
Trajectory-based Controller Design for Hybrid Systems

with Affine Continuous Dynamics

A. Agung Julius

Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute

Troy, NY 12180, USA.

Email:agung@ecse.rpi.edu

Abstract— In this paper we propose a method for feedback
controller synthesis using the concept of control autobisimula-
tion function. Control autobisimulation function (CAF) is the
analog of control Lyapunov function for approximate bisim-
ulation. Approximate bisimulation has been used to establish
robustness (in ℓ∞ sense) of execution trajectories of dynamical
systems and hybrid systems, resulting in trajectory-based safety
verification procedures.

CAF is used to characterize the family of all feedback control
laws that result in a close loop system with an autobisimulation
function. Further, we use a heuristic potential function based
idea to construct a safe feedback control law for a nominal
initial state, and use the trajectory-robustness property to
guarantee that the control law is also safe for other initial
states in a neighborhood of the nominal initial state.

Keywords: hybrid system, trajectory based, controller syn-
thesis.

I. INTRODUCTION

The issue of safety/reachability is very important in the

theory of hybrid systems. The analysis part of this issue,

i.e. the investigation whether a given hybrid system model

with given initial conditions can reach a certain state, or

set of states has received a lot of attention from the hybrid

systems community. It has also resulted in a lot of practical

applications. The synthesis part of the safety/reachability

issue deals with the construction of control laws/algorithms

for systems with input that result in safe executions. Some of

the methods for safety/reachability analysis can be extended

for controller synthesis. For example, the optimal control

method in [1] and the simulation based method in [2]

directly characterize the influence of the control input in the

reachability formulation. The predicate abstraction technique

for systems with piecewise affine dynamics in polytope sets

leads to a control procedure based on the transversality of

the vector field on the facets of the polytopes [3], [4]. The

technique for discrete-time system presented in [5] utilizes

partitioning of the state space by polygonal approximation of

the reachable set. The notion of approximate bisimulation has

previously been used for controller synthesis for nonlinear

dynamical systems [6], [7]. In this case, the notion is used to

establish a quantization of the continuous state space, which

can result in a countable transition system approximation of

the original dynamics.

The class of safety/reachability analysis methods that is

closely related to this paper is the trajectory-based analysis.

These are methods that aim to assess the safety/reachability

based on the execution trajectories of the system, or the

simulations thereof. The main conceptual tool that we use in

this paper, the approximate bisimulation, was developed by

Girard and Pappas [8], and has been used for trajectory based

analysis of hybrid systems in [9], [10], [11]. In this paper

we present a controller synthesis method that is based on

trajectory-based analysis. We introduce the notion of control

autobisimulation function (CAF), to characterize a class of

feedback laws, called the admissible feedback laws, that

result in closed loop systems that admit an (auto)bisimulation

function. Therefore, the control autobisimulation function

can be thought of as an analog of control Lyapunov function

[12], [13] for autobisimulation. For any given initial condi-

tion, we use a heuristic method based on the idea of potential

function to construct an admissible feedback law that results

in a ”valid” execution trajectory1. The use of CAF enables us

to use trajectory robustness (a la approximate bisimulation)

to guarantee formally the validity of the control law for a

neighborhood around that initial condition. By repeating this

procedure for a finite set of initial conditions, we can cover

a compact set of initial conditions.

The controller design method presented in this paper there-

fore consists of two steps. The first step is to characterize

the class of admissible feedback laws. The second step is

to construct an admissible feedback law for each initial

condition, that can be verified to result in a valid trajectory

(for example, through simulation). We present an example

demonstrating that although the presented design method

has a heuristic step in it, the resulting controller is formally

guaranteed to be correct, and that it is possible to achieve

that with only a few simulation runs. This approach can thus

be regarded as a highly parallelizable and lightweight (no

quantization of state space is required) complement to the

more formal approaches, such as [6], [7].

II. AUTOBISIMULATION FUNCTION

We recall the use of (auto)bisimulation function for estab-

lishing trajectory robustness for autonomous systems (sys-

1What ”valid” means will be discussed later.

6th annual IEEE Conference on Automation Science and
Engineering
Marriott Eaton Centre Hotel
Toronto, Ontario, Canada, August 21-24, 2010

TuB4.4

978-1-4244-5448-8/10/$26.00 ©2010 IEEE 1007978-1-4244-5449-5/10/$26.00 ©2010 IEEE



tems without input). Given an autonomous dynamical system

Σaut :
dx

dt
= f(x), x ∈ R

n, (1)

with f(x) locally Lipschitz.

Notation 1: The trajectory of the dynamical system (1)

with initial condition x(0) = x0 is denoted as ξ(t, x0).
We define an autobisimulation function as follows.

Definition 1: [10] A continuously differentiable function

φ : R
n × R

n → R+ is an autobisimulation function of (1)

if for any x, x′ ∈ R
n,

φ(x, x′) ≥ ‖x− x′‖ , (2)

∇xφ(x, x′)f(x) + ∇x′φ(x, x′)f(x′) ≤ 0. (3)

Autobisimulation function is used to provide a formal

guarantee that the distance between two execution trajecto-

ries of the dynamical system (1) is bounded in the ℓ∞ sense.

This result is stated in the following proposition.

Proposition 1: [10] Given a dynamical system (1) and an

autobisimulation function φ, for any x0, x
′
0 ∈ R

n,

‖ξ(t, x0) − ξ(t, x′0)‖ ≤ φ(x0, x
′
0), ∀t ≥ 0. (4)

Further, if φ(x, x′) is designed to be a (pseudo)metric in

R
n, φ(x, x′) = ‖x− x′‖φ , or if it is a class K function of a

metric in R
n, φ(x, x′) = α(‖x− x′‖), where α is a class K

function2, then Proposition 1 can be used as the foundation

of trajectory-based safety analysis [10].

Remark 1: The notion of autobisimulation is related to but

different from the notion of incremental global asymptotic

stability (δGAS) introduced by Angeli (cf. [14]) in the

following sense. With autobisimulation, we do not require

asymptotic convergence of the trajectories as in δGAS.

Therefore, any Lyapunov function that characterizes δGAS

can be used as autobisimulation function, but not vice versa.

Suppose that there is a given compact set of initial states

Init ⊂ R
n, where the state is initiated at t = 0, i.e. x(0) ∈

Init. Also, we assume that there is a set of goal states, Goal⊂
R

n. We require that any execution trajectory starting in Init

enters the goal set before time t = T > 0. For a given initial

condition x0 ∈ R
n, suppose that

inf
0≤t≤T

dφ(ξ(t, x0),Unsafe) = δ > 0, (5)

ξ(T, x0) ∈ Goal, (6)

dφ(ξ(T, x0),GoalC) < δ, (7)

where

dφ(ξ(t, x0),Unsafe) := inf
x′∈Unsafe

φ(ξ(t, x0), x
′),

dφ(ξ(T, x0),GoalC) := inf
x′ /∈Goal

φ(ξ(T, x0), x
′).

Notice that this implies that for the time interval 0 ≤ t ≤ T
the trajectory ξ(t, x0) is safe (i.e. it does not enter the Unsafe

set).

Notation 2: For any x ∈ R
n and δ ≥ 0, we denote the

set {x′ ∈ R
n | φ(x, x′) ≤ δ} as Bφ(x, δ).

2A function α : R+ → R+ is a class K function if it is continuous,
monotonically increasing, and α(0) = 0.

We can show (c.f. [10]) that in this case, any initial

condition x′0 ∈ Bφ(x0, δ) will also result in a safe trajectory,

i.e. ξ(t, x′0) /∈ Unsafe, for 0 ≤ t ≤ T . Moreover, we can

formally guarantee that the trajectory ξ(t, x′0) will enter the

goal set before time t = T . Therefore, by computing the

execution trajectory ξ(t, x0), we can generalize its safety

property to a nonzero measure neighborhood of initial states

around x0. This is the foundation for formal safety verifica-

tion of a compact set of initial states using a finite number

of execution trajectories.

III. CONTROL AUTOBISIMULATION FUNCTION AND

TRAJECTORY-BASED FEEDBACK CONTROL

Consider a dynamical system with input

Σinp :
dx

dt
= f(x, u), x ∈ R

n, u ∈ U ⊂ R
m. (8)

where the function f(x, u) is locally Lipschitz in x and

continuous in u. As discussed in the previous section, assume

that we also have the set of initial states, Init, and the goal

set, Goal. Suppose that we are given the following control

problem:

Problem 1: Design a feedback control law u = g(x) such

that for any initial state x0 ∈ Init, the trajectory of the closed

loop system enters Goal before time t = T > 0, and in the

time interval [0, T ] the trajectory is safe. Such a trajectory is

called a valid trajectory.

We will discuss how the notion of trajectory-robustness

discussed in the previous section can also be used in

trajectory-based controller synthesis. The key concept in this

approach is the control autobisimulation function (CAF).

Definition 2: A continuously differentiable function ψ :
R

n × R
n → R+ is a control autobisimulation function of

(8) if for any x, x′ ∈ R
n,

ψ(x, x′) ≥ ‖x− x′‖ , (9)

and there exists a function k : R
n → U such that

∇xψ(x, x′)f(x, k(x))+∇x′ψ(x, x′)f(x′, k(x′)) ≤ 0. (10)

The control autobisimulation function is an analog of

the control Lyapunov function (CLF) [12], for approximate

bisimulation [8], [10]. While control Lyapunov function has

been used to construct control laws that guarantee stability

(e.g. [13]), we shall use the control autobisimulation function

to construct control laws that guarantee trajectory robustness.

Remark 2: One can compare the control autobisimulation

function with control Lyapunov function of the product of

the system (8) with itself

d

dt

[

x
x′

]

=

[

f(x, u)
f(x′, u′)

]

.

In this case, notice that unlike for CLF, for CAF we cannot

set u and u′ to be any functions of x and x′. Rather, the

inputs u and u′ must be the same function of their respective

states (x and x′). Therefore, in this aspect, the requirement

for CAF is more stringent than that for CLF.

978-1-4244-5448-8/10/$26.00 ©2010 IEEE 1008



Unsafe

x0

x1

Init

Goal

ξk0
(T, x0)

ξk1
(T, x1)

Fig. 1. An illustration for trajectory-based controller synthesis.

A consequence of the existence of a CAF as in Definition

2 is the existence of feedback control laws

u = k(x), (11)

such that the closed loop system obtained from (8) and (11),

dx

dt
= f(x, k(x)), x ∈ R

n, (12)

has ψ(·, ·) as an autobisimulation function. This fact can be

deduced immediately from Definition 2.
Definition 3: For a given dynamical system with input

Σinp and a control autobisimulation function ψ, the class

of all feedback control laws k(·) that satisfy (10) is called

the class of admissible feedback laws, η(Σinp, ψ).
Notation 3: For a given dynamical system with input Σinp

and a feedback control law u = k(x), the closed loop

trajectory with initial condition x(0) = x0 is denoted by

ξk(t, x0).
The controller synthesis paradigm in this paper can be

stated as follows. We construct feedback controllers from

the class of feasible feedback laws. By definition, the closed

loop system will then admit a predefined autobisimulation

function. This means that the trajectory-robustness property

discussed in Section II is guaranteed to hold. Please refer to

Figure 1. Suppose that for a given initial state x0 ∈ Init, we

can design a feedback law u = k0(x) that results in a closed

loop execution trajectory ξg0
(t, x0) satisfying

inf
0≤t≤T

dφ(ξk0
(t, x0),Unsafe) = δ0 > 0, (13)

ξk0
(T, x0) ∈ Goal, (14)

dφ(ξk0
(T, x0),GoalC) > δ0. (15)

Then, as previously shown, we can obtain a neighborhood

around x0, Bφ(x0, δ0) consisting of other initial states for

which the feedback law u = k0(x) is guaranteed to result in

execution trajectories that are safe and meet the goal state.

We can repeat the procedure for a different initial state, say

x1 ∈ Init. Suppose that we can then design a feedback law

u = k1(x) that results in a closed loop execution trajectory

ξk1
(t, x1) that is safe and meets the goal set as shown in

Figure 1. As before, we also obtain a neighborhood around

x1 for which the feedback law u = k1(x) is guaranteed

to yield execution trajectories that are safe and meet the

goal state. As the result of this process, we now obtain

two feedback laws which are valid for two different subsets

of Init (not necessarily disjoint). The goal of the controller

synthesis procedure is then to cover the entire initial set Init

with different control laws as such.

IV. CONTROLLER SYNTHESIS FOR SYSTEMS WITH

AFFINE DYNAMICS

Based on the exposition in the previous section, it is clear

that to implement the idea of trajectory-based controller syn-

thesis, we need to have a control autobisimulation function

(CAF) ψ, and the feedback control laws for each initial

condition that we evaluate. Moreover, each the feedback

control laws must belong to the class of admissible controller

η(Σinp, ψ). The synthesis of the CAF and the controllers

for systems with linear affine dynamics is discussed in this

section.

A. Two-stage Controller Design

A specific class of these systems are systems with linear

affine dynamics. These are systems of the form

Σlin :
dx

dt
= Ax+ f +Bu, x ∈ R

n, u ∈ R
m, (16)

where A ∈ R
n×n, f ∈ R

n, and B ∈ R
n×m. For such

systems, we propose to construct CAF as quadratic functions

[8], [10], [15]. That is, we assume that

ψ(x, x′) =
1

2
(x− x′)TP (x− x′), (17)

where P ∈ R
n×n is a positive definite matrix. From

Definition 2, it follows that inequality (10) becomes

(x− x′)TP (A(x− x′) +B(k(x) − k(x′))) ≤ 0. (18)

We propose to construct a feedback law of the form

u(t) = k(x) = Kx+ v(t), (19)

where K ∈ R
m×n and v(t) ∈ R

m is a time-varying function,

both to be determined later. By substituting (19) into (18),

we obtain

(x− x′)TP (A+BK) (x− x′) ≤ 0. (20)

Finding K that satisfies inequality (20) is equivalent to

finding K such that (A + BK) is Hurwitz. A well known

result in control theory (c.f. [16]) states that there exist P and

K such that (20) holds if and only if (A,B) is stabilizable.

In this case, there are well known methods to synthesize the

suitable P and K . For example, by solving the following

linear matrix inequality3 (LMI) (see Section 7.2.1 in [17])

AP̃ +BD̃ + P̃AT +DTB ≤ 0, P̃ > 0, (21)

3We use the fact that A is Hurwitz if and only if AT is Hurwitz.

978-1-4244-5448-8/10/$26.00 ©2010 IEEE 1009



Fig. 2. The control law to be designed is shown in the shaded area. First,
we compute the feedback gain K such that the inner loop system admits an
autobisimulation function. Then, the signal v(t) is designed such that the
control goal is achieved for a given initial state.

for P̃ ∈ R
n×n and D ∈ R

m×n. The feedback gain K can

be computed from

KT = DP̃−1. (22)

From here, P can be obtained by solving the Lyapunov

equation

(A+BK)TP + P (A+BK) ≤ 0, P > 0. (23)

By applying the feedback control law (19) to Σlin, we

obtain a closed loop system

Σcl :
dx

dt
= (A+BK)x+ f +Bv, x ∈ R

n, v ∈ R
m. (24)

Notice that following to the discussion above, given that (A+
BK) is Hurwitz, we are still free to design v(t). In other

words, whatever v(t) is, the control law is admissible (see

Definition 3). The remaining task in the controller design is

therefore to use v(t) to steer the trajectories of the closed

loop system. The goal is to steer any given initial state in Init

to the goal set, without entering the unsafe set. We propose

to use heuristic ideas related to motion planning problem

with obstacle avoidance. In Subsection IV-C, we present an

example where this problem is solved. Please refer to Figure

2 for the block diagram of the controller synthesis.

B. Bounded Input Set

Consider the case where the input set is bounded, i.e. for

all t ∈ R+

‖u(t)‖ ≤M, (25)

for some positive bound M . We need to ensure that the

feedback law given in (19) satisfies this condition. The fact

that

‖u(t)‖ ≤ ‖K‖ ‖x‖ + ‖v(t)‖ , (26)

indicates that minimizing ‖K‖ can alleviate the difficulty

of designing v(t) that satisfies the control input bound, as

demonstrated by the example in Subsection IV-C. We can

approach this problem by modifying the LMI (21) into the

following semidefinite programming problem [18]

min ‖D‖ subject to (27)

AP̃ +BD + P̃AT +DTBT ≤ 0,

P̃ − I > 0.

It is clear that any (P̃ ,D) that is feasible for (21) can be

scaled so that it is feasible for (27). However, we also have

‖K‖ ≤ ‖D‖
∥

∥

∥
P̃−1

∥

∥

∥
≤ ‖D‖ , (28)

which shows that solving (27) effectively leads to the mini-

mization of an upper bound for ‖K‖.

C. Numerical Example

The following example illustrates the controller synthesis

procedure. Consider the following problem. Given an affine

linear system

Σ :
dx

dt
= Ax+ f +Bu, (29)

A =

[

0 1
−1 0.1

]

;B =

[

0
1

]

; f =

[

0
1

]

.

We want to design feedback control laws that will bring

any state in the initial set Init =
{

x ∈ R
2 | ‖x‖ ≤ 0.2

}

to

the goal set Goal =
{

x ∈ R
2 |

∥

∥x− [2, 0]T
∥

∥ ≤ 0.1
}

without entering the unsafe set Unsafe =
{

x ∈ R
2 |

∥

∥x− [1, 1]T
∥

∥ ≤ 0.3
}

, with the input constraint

‖u(t)‖ ≤ 2.

We want to implement a feedback control

u(t) = Kx+ v(t) =
[

k1 k2

]

x+ v(t). (30)

By solving the semidefinite program (27), we obtain the

controller

Kopt =
[

0 −0.1
]

, and ‖Kopt‖ = 0.1, (31)

and a suitable control autobisimulation function ψ(x, x′) =
1
2 ‖x− x′‖2 .

For any given initial condition [x1,0, x2,0]
T ∈ Init, the

next step is to synthesize the steering input v(t) of the closed

loop system that results in a valid trajectory4. We also need

to satisfy the bound on the input magnitude

‖Koptx(t) + v(t)‖ ≤ 2. (32)

The design that we pick is rather ad hoc, and inspired

by the potential function/navigation function technique in

motion planning with obstacle avoidance (see e.g. [19], [20]).

We notice that there are two tasks at hand: (i) steer the

trajectory to the goal set, and (ii) avoid the unsafe set. We

design a controller for each task, and combine them. The

controller for the first task can be designed as a feedback

law as follows

vgoal(t) = 1 − x2(t). (33)

The rationale behind this design is that it makes the center

of the goal set a stable equilibrium. Thus, if we ignore the

unsafe set, this steering input will ensure that the goal set

will be reached.

4i.e. v(t) can vary depending on the initial condition.

978-1-4244-5448-8/10/$26.00 ©2010 IEEE 1010



−0.5 0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

Init

Goal

Unsafe

x
0 x

1

x
2

Fig. 3. The close loop execution trajectories resulting from the controller
synthesis procedure. For each initial state, we can observe that the trajec-
tories are robustly safe and meet the goal set. We also show the robust
neighborhood around each initial state.

The design of the second controller borrows an idea from

potential function technique. We first define a scalar weight

function W : R
2 → R+,

W (x) =

{ 0.1
(0.3−‖[1,1]T−x‖)2

,
∥

∥[1, 1]T − x
∥

∥ ≤ 0.7

0, otherwise.
(34)

We then define the second controller also as feedback law,

as follows

vsafe(t) =

{

W (x), if BT
(

[1, 1]T − x
)

≥ 0
−W (x), if BT

(

[1, 1]T − x
)

< 0.
(35)

The rationale behind this controller design is as follows.

Notice that the sign of vsafe(t) is chose such that Bvsafe(t)
always pushes the state away from the unsafe set. The

magnitude of this ”pushing force” is defined by the weight

function W (x). Thus, it is zero if the state is sufficiently

far away from the unsafe set, and blows up to infinity as it

approaches the unsafe set.

Finally, we need to ensure that (32) is met. Based on the

size of the goal set, any robust neighborhood that we obtain

for any particular initial condition cannot have radius more

than 0.1. Therefore, we can bound the variation of the control

input u(t) within any robust neighborhood as follows

‖∆u‖ ≤ ‖K‖ ‖∆x‖ = 0.1 · 0.1 = 0.01. (36)

We then define the overall steering input such that

u(t) = Z(Koptx(t) + vgoal(t) + vsafe(t), 1.99), (37)

where Z : R × R+ → R is simply the saturation function

Z(x, y) :=







−1.99, x < −y.
x, |x| ≤ y

1.99, x > y.
(38)

The benefit of the trajectory-based controller synthesis

allows us to simply simulate and tune the proposed

controller for a finite set of initial conditions. The robust-

ness property of the trajectories then allows us to generalize

the results to cover the whole initial set. Figure 3 shows

the application of this design procedure for three different

initial conditions. In each case, we can see that the designed

steering input v(t) results in a valid trajectory. We also

compute the robust neighborhood around each initial state.

Only three trajectories are shown so as not to clutter the

figure. However we can further show that with uniform

sampling of the initial set, we can cover it with 21 robust

neighborhood.

V. CONTROLLER SYNTHESIS FOR HYBRID SYSTEMS

The design paradigm presented in the previous section can

be also applied to hybrid systems. Consider a standard model

of hybrid systems, H = (X ,L, E, Inv,Σ), where X is the

continuous state space of the system, L is the finite set of

discrete states (locations), E is the set of transitions, Inv :
L → 2X is the invariant set of a location, and Σ is a family

of dynamical systems with input that defines the continuous

dynamics in each location. That is, for each location l ∈ L,

we define the continuous dynamics as

Σ(l) :
dx

dt
= fl(x, u), x ∈ X , u ∈ U . (39)

A transition e ∈ E is a 4-tuple (l, l′, g, r), where l ∈ L
is the origin of the transition, l′ ∈ L is the target of the

transition and that each location, g ⊂ ∂Inv(l) is the guard

of the transition, which is a subset of the boundary of the

invariant set of location l, and r : g → Inv(l′) is the reset

map that resets the continuous state at the new location. We

assume that the reset map r is continuous, the continuous

state space is R
n, the invariant sets are closed, fl(x, u) is

locally Lipschitz in x and continuous in u for all l ∈ L, the

transitions are deterministic in the sense that the guards of

all outgoing transitions from a location are disjoint, and that

the system does not deadlock or possess Zeno behavior. In

analyzing the safety of the system, we assume that there is

a subset Unsafe ⊂ X × L of unsafe states. A trajectory of

the hybrid system corresponds to an unsafe execution if it

intersects with the unsafe set.

To define the control problem, we define a set of initial

state Init⊂ X × L, in which we assume the hybrid state

begins at t = 0. We also define a goal set, Goal⊂ X ×L in

which all executions must terminate. As before, the control

problem is defined as finding the feedback control strategy

that is guaranteed to bring any initial state in Init to the

goal set without entering the unsafe set. Without any loss

of generality, we can assume that the set Init is contained

in (the invariant set of) one location, called linit ∈ L. If

this is not the case, we can divide the problem into several

subproblems, each with an Init set contained in a specific

location. Similarly, we can assume the Goal is also entirely

contained in one location, called lgoal ∈ L.
We approach this problem with a hierarchical control

design, which can be described in the following steps:

Step 1: Discrete Synthesis. We compute a discrete trajectory

that starts in linit and ends in lgoal. By discrete trajectory, we

mean an alternating sequence of locations and transitions

linit = l0
e1→ l1

e2→ l2
e3→ · · ·

eN→ lN = lgoal. (40)

Such a discrete trajectory is not necessarily unique, but at

this step we only need one. The computation of a discrete

978-1-4244-5448-8/10/$26.00 ©2010 IEEE 1011



trajectory like this, albeit formally undecidable, is a standard

procedure in formal verification of discrete event systems

[21].

Step 2: Continuous Synthesis. In this step, we synthesize

the continuous controller for each of the visited locations

(l0,1,...,N ) in order to implement the computed discrete

trajectory. Basically, in each location li, we define an initial

set based on how li is reached from li−1. We then formulate

the control problem of bringing the continuous state from this

initial set to the goal set, which is defined as a set beyond

the guard transition ei that will bring the state to location

li+1 without entering the forbidden set. The forbidden set

is defined as the union of Unsafe, and the guards of other

outgoing transitions from li. If we are able to construct a

continuous controller that implements the discrete trajectory,

then the hybrid control problem is solved. Otherwise, we go

back to Step 1, and compute another discrete trajectory.

Remark 3: Similar two-step approach to solve the control

problem with application in motion control synthesis for fully

actuated robots has been discussed in the literature (see [22]

and the references therein). The discrete part of the control

goal in [22] is expressed as a temporal logic formula, which

is richer than the one presented in this paper. However,

we would like to point out that the continuous synthesis

presented in this paper can also be applied to implement

the continuous part of the controller in [22].

Remark 4: Due to space limitation, we refer the reader to

the extended version of this manuscript [23] for an explicit

representation of the algorithm outlined in this section, and

a numerical example for its implementation.

VI. DISCUSSION

The result presented in this paper can be generalized

by replacing the motion planning box in Figure 2 with

other means of obtaining valid trajectories for given initial

conditions. These include other heuristics based methods,

such as fuzzy control [24], or expert system based methods

(cf. [25]) that allow for integration of human operators’

experience into the control strategy. The advantage offered

by the theory of trajectory-based analysis is that we can

formally guarantee the safety and correctness of the resulting

controllers.

Finally, we would like remark that although in this paper

we restrict our attention to affine continuous dynamics, the

theory of trajectory-based analysis is applicable to nonlinear

dynamics as well. In further investigation, we will explore

the use of local trajectory-based analysis techniques for

nonlinear dynamics, extending the results presented in [15].

Acknowledgement: This work is partially supported by an

NSF CAREER grant (#0953976). The author would like to

thank Jeff Ban for the stimulating discussions that lead to

this paper.

REFERENCES

[1] I. Mitchell and C. J. Tomlin, “Level set methods in for computation
in hybrid systems,” in Hybrid Systems: Computation and Control,
vol. 1790 of LNCS, pp. 310–323, Springer Verlag, 2000.

[2] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg, “On systematic
simulation of open continuous systems,” in Hybrid Systems: Compu-

tation and Control, vol. 2623 of LNCS, pp. 283–297, Springer, 2003.
[3] C. Belta and L. Habets, “Controlling a class of nonlinear systems on

rectangles,” IEEE Trans. Automatic Control, vol. 51, no. 11, pp. 1749–
1759, 2006.

[4] L. Habets, P. J. Collins, and J. H. van Schuppen, “Reachability and
control synthesis for piecewise-affine hybrid systems on simplices,”
IEEE Trans. Automatic Control, vol. 51, no. 6, pp. 938–948, 2006.

[5] G. Reissig, “Computation of discrete abstractions of arbitrary memory
span for nonlinear sampled systems,” in Hybrid Systems: Computation

and Control, vol. 5469 of LNCS, pp. 306–320, Springer, 2009.
[6] P. Tabuada, “An approximate simulation approach to symbolic con-

trol,” IEEE Trans. Automatic Control, vol. 53, no. 6, pp. 1406–1418,
2008.

[7] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10,
pp. 2508–2516, 2008.

[8] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE Trans. Automatic Control, vol. 52, no. 5,
pp. 782–798, 2007.

[9] A. Girard and G. J. Pappas, “Verification using simulation,” in Hybrid
Systems: Computation and Control, vol. 3927 of LNCS, pp. 272–286,
Springer Verlag, 2006.

[10] A. A. Julius, G. Fainekos, M. Anand, I. Lee, and G. J. Pappas, “Robust
test generation and coverage for hybrid systems,” in Hybrid Systems:
Computation and Control, vol. 4416 of LNCS, pp. 329–342, Springer
Verlag, 2007.

[11] F. Lerda, J. Kapinski, E. M. Clarke, and B. H. Krogh, “Verification
of supervisory control software using state proximity and merging,”
in Hybrid Systems: Computation and Control, vol. 4981 of LNCS,
pp. 344–357, 2008.

[12] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis,
vol. 15, no. 11, pp. 1163–1170, 1983.

[13] E. D. Sontag, “A ’universal’ construction of Artstein’s theorem on
nonlinear stabilization,” Systems and Control Letters, vol. 13, no. 2,
pp. 117–123, 1989.

[14] D. Angeli, “A Lyapunov approach to incremental stability properties,”
IEEE Trans. Automatic Control, vol. 47, no. 3, pp. 410–421, 2002.

[15] A. A. Julius and G. J. Pappas, “Trajectory based verification using
local finite-time invariance,” in Hybrid Systems: Computation and

Control, vol. 5469 of LNCS, pp. 223–236, Springer, 2009.
[16] W. L. Brogan, Modern control theory. New Jersey: Prentice Hall

International, 1991.
[17] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in Systems and Control Theory. Philadelphia: SIAM,
1994.

[18] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004. Available online at
www.stanford.edu/ boyd/cvxbook/.

[19] A. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential fields,” IEEE Trans. on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[20] D. C. Conner, A. A. Rizzi, and H. Choset, “Composition of local
potential functions for global robot control and navigation,” in Proc.

IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3546–3551, 2003.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[22] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Tem-
poral logic motion planning for dynamic mobile robots,” Automatica,
vol. 45, no. 2, pp. 343–352, 2009.

[23] A. A. Julius, “Trajectory-based controller design for hybrid
systems with affine continuous dynamics.” submitted to
IEEE CASE 2010, extended manuscript. Available online at
http://www.ecse.rpi.edu/∼agung, 2010.

[24] K. M. Passino and S. Yurkovich, Fuzzy Control. Addison-Wesley,
1998.

[25] B. K. Bose, “Expert system, fuzzy logic, and neural network appli-
cations in power electronics and motion control,” Proceedings of the

IEEE, vol. 82, no. 8, pp. 1303 – 1323, 1994.

978-1-4244-5448-8/10/$26.00 ©2010 IEEE 1012


