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Abstract— The use of live microbial cells as microscale robots
is an attractive premise, primarily because they are easy to
produce and to fuel. In this paper, we study the motion control
of magnetotactic Tetrahymena pyriformis cells. Magnetotactic
T. pyriformis is produced by introducing artificial magnetic
dipole into the cells. Subsequently, they can be steered by
using an external magnetic field. We observe that the external
magnetic field can only be used to affect the swimming direction
of the cells, while the swimming velocity depends largely on
the cells’ own propulsion. Feedback information for control is
obtained from a computer vision system that tracks the cell.
The contribution of this paper is twofold. First, we construct a
discrete-time model for the cell dynamics that is based on first
principle. Subsequently, we identify the model parameters using
the Least Squares approach. Second, we formulate a model
predictive approach for feedback control of magnetotactic T.
pyriformis. Both the model fitness and the performance of the
feedback controller are verified using experimental data.

Keywords: magnetotaxis, microrobots, model predictive con-
trol, motion control, Tetrahymena pyriformis.

I. INTRODUCTION

Microrobots have been widely investigated for many ap-

plications, for example, in parallel assembly [1] and micro-

manipulation [2]. Among those works, most focus on devel-

oping artificial microrobots [3], [4], which are relatively easy

to control. However, there are two main challenges: one is the

high-cost, and another is the limitation in supplying sufficient

power for microrobots in a microfludic environment.

There is an increasing number of scholars who focus on

utilizing live microorganisms, such as S. marcescens and

Tetrahymena pyriformis, as microrobots, which are called

microbiorobots. Microbiorobots are easy and cheap to pro-

duce [5]. The biomolecular motors, such as flagella and cilia,

embedded in the microorganisms generate swimming forces

by consuming chemical energy from fluidic environments.

Many existing results focus on controlling prokaryotic cells

as microbiorobots. For example, Martel et al [6] used magne-

totactic bacteria to manipulate micro-objects. Behkam et al

[7] investigated the random behavior of flagellated bacteria

as propulsion units, while Julius et al [5] developed a model

of a microstructure blotted with bacteria moving in a micro

channel propelled by the flagella of the bacteria.

1Yan Ou and A. Agung Julius are with the Department of Electrical,
Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy,
NY 12180, Email: ouy2@rpi.edu, agung@ecse.rpi.edu.

2Dal Hyung Kim, Paul Kim, and Min Jun Kim are with the Department
of Mechanical Engineering and Mechanics, Drexel University, Philadel-
phia, PA 19104. Email: dk434@drexel.edu, psk25@drexel.edu,

mkim@coe.drexel.edu.

On the other hand, some scholars focus on the motion

control of the eukaryotic cell [8], [9]. Normally, the size

of the eukaryotic cell is much larger than the prokaryotic

cell, which makes it easier for us to generate the plant

model and capture the positions of a single eukaryotic cell.

Whitesides et al [10] demonstrated the biological propul-

sion of microscale loads by the unicellular photosynthetic

algae Chlamydomonas reinhardtii. Itoh et al [11] performed

motion control of Euglena group by weak laser scanning

system and object manipulation using Euglena group. Kim

et al [12] showed the usage of galvanotactic and phototactic

to control T. pyriformis as a microfluidic workhorse. Kim

et al [13] used real-time feedback control and the rapidly-

exploring random tree (RRT) for path planning to control

the magnetotactic T. pyriformis as a microbiorobot. Even

though those works have led to some good motion control

performances, the precise plant model for the cell motion

and the advanced control technique, which based on the plant

model, have not been fully developed.

In this paper, we use the Model Predictive Control (MPC)

algorithm [14] to control the magnetotactic T. pyriformis as

a microbiorobot based on a discrete-time plant model. The

research reported in this paper follows our previous work

[13] and has two main contributions: First, we construct

the discrete-time plant model and calculate the plant model

parameters by using the Batch Least Squares (BLS) method.

Second, we use the feedback control with MPC algorithm

to make T. pyriformis follow a predefined track by only

changing the angle of the magnetic field. In both cases, the

theoretical results are backed by the experimental validations.

II. EXPERIMENTAL SETUP

The same setup is used and reported in our earlier work

[13].

A. Cell culture

T. pyriformis is a eukaryotic pear-shaped cell with size

50 µm long and 25 µm wide. The body of T. pyriformis is

covered by approximately 600 cilia, both oral and locomo-

tive. The locomotive cilia facilitate the swimming behavior

of T. pyriformis which can be effectively influenced by the

magnetotaxis [15]. T. pyriformis is cultured in the appropriate

culture medium [13]. The saturated culture has 104 cell·ml−1

of the cell density. The cell culture medium is diluted with a

fresh culture medium in a 1 : 3 ratio (working cell density is

3.3 · 103 cells·ml−1) in order to lower the cell concentration

for the single cell detection.
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B. Fabrication of artificially magnetotactic T. pyriformis

Figure 1 shows the process to create the artificially mag-

netotactic T. pyriformis. In Figure 1 (a), 0.1% iron-oxide

spherical particles with diameter 50nm are added into the

culture medium. In Figure 1 (b), the culture medium with

iron-oxide particles is gently agitated and left for about 10

minutes to ensure sufficient internalization of the magnetite.

Based on the image we get, the average volume of the

amount of internalization of each cell is about 500µm3.

However, it varies a lot among cells. The swimming behavior

of the magnetite loaded T. pyriformis is identical to the

normal cell [16]. Figure 1 (c) shows that a permanent magnet

is applied around the cell culture for about one minute to

magnetize the internalized magnetite. After magnetization,

T. pyriformis swims freely without the external magnetic

field. Kim et al [15] has empirically observed that the

magnetites are always aligned with the major axis of the

cell. The strength of the magnetic dipoles remains nearly

constant for over one hour even after the permanent magnet

is removed after magnetization; therefore, it is assumed that

the internalized magnetite is saturated during experiments

[15].

Fe3O4 (0.1%) 

50 nm in diameter 

Culture medium of 

Tetrahymena pyriformis
Excess Fe3O4 Particles

Permanent

magnet

(a) (b) (c)

Fig. 1: [13] The procedure for fabrication of artificially

magnetotactic T. pyriformis from (a) to (c). (a) Addition

of iron oxide particles (magnetite, Fe3O4) into the culture

medium. (b) Gentle agitation to ensure cells internalize

iron oxide particles. (c) Magnetization of the internalized

magnetite using a permanent magnet.

C. Close loop system

The system shown in Figure 2 (a) is used for feedback

control of the magnetotactic T. pyriformis, which includes

a microscope, a camera, a computer, a control board, two

power supplies, and a set of approximate Helmholtz coils.

The camera is used to capture images of cell motion. The

computer is used to operate image processing and control

algorithm. The control board and the power supplies provide

power to the approximate Helmholtz coils to generate a

magnetic field in a 2D system. The field of view through

the microscope is limited to 2 mm for each axis. In this field

of view, the magnetic field is approximately constant [13].

We use a 640 px by 512 px video with 1 px ≈ 2.32 µm to

record the experiment process in this field of view. Figure 2

(b) illustrates the control block diagram.
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Fig. 2: (a) The experiment setup for the feedback control.

(b) Control block diagram [13]. In this picture, (xr, yr) is

the set point while (x, y) is the cell position.

III. PLANT MODEL

A. Structure of model

Once we exert the magnetic field, the angular difference

between the internalized magnetites and the magnetic field

will produce a torque on T. pyriformis to change the moving

direction and lead the cell to align with the magnetic field

[15]. Meanwhile, we have empirically discovered that the

swimming velocity of the cell does not vary a lot with the

intensity of the external magnetic field, which can be shown

from Table I.

T. pyriformis I T. pyriformis II

‖B‖ = 1 mT νavg = 661.9749 µm·s−1 νavg = 863.7337 µm·s−1

‖B‖ = 1.5 mT νavg = 675.1826 µm·s−1 νavg = 868.3528 µm·s−1

‖B‖ = 2 mT νavg = 676.1338 µm·s−1 νavg = 880.3890 µm·s−1

‖B‖ = 2.5 mT νavg = 689.9494 µm·s−1 νavg = 848.9808 µm·s−1

TABLE I: Average velocity of different T. pyriformis under

the influence of different magnetic field strengths. In this

table, ‖B‖ is the magnetic field strength; νavg is the average

cell velocity.

Figure 3 shows the mechanical analysis of T. pyriformis

under the influence of the magnetic field. In this paper, we
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keep the strength of magnetic field at a constant level while

changing the angle of magnetic field to control T. pyriformis.

Our experiment is performed in a low Reynolds number

fluidic environment. Therefore, the inertia effect is negligible,

i.e. the relationship between the torque and the cell angle is

approximately linear. The continuous-time plant model is as

follows.

τ = m×B = ‖m‖‖B‖ sin(θt − θm) = −γθ̇t, (1)

where γ is a constant number; ‖m‖ is the norm of the

magnetic moment; ‖B‖ is magnetic field strength; τ is the

torque generated by the magnetic field and the magnetic

moment; θt is the cell angle; θm is the magnetic field angle.

Then, we discretize the continuous-time plant model and

derive the following discrete-time equations.

θt(k) = a0θt(k − 1) + b0 sin(θm(k − 1)− θt(k − 1)), (2)

x(k) = x(k − 1) + ν(k) cos(θt(k)), (3)

y(k) = y(k − 1) + ν(k) sin(θt(k)), (4)

where k represents the time step; ν(k) is the cell position

distance between two consecutive sampling time, which is

almost constant and can be approximately calculated by

averaging the previous 10 steps’ cell velocity; a0 and b0
are constant for each individual cell; â0 ≈ 1 in most

experimental results; b0 represents cell’s angular changing

rate with respect to the magnetic field; a0 and b0 vary for

different cells due to different cell features and the amount

of iron particles internalization; (x(k − 1), y(k − 1)) and

(x(k), y(k)) are cell positions.

Fig. 3: Mechanical analysis of the magnetized T. pyriformis

under the influence of magnetic field. In this picture, B is the

magnetic field; m is the magnetic moment; τ is the torque

generated from B and m; θt is the cell angle; θm is the

magnetic field angle; θ∆ = θt − θm.

B. Parameter identification

To get the plant parameters a0 and b0, we conduct experi-

ments for manual control in a polydimethylsiloxane (PDMS)

channel. The PDMS channel is fabricated with depth of 80

µm to give cells sufficient space for freely swimming. The

magnetic field is manually changed by positive and negative

directions on either the x-axis or y-axis with the four array

keys on the keyboard. In the experiments, the sampling time

is 10 frames per second. We manually rotate the magnetic

field 90 degrees each time while keeping the strength of mag-

netic field at a constant level. Based on the discrete-time plant

model (2)-(4) and the manual control data, BLS method can

be used to identify the plant parameters a0 and b0. To ensure

the convergence of a0 and b0, it is necessary to consider the

Persistent Excitation (PE) issue that the input signal should

contain enough frequencies [17]. In this case, we choose a

nonperiodic rectangular wave as input. Then, we collect the

input and output data, θm(0), θm(1), . . . , θm(k), . . . , θm(n),
and θt(0), θt(1), . . . , θt(k), . . . , θt(n) and derive the follow-

ing equation based on Equation (2).
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Let us rewrite this equation by Y = Φθ. Then, based on the

BLS method, the best fit parameters are given by θ̂ = Φ†Y ,

where Φ† = (ΦTΦ)−1ΦT is the pseudoinverse of Φ. The

estimated outputs Ŷ can be expressed by Ŷ , Φθ̂.

From one experimental result, as shown in Figure 4, we

obtain the optimal parameters â0 = 1.0000 and b̂0 = 0.4178.

The magnetic field strength is set to be 2 mT. Analytically,

we can compute cosα, where α is the angular difference

between Y and Ŷ as follows.

cosα =

〈

Y, Ŷ
〉

‖Y ‖‖Ŷ ‖
=

‖Ŷ ‖

‖Y ‖
≈ 0.9999. (6)

This result shows the good fit between the estimated outputs

and the experimental outputs.

Fig. 4: The data regression of Equation (2). In this picture,

the flat purple surface is the regression surface; the black

dots are the experimental data.
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IV. MPC CONTROLLER DESIGN

A. Path generation method

To test the effectiveness of the controller, we try to make

T. pyriformis follow a reference track counterclockwise. This

track is made up by two lines and two semi-circles, as shown

in Figure 5. During each sampling period, two set points

(xr(k+1), yr(k+1)) and (xr(k+2), yr(k+2)) are generated

consecutively based on the current cell position. There exists

a constraint for the change of cell angle based on Equation

(2).

a0θt(k − 1)− b0 ≤ θt(k) ≤ a0θt(k − 1) + b0. (7)

Therefore, in order to make T. pyriformis follow the reference

track while satisfying the constraint, the set points should

be generated with a smooth angular changing rate. Figure

5 shows a heuristic method that deal with the three typical

cases in the process of generating the set points. Case I:

d1 < 0.2ν(k). The next set point can be located on the

reference track with distance ν(k) from the current cell

position. Case II: d2 > 0.2ν(k) and the cell is inside the

reference track. We choose a position, ξ on the reference

track, such that the distance from ξ to the current cell position

is ν(k) + 2d2. Then we locate the next set point along the

path from the current cell position to ξ with distance ν(k)
from the current cell position. Case III: d3 > 0.2ν(k) and

the cell is outside the reference track. We generate a tangent

line from the current cell position to the reference track.

Then we locate the next set point along the tangent line

to the reference track with distance ν(k) from the current

cell position. However, if the cell’s angular changing rate

b0 is too small, the generated set point still does not satisfy

the constraint, i.e. θt(k) < a0θt(k − 1) − b0 or θt(k) >

a0θt(k − 1) + b0. We can choose θt(k) = a0θt(k − 1)− b0
or θt(k) = a0θt(k − 1) + b0 and recompute the set point.

B. MPC algorithm

MPC is an advanced control technique mostly applied in

the process industries [14], such as chemical plants and oil

refineries. Here we apply the MPC algorithm to the motion

control, as shown in Figure 6. In our case, the main goal of

MPC is to minimize the error between the predicted outputs

and the set points. Then, we build a cost function which

measures the squared error between the predicted outputs

and the set points as follows.

J = JMPC(θm(k), θm(k + 1)) (8)

= (xp(k + 1|k − 1)− xr(k + 1))2

+ (yp(k + 1|k − 1)− yr(k + 1))2

+ (xp(k + 2|k − 1)− xr(k + 2))2

+ (yp(k + 2|k − 1)− yr(k + 2))2,

where (xr(k + 1), yr(k + 1)) and (xr(k + 2), yr(k + 2))
are the set points derived from the path generation method;

θm(k) and θm(k+1) are the predicted inputs, which are the

magnetic field angles; (xp(k+1|k−1), yp(k+1|k−1)) and

Set Points 

Reference track 

Case 1: @5 O rätå:G; 

:ttw pxáurr px; :uyw pxáurr px; 

radius = syw px 

Case 2: @6 O rätå:G; & inside the track 

Case 3: @7 P rätå:G;�& outside the track 
Cell positions 

s px N täut �m 

å:G; å:G; 

å:G; 

å:G;E t@6 

æ 

@5 

@6 

@7 

:TáU; 

:TåáUå; 

Fig. 5: The reference track and the method to generate the

set points in the three different cases. In this picture, the

green squares represent the cell positions; the purple triangles

represent the set points; ν(k) is the cell position distance

between two consecutive sampling time; d1, d2, and d3 are

the distances between T. pyriformis and the reference track;

ξ is a dot in the reference track with distance ν(k) + 2d2 to

the cell position.

(xp(k+2|k− 1), yp(k+2|k− 1)) are the predicted outputs,

which are the predicted cell positions with error offset.

xp(k + i|k − 1) = x(k + i|k − 1) + xe(k + i|k − 1), (9)

yp(k + i|k − 1) = y(k + i|k − 1) + ye(k + i|k − 1), (10)

for i = 1, 2, where (x(k + 1|k − 1), y(k + 1|k − 1)) and

(x(k + 2|k − 1), y(k + 2|k − 1)) are the predicted positions

without error offset, which are derived by Equations (2)-(4)

based on the measurement of the k − 1 step cell position

(x(k−1),y(k−1)); the predicted plant model errors, (xe(k+
1|k−1), ye(k+1|k−1)) and (xe(k+2|k−1), ye(k+2|k−1)),
are considered to be constant. That is, for i = 1, 2,

xe(k + i|k − 1) = xe(k|k − 1) = x(k)− x(k|k − 1), (11)

ye(k + i|k − 1) = ye(k|k − 1) = y(k)− y(k|k − 1), (12)

where (x(k), y(k)) is the k step cell position; (x(k|k −
1), y(k|k− 1)) is the k step predicted position without error

offset. Note that this technique of compensating for the plant

model error is proposed in [18].

Because the cost function JMPC(θm(k), θm(k + 1)) is a

non-convex function, we find a small enough local minimum

substitutes for the global minimum. From Equation (2), we

find that the cost function is a 2π×2π periodic function with

respect to θm(k) and θm(k + 1). So the global minimum

should appear on the domain −π ≤ θm(k) ≤ π and −π ≤
θm(k+1) ≤ π. We then define a grid search to find the local

minima on this domain. We create a 8×8 grid on the 2π×2π
domain and execute the Newton Iteration method to search
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Fig. 6: Main idea of MPC. In this picture, k is the time

step; the green squares represent the cell positions, which are

(x(k − 1), y(k − 1)) and (x(k), y(k)); the purple triangles

represent the set points, which are (xr(k+1), yr(k+1)) and

(xr(k + 2), yr(k + 2)); the blue dash circles represent the

predicted positions without error offset, which are (x(k|k−
1), y(k|k−1)), (x(k+1|k−1), y(k+1|k−1)), and (x(k+
2|k− 1), y(k+2|k− 1)); the blue solid circles represent the

predicted positions with error offset, which are (xp(k+1|k−
1), yp(k+1|k−1)) and (xp(k+2|k−1), yp(k+2|k−1)); dk+1

and dk+2 are the distances between the predicted positions

with error offset and the set points; ek, ek+1, and ek+2 are

the plant model errors.

the local minima starting from each of the 49 intersections.

Θn+1 = Θn −

[

∂2JMPC(Θn)

∂Θ2
n

]−1
∂JMPC(Θn)

∂Θn

, (13)

where Θn = [θnm(k), θnm(k+1)]T ; n is the Newton Iteration

step; k is the time step; θm(k) and θm(k+1) are the magnetic

field angles.

To ensure the stability of the system, a finer partition can

be used. However, it will increase the calculation time. On

the other hand, from both the simulation and experimental

results, the 8 × 8 grid has been shown to result in a good

tracking performance.

In summary, the MPC algorithm is presented in Algorithm

1.

V. RESULT & COMPARISON

In the experiment, a single T. pyriformis cell is manually

controlled for 10 seconds to get enough data for plant model

identification. Then, the parameters a0 and b0 are computed

based on the BLS method. Next, we manually manipulate

T. pyriformis to the starting point (275 px, 128 px) with

1 px ≈ 2.32 µm to enable the feedback control. Finally,

the feedback control with MPC algorithm is executed for

about 7.5 seconds, as shown in Figure 7. The magnetic field

strength is set to be 2 mT. We then show the simulation result

by Matlab in Figure 8.

Algorithm 1 Coding process of MPC algorithm

1: Compute a0 and b0 based on the captured manual control

data.

2: for k = 1, 2, 3, . . . do

3: Get (x(k), y(k)) from image processing.

4: Calculate ν(k) by averaging previous 10 steps’ cell

velocity.

5: Compute θt(k) by Equations (3)-(4) which satisfies

θt(k) ∈ [θt(k − 1)− π, θt(k − 1) + π].
6: Calculate (x(k|k − 1), y(k|k − 1)), (x(k + 1|k −

1), y(k+1|k−1)), and (x(k+2|k−1), y(k+2|k−1))
based on Equations (2)-(4) and (x(k − 1), y(k − 1)).

7: Compute the plant model error xe(k|k− 1) = x(k)−
x(k|k − 1), ye(k|k − 1) = y(k)− y(k|k − 1).

8: Generate k + 1 and k + 2 steps set points, (xr(k +
1), yr(k+1)) and (xr(k+2), yr(k+2)), based on the

k step cell position and the path generation method.

9: Predict future two steps cell positions with error offset,

(xp(k+1|k− 1), yp(k+1|k− 1)) and (xp(k+2|k−
1), yp(k + 2|k − 1)) based on Equations (9)-(10).

10: Build cost function JMPC(θm(k), θm(k+1)) to mea-

sure the error between predicted positions with error

offset and set points in k + 1 and k + 2 steps.

11: Use the Newton Iteration method from different initial

values on the domain to find the small enough local

minimum (θm(k), θm(k + 1)), which substitutes for

the global minimum of the cost function.

12: Exert θm(k) to the plant.

13: end for
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Fig. 7: Experimental result. In this picture, the red stars

represent the reference track; the green square line is the

T. pyriformis motion trajectory.
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Fig. 8: Simulation result. In this picture, the red stars

represent the reference track; the green square line is the

T. pyriformis motion trajectory.

We can clearly observe that the MPC algorithm performs

well in simulation, achieving practically perfect tracking

performance. The experimental result also shows that the cell

indeed tracks the reference trajectory. However, the level of

tracking error in the experiment is significantly worse than

the simulation. In the next section, we formulate a hypothesis

on how we can improve the performance of the feedback

controller.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we discuss the use of MPC in the motion

control of the magnetotactic T. pyriformis. The magnetotactic

T. pyriformis is created by introducing artificial magnetic

dipoles in the cell. Our control input is the direction of an

external magnetic field, which is kept at a constant intensity.

Based on the mechanical analysis of the magnetotactic T.

pyriformis under the influence of the external magnetic field,

a discrete-time plant model is generated. The plant model

parameters are calculated by using the BLS method. We

then formulate a feedback control algorithm, based on MPC,

to make T. pyriformis follow a reference track. Finally,

we evaluate the feedback control performance using the

numerical simulation and experiment.

As seen in the previous section, the feedback control algo-

rithm works very well in theory (as shown by the simulation

result). However, there is a performance gap between the

simulation and experimental result. We hypothesize that this

difference is due to two factors, (i) external disturbance,

(ii) systematic modelling error. In the future, we plan on

conducting more comprehensive experiments that will allow

us to better characterize the external disturbance affecting

the system. For example, by manually controlling the cell to

follow a straight line, and measuring the deviation of the cell

trajectory from a straight line. We will also identify the image

processing and computation delay. A significant delay could

be the reason behind the performance drop of the feedback

controller in the experiment.
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