacle individually, we have more control
on how to construct the potential function for multiple
obstacles.

In the multiple obstacle case, summing their potential
functions together is the most straightforward approach,
however, it also causes several problems. If several obstacles
are very close to each other, the potential function in some
points are likely to be over-emphasized. For example, when
two obstacles are aligned as in Fig. 4(a), the potential
function becomes unnecessarily large at the origin, where
the agent is. In the direction of the line between O, and the
agent, the agent is unable to hit obstacle O, if it does not
first hit the closest obstacle, obstacle Op in this case. By
intuition ignoring the action of the further obstacle, O3, can
simplify this multiple-obstacle case.

From this perspective, we decompose the action of the
further obstacle O, on the agent v into two components: the
parallel component v and the perpendicular component v,
as shown in Fig. 4(b). The parallel component is parallel
to the line connecting the agent with the closest obstacle.
Next only the largest of the parallel component v is kept.
Since the multiple-obstacle case discussed in this paper only
involves obstacles of the same kind, the obstacle with the
largest parallel component is the one closest to the agent in
that direction. That is to say, in the direction of the line
between the closest obstacle and the agent, the resultant
gradient of the combined potential function is the maximum
one in that direction.

Finally, we implement the modified superposition method
on multiple obstacles. Take two obstacles for example; we
randomly generate two obstacles somewhere in-between the
starting point and the destination. Fig. 5(a) and Fig. 5(b)
show that our method is able to find a feasible trajectory
either in the space on one side of two obstacles or through

4658

o 2 D 6 8 10 o 2 0 6 8 10

(a) A Trajectory Passing In-between (b) A Trajectory Passing by Two Ob-
Two Obstacles stacles

(c) A Trajectory Generated in the (d) Produced Potential Field for Two
Situation of Four Obstacles Obstacles

Fig. 5. Trajectories around Multiple Obstacles

the space between two obstacles. Furthermore, our method
extends to situations with more than two obstacles. Fig. 5(d)
shows the trajectory generated in the presence of 4 obstacles.
When there is enough safe space between two obstacles for
the agent to pass through, the proposed method generates
a path through them; while if two obstacles are too close
to each other, the proposed method finds a path around the
obstacles.

VII. CONCLUSION

This paper investigated the applicability of a gradient-
search based learning from demonstration algorithm for
path planning. The algorithm aimed to identify an un-
known potential function that generates a given (prescribed)
trajectory planned by a expert (a human, e.g.). In other
words, the goal was to determine what potential field was
subconsciously motivating the expert trajectory generation.
Since the space of potential functions is very large (class
C?), the structure (or approximate parametrization) of the
potential function was assumed to be known, with unknown
parameters. The proposed method thus learned potential
functions from a given trajectory which had embedded goal-
reaching and obstacle-avoidance information. The learning
by demonstration was carried out on simple obstacles and
then these identified potential functions were subsequently
used for more complex obstacle scenarios. As a result, this
method avoided the tedious process of designing potential
functions manually for desired trajectories. Using the learned
results, path planning in a more complicated environment of
obstacles of the same type was achieved from simple building
blocks.

REFERENCES

[11 S. M. LaValle, Planning Algorithms.
May 2006.

Cambridge University Press,

[2]

[3]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

4659

S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the rrt*,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on, may 2011, pp. 1478 —1483.
N. Wedge and M. Branicky, “Using path-length localized rrt-like
search to solve challenging planning problems,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on, may
2011, pp. 3713 -3718.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, ‘“Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566 -580, aug 1996.

J. Barraquand and J.-C. Latombe, “A monte-carlo algorithm for path
planning with many degrees of freedom,” in Robotics and Automation,
1990. Proceedings., 1990 IEEE International Conference on, may
1990, pp. 1712 -1717 vol.3.

E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” Robotics and Automation, IEEE Transactions on,
vol. 8, no. 5, pp. 501 —518, oct 1992.

J.-C. Latombe, Robot Motion Planning, 1st ed., ser. The Springer Inter-
national Series in Engineering and Computer Science. Springer, Dec.
1991. [Online]. Available: http://www.worldcat.org/isbn/0792391292
T. G. Dietterich, P. Domingos, L. Getoor, S. Muggleton, and
P. Tadepalli, “Structured machine learning: the next ten years,”
Machine Learning, vol. 73, no. 1, pp. 3-23, Oct. 2008. [Online].
Available: http://dx.doi.org/10.1007/s10994-008-5079-1

Y. Bengio, “Learning deep architectures for AI,” Dept. IRO,
Universite de Montreal, Tech. Rep., 2007. [Online]. Available:
http://www.iro.umontreal.ca/"lisa/pointeurs/TR1312.pdf

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in In Proceedings of the Twenty-first International
Conference on Machine Learning. ACM Press, 2004.

S. S. Christopher. G. Atkeson, “Robot learning from demonstration,”
in Machine Learning: Proceedings of the Fourteenth International
Conference (ICML ’97).

C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,”
in In Proceedings of the Ninth International Conference on Machine
Learning. Morgan Kaufmann, 1992, pp. 385-393.

A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in in Proc. 17th International Conf. on Machine Learning.
Morgan Kaufmann, 2000, pp. 663-670.

1. Filippidis and K. J. Kyriakopoulos, “Adjustable navigation functions
for unknown sphere worlds,” in Decision and Control and European
Control Conference (CDC-ECC), 2011 50th IEEE Conference on, dec.
2011, pp. 4276 —4281.

C. Warren, “Global path planning using artificial potential fields,” in
Robotics and Automation, 1989. Proceedings., 1989 IEEE Interna-
tional Conference on, may 1989, pp. 316 —321 vol.1.

J.-O. Kim and P. Khosla, “Real-time obstacle avoidance using har-
monic potential functions,” in Robotics and Automation, 1991. Pro-
ceedings., 1991 IEEE International Conference on, apr 1991, pp. 790
—796 vol.1.

A. Winn, X. Gao, S. Mishra, and A.
potential ~ functions by demonstration for
“http://www.rpi.edu/Winna/papers/learning_pfs.pdf”.

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From
Data. AMLBook, 2012.

P. C. Hansen, “The truncated SVD as a method for regularization,”
BIT Numerical Mathematics, vol. 27, no. 4, pp. 534-553, Dec. 1987.
[Online]. Available: http://dx.doi.org/10.1007/BF01937276

D. Gough, “The success story of the transfer and development
of methods from geophysics to helioseismology,” in [Inverse
Methods, ser. Lecture Notes in Earth Sciences, B. Jacobsen,
K. Mosegaard, and P. Sibani, Eds. Springer Berlin / Heidelberg,
1996, vol. 63, pp. 1-31, 10.1007/BFb0011758. [Online]. Available:
http://dx.doi.org/10.1007/BFb0011758

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems.
John Wiley & Sons, New York,, 1977.

Julius, “Learning
path planning,”

