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Abstract— Parallel-channel flow mal-distribution and
pressure-drop flow oscillations are two of the most severe
dynamic instabilities for boiling flow especially in microchannel
systems. This paper presents a framework for the transient
analysis and active control of microchannel flow instabilities
at a system-level view. A lumped two-phase flow system model
is derived from the momentum balance equation to capture
the characteristics of the microchannel heat exchangers.
Bifurcations of flow distribution and inlet pressure can
arise in parallel-channel two-phase flow systems. This paper
investigates the control-theoretic properties with different
control devices, including inlet valves and supply pump.
Individual control valves at the inlet of each channel can
be used to suppress both flow mal-distribution and flow
oscillations effectively, although this scheme is subject to
higher pressure loss and potential higher supply pumping
power. Using the pump alone can only suppress pressure-drop
flow oscillations, but not for flow mal-distribution in two
identical parallel channels. However, we make an interesting
observation that with different channel properties, we regain
controllability from the pump and observability from a single
channel flow rate measurement.

I. INTRODUCTION

Thermal challenges in next-generation electronic systems

are attracting more attention due to the rapidly increasing

demands of high-power density electronics [1]. The heat

dissipation rate of defense radars, directed-energy laser, and

electromagnetic weapons will exceed 1000 W/cm2 in the

near future [2], while the surface temperatures of chips

and devices need to be maintained below 85 ◦C in naval

all-electric surface ships [3]. In recent years, microchannel

boiling has become a popular scheme in these high heat

flux electronics cooling challenges [2], [4]–[6] since boiling

utilizes the latent heat of vaporization with a lower mass flow

rate. However, two-phase microchannel heat sinks have a

critical operation problem: cooling systems with microchan-

nel heat sinks are prone to various boiling flow instabilities

(e.g., pressure-drop and thermal oscillations, parallel-channel

instabilities [5], [6]).

Therefore, understanding of flow instabilities is of par-

ticular importance for the design, control, and performance

prediction of any two-phase system, especially the design

of mini/microchannel evaporators [4]–[6], [8]. If there is

no compressible volume upstream of a boiling system, the
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equilibrium in the two-phase negative-slope region is un-

stable [7], [9], [10], [12]. This static instability is called

the Ledinegg instability. When an upstream compressible

volume is present and the flow operates in the two-phase

negative-slope region, a dynamic instability (oscillation)

would occurs [8]. This is called the pressure-drop instability,

one of the well-known dynamic flow instabilities in two-

phase flows. A compressible volume of gas may exist in long

boiling channels (length/diameter, L/D, ≥∼150) or can be

artificially introduced by placing a surge tank upstream of

the heated section [7], [9]. Such L/D ratios are typically

encountered in microchannels, and indeed, corresponding

oscillations have been observed by many researchers [5],

[6], [12]–[14]. Although there has been considerable research

efforts focused on dynamic flow instabilities in microchan-

nels, most of the existing work has been experimental

demonstrations and visualization. The control of the dynamic

flow boiling instabilities in microchannels is still a problem.

Passive control methods have been proposed in the past,

with inlet restrictors [14] and reentrant cavities [13]. The

inlet restrictor instability suppression methods are limited

by the pumping power capability of micro or mini-pumps

since a larger pressure drop could arise. The focus in this

paper is on active two-phase flow control as an alternative

or complementary option for instability suppression.

II. PRELIMINARIES

A. Momentum Balance

The two-phase flow in a horizontal microchannel may be

modeled by the one-dimension momentum balance equation:

∂ṁ

∂t
+

∂

∂z

(

ṁ2

ρA

)

+
∂PA

∂z
+ Fvisc = 0 (1)

where ṁ is the mass flow rate, and Fvisc is the frictional

shear force due to fluid viscosity. Integrating through the

channel length, one obtains the lumped momentum balance

equation:

I ·
dṁ

dt
= ∆PS(ṁ) − ∆PD(ṁ) (2)

I =
L

A
, ∆, ∆PD = ∆Pa + ∆Pf

where ∆PS is the supply pressure drop; the demand pressure

drop ∆PD includes both the acceleration and frictional

pressure drops, ∆Pa and ∆Pf , respectively.
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B. Flow Instabilities

A typical shape of the demand curve is shown in Fig. 1

(no valve case). From Eq. (2), it is clear that under the

constant supply pressure (dotted line), the equilibrium in the

two-phase region is unstable. More generally, the stability

condition at the equilibrium is [7], [10]

∂(∆PD)

∂ṁ
>

∂(∆PS)

∂ṁ
(3)

where ∆Ps(ṁ) and ∆PD(ṁ) intersect. For a constant sup-

ply pressure, the equilibrium in the positive-slope region of

the demand curve corresponds to stable operating conditions

(in subcooled and superheated regions), and the equilibrium

in the two-phase region is unstable. The unstable equilibria

means that the system will shift to the superheated or sub-

cooled operating points, thereby causing the heat dissipation

performance to deteriorate, especially in microchannels [10].
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Fig. 1. Two-phase flow characteristics of individual microchannel heat
exchanger (solid: without inlet valve; dashed: with inlet valve of 50%
opening; dash-dotted: with inlet valve of 25% opening; dotted: constant
supply pressure drop)

III. MAIN RESULTS

A. Ledinegg Instability in Parallel-Channel Flows

Suppose a heat sink has N identical parallel channels,

then the overall mass flow rate through the boiling channels

is ṁ =
∑N

i=1
ṁi, where ṁi is the mass flow rate across the

i-th channel. By applying the momentum balance (2) to each

boiling channel, one has

Ic

dṁi

dt
= ∆PS

c − ∆P i
c = Pin(ṁ) − Pe − ∆P i

c(ṁi) (4)

where Ic is the lumped channel inertia, Pin the inlet pressure,

Pe is the exit pressure, and ∆P i
c the demand pressure drop

in the i-th channel with a shape similar to that in Fig. 1.

We shall assume that the channel exit pressure Pe is fixed.

The inlet pressure Pin is dependent on the overall flow ṁ
driven by the supply pump. The system (4) linearized about

the equilibrium flows {ṁ∗
i } is

Ic

d(δṁi)

dt
=

∂Pin

∂ṁ
· (δṁ) −

∂(∆P i
c)

∂ṁi

· (δṁi) (5)

Defining

si =
1

Ic

∂(∆P i
c)

∂ṁi

, s0 =
1

Ic

∂(Pin)

∂ṁ

with δṁ =
∑N

i=1
δṁi, the linearized system (5) may be

expressed as

d(δṁi)

dt
= (s0 − si) · (δṁi) +

N
∑

j=1,j 6=i

s0 · (δṁj) (6)

The stability of the linearized system is determined by the

eigenvalues of

A =
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Stability conditions for several special cases are considered

below:

• N = 1: The system is stable if and only if s1 > s0.

This is just the single-channel Ledinegg stability case

in Eq. (3).

• N = 2: The characteristic equation is λ2 + (s1 + s2 −
2s0)λ+ s1s2 − (s1 + s2)s0 = 0. The system is stable if

and only if s1 + s2 > s0 and s1s2 − (s1 + s2)s0 > 0.

For a constant supply pressure, s0 = 0, which implies

flow stability if and only if both s1 and s2 are positive

[15]. For the negative infinity supply pressure slope,

s0 → −∞, from positive displacement pump, the flow

stability condition is, s1 + s2 > 0.

• N = 3: The corresponding stability conditions may be

obtained using the Routh-Hurwitz criterion:






























t1 = (s1 + s2 + s3) − 3s0 > 0

t2 = s1s2 + s1s3 + s2s3 − 2s0(s1 + s2 + s3) > 0

t3 = s1s2s3 − s0(s1s2 + s1s3 + s2s3) > 0

t4 = t1t2 − t3 > 0.

(7)

Consider a two parallel-channel system as a special case,

with the demand channel pressure drop curve as in Fig. 1 (no

valve case). There may be up to three equilibria depending on

the flow rates. For a constant supply pressure, the equilibria

and their stability (bifurcation) are shown in the top graph of

Fig. 2. Note that in the two-phase region, the uniform flow

distribution, ṁ = 2ṁ1, is the desired operating condition

since it corresponds to enhanced heat transfer performance

for both channels. Unfortunately, this operating state is also

unstable.

The stability condition may be improved by adding in a

control valve before each channel. In this case, the momen-

tum balance of each parallel flow line (including both the

control valve and heat exchanger) becomes

Ic

dṁi

dt
= Pin(ṁ) − Pe − ∆P i

c(ṁi) − ∆P i
v (8)
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where ∆P i
v is the control valve pressure drop:

∆P i
v =

κv · ṁi

Ai
v

= κv · wi · ṁi (9)

where κv > 0 is the valve characteristic coefficient, Ai
v the

valve opening position within the range of (0, 1], and wi =
1/Ai

v . The stability for the constant supply pressure case then

becomes:

si > −κvwi/Ic (10)

which improves the range of stability. As shown in Fig. 1, the

negative-sloped region is reduced with greater valve pressure

drop (i.e., smaller Ai
v). The bifurcation range for the two-

phase flow is also reduced as in the bottom graph of Fig. 2.
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ṁ (cg/s)

No Valve

0 2 4 6 8 10 12 14 16 18 20
0

5

10

ṁ
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Fig. 2. Bifurcation curves of two-phase flow distribution ṁ1/ṁ versus
total flow rate ṁ in two parallel channels with/without inlet valves (blue
marker: stable; red dashed line: unstable)

The slope of the combined valve/channel system will

always be positive if the control valve resistance becomes

dominant in each flow line. From our previous research [11],

for a given heat load, the pressure drop of a boiling channel

can be represented by a cubic function within the local two-

phase region,

∆P i
c = k1ṁ

3

i + k2ṁ
2

i + k3ṁi + k4 (11)

The stability condition is ∂(∆P i
c)/∂ṁi+∂(∆P i

v)/∂ṁi > 0,

which becomes

3k1ṁ
2

i + 2k2ṁi + k3 + κvwi > 0 (12)

A sufficient condition is

wi =
1

Ai
v

>
k2

2

3k1κv

−
k3

κv

(13)

When Av is sufficiently small, e.g. Av ≈ 25% as in Fig. 1,

the flow characteristic curve becomes monotonic, and the

parallel-channel Ledinegg instability will no longer appear.

B. Parallel-Channel Flow Oscillations

The flow loop considered here may be represented by

the schematic diagram Fig. 3, where the working fluid,

subcooled water, is supplied to both the compressible surge

tank and the parallel microscale heat exchangers. The mi-

crochannel flow meter is placed before the boiling system

to record the transient flow rate changes. Due to the laminar

flow condition in microchannel applications, the differential

pressure drop to flow rate calibration curve is an affine

function: ∆PFM = α1 · ṁ + α2 [11]. We now consider

the stability of two parallel channels, each with flow char-

acteristics as in Fig. 1, with an upstream surge tank. We

shall regard the upstream flow rate, ṁ0, (adjustable using

the upstream pump) and the each individual channel valve

opening, Ai
v , as the potential control variables.

Fig. 3. Schematic of parallel heat exchangers with upstream surge tank

From mass balance, we have ṁ0 = ṁ+ṁs = ṁ1+ṁ2+
ṁs, where ṁ is the total boiling mass flow rate measured

by a flow meter,

∆PFM = P0 − Pa = α1 · ṁ + α2 (14)

ṁi is the flow rate of channel i, and ṁs is the flow rate into

the surge tank.

The momentum balance of the surge tank gives

Is

dṁs

dt
= P0 − Ps − ∆Pd. (15)

Since laminar subcooled liquid flows into the surge tank, its

demand pressure drop from the flow restrictor becomes

∆Pd = γ · ṁs, γ > 0

where γ is a lumped coefficient for the pressure loss in the

line connecting the surge tank to the main flow line.

In the tank, the gas is assumed to be inert. Therefore, the

pressure Ps and the gas volume Vs are related by

Ps · V
n
s = constant (16)

where n is a fixed polytropic index of expansion. Differen-

tiating (16) yields

dPs

dt
· V n

s + Ps · nV n−1

s

dVs

dt
= 0

It follows
dPs

dt
= −

nPs

Vs

dVs

dt
(17)

The compressible gas volume change in the surge tank is

proportional to the upstream liquid inflow with a density ρf ,

ṁs = −ρf

dVs

dt

Substituting dVs/dt into (17), one obtains

dPs

dt
= Cs · ṁs, Cs =

nPs

ρfVs

(18)
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When there exists a control valve before each channel as

in Fig. 3, with the valve characteristics in (9), the momentum

balance of the channel (including both the control valve and

heat exchanger) becomes

Ic

dṁi

dt
= Pa(ṁ, ṁs) − ∆P i

c(ṁi) − ∆P i
v(ṁi) (19)

where ∆P i
c is the channel i pressure drop, and ∆P i

v the

channel i valve pressure drop.

This is a three-state system with state variables

(ṁs, ṁ1, ṁ2). To explicitly show the influence of the control

variable ṁ0, we transform the system to one with state

variables (ṁ, m̈, ṁ1), where ṁ is the total flow rate. From

mass balance, we have

ṁs = ṁ0 − ṁ, ṁ2 = ṁ − ṁ1

Summing the boiling flow dynamics (19) for two parallel

channels yields

Ic

d(ṁ1 + ṁ2)

dt
= 2Pa − 2Pe − ∆P 1

b − ∆P 2

b

Ic

2

dṁ

dt
= Pa − Pe −

∆P 1

b + ∆P 2

b

2
(20)

where ∆P i
b = ∆P i

c +∆P i
v is the total channel pressure drop.

Then by subtracting (20) from the first channel dynamics

(19), one can easily derive

dṁ1

dt
=

1

2

dṁ

dt
+

∆P 2

b − ∆P 1

b

2 · Ic

(21)

To eliminate ṁs, we differentiate Eq. (15) to obtain

Is

d2ṁ

dt2
+ γ

dṁ

dt
+ Csṁ +

dP0

dt

= Csṁ0 + γ
dṁ0

dt
+ Is

d2ṁ0

dt2
(22)

From the flow meter equation (14), we have

d(∆PFM )

dṁ

dṁ

dt
=

dP0

dt
−

dPa

dt
= α1

dṁ

dt
(23)

which may be used to eliminate dP0/dt in Eq. (22).

To further eliminate dPa/dt, we differentiate (20) to obtain

Ic

2

d2ṁ

dt2
=

dPa

dt
−

1

2

d(∆P 1

b )

dṁ1

dṁ1

dt
−

1

2

d(∆P 2

b )

dṁ2

dṁ2

dt

−
κv

2

(

ṁ1

dw1

dt
+ ṁ2

dw2

dt

)

(24)

Substituting (21) into (24), and combining with (22) and

(23), we can summarize the parallel-channel flow oscillation

model as (25)-(26) (at the top of the next page) where the

slope of the individual channel pressure drop ∆P i
b = ∆P i

c +
∆P i

v includes two parts:

• Pressure-drop slope of the two-phase flow in each

channel (from Eq. (11)):

d(∆P i
c)

dṁi

= δi

(

ṁi − ṁi
a

) (

ṁi − ṁi
b

)

, δi > 0 (27)

ṁi
a, ṁi

b corresponds to the mass flow of saturated vapor

and saturated liquid, respectively, and ṁi
a < ṁi < ṁi

b.

• Pressure-drop slope of subcooled liquid flow through

each control valve

d(∆P i
v)

dṁ
= κv/Ai

v = κv · wi (28)

C. Active Flow Instability Control

As shown in the flow loop schematic (Fig. 3), the system

inlet flow rate ṁ0 is easily manipulated by a positive

displacement pump and is linearly dependent on the pump

voltage in practice. As a manipulated variable, ṁ0 is no

longer fixed, and its change rate will definitely affect the flow

dynamics of both the surge tank and the boiling channel.

In addition, the control valve opening positions Ai
v (or

equivalently wi) are other manipulated variables, which can

be used to maintain a balanced flow through parallel heat

exchangers as mentioned in Section III-A.

When the inlet flow resistance is large enough, or equiva-

lently, the control valve position is small enough, the pressure

drop of the combined valve and heat exchanger flow path will

not decrease as the flow rate increases. This also removes

one of the triggering conditions for pressure-drop flow os-

cillations, which was mentioned in the introduction section.

More specifically, for a two-phase heat exchanger with flow

characteristics like Eq. (11), the stabilizing condition of

control valve for both the parallel-channel and pressure-drop

flow instabilities can be summarized as follows

Ai
v ≤

3k1κv

k2

2
− 3k1k3

(29)

Once the condition is satisfied, flow stability is expected

to be achieved (given in Fig. 5). Obviously, smaller valve

opening position means much higher flow resistance and

larger pressure loss, so it is desirable to investigate other

active flow control strategies for the suppression of two-

phase flow instabilities.

Consider another control variable – inlet flow rate – and

fix both control valves. Assuming that ṁ0 = Z0 + u, where

u is a variation to a reference flow rate Z0, one has

dṁ0

dt
=

du

dt
,

d2ṁ0

dt2
=

d2u

dt2

Also, let Z = ṁ − Z0, Y = ṁ1 − Z0/2, accordingly

∆P 1

b = g1(Y ), ∆P 2

b = g2(Z − Y ),

d(∆P 1

b )

dṁ1

= g′
1
(Y ),

d(∆P 2

b )

dṁ2

= g′
2
(Z − Y )

then one can get the following control-oriented parallel flow

oscillation model,

d2Z

dt2
+

[

γ + α1

I
+

g′
1
(Y ) + g′

2
(Z − Y )

4 · I

]

dZ

dt
+

Cs

I
· Z

=
Cs

I
· u +

γ

I

du

dt
+

Is

I

d2u

dt2

+
g2(Z − Y ) − g1(Y )

4 · Ic · I
[g′

2
(Z − Y ) − g′

1
(Y )]

:=
Cs

I
· U + h(Z, Y ), I =

Ic

2
+ Is (30)

dY

dt
=

1

2

dZ

dt
+

g2(Z − Y ) − g1(Y )

2 · Ic

(31)
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(

Ic

2
+ Is

)

d2ṁ

dt2
+

(

γ + α1 +
1

4

[

d(∆P 1

b )

dṁ1

+
d(∆P 2

b )

dṁ2

])

dṁ

dt
+ Csṁ

= Csṁ0 + γ
dṁ0

dt
+ Is

d2ṁ0

dt2
+

∆P 2

b − ∆P 1

b

4 · Ic

[

d(∆P 2

b )

dṁ2

−
d(∆P 1

b )

dṁ1

]

+
κvṁ1

2

(

dw2

dt
−

dw1

dt

)

−
κvṁ

2

dw2

dt
(25)

dṁ1

dt
=

1

2

dṁ

dt
+

∆P 2

b − ∆P 1

b

2 · Ic

(26)

Notice that U in (30) is defined as

U = u +
γ

Cs

du

dt
+

Is

Cs

d2u

dt2

and h(Z, Y ) represents the flow excursion and flow interac-

tion among parallel channels,

h(Z, Y ) =
∆P 2

c − ∆P 1

c

4 · Ic · I

[

d(∆P 2

c )

dṁ2

−
d(∆P 1

c )

dṁ1

]

=
g2(Z − Y ) − g1(Y )

4 · Ic · I
[g′

2
(Z − Y ) − g′

1
(Y )]

which can be regarded as the disturbance of the overall flow

system. Moreover, defining the state variables x1 = Z, x2 =
dZ/dt, x3 = Y , and letting the coefficients

c1 =
γ + α1

I
, c2 =

1

4I
, c3 =

Cs

I
, c4 =

1

4IcI
, c5 =

1

2Ic

we obtain the following state space representation of the

normalized flow system (30)-(31)


















ẋ1 = x2

ẋ2 = −c3x1 − x2 · f(x1, x3) + c3U + h(x1, x3)

ẋ3 = 0.5x2 + c5 · [g2(x1 − x3) − g1(x3)]

(32)

where f(x1, x3) = c1 + c2 · [g′
1
(x3) + g′

2
(x1 − x3)] and

h(x1, x3) = c4 ·[g2(x1−x3)−g1(x3)][g
′
2
(x1−x3)−g′

1
(x3)].

The equilibrium x∗ = [x∗
1
, x∗

2
, x∗

3
] is given by the solution

of x∗
2

= 0, c3x
∗
1

= h(x∗
1
, x∗

3
), g2(x

∗
1
− x∗

3
) = g1(x

∗
3
). If the

channels are identical, i.e., g1 = g2, the equally distributed

flow condition, x∗
1

= 2x∗
3
, is always an equilibrium.

Around the equilibrium point x∗, the linearized system is

f(x1, x3), h(x1, x3) and get the following linearization of

the nonlinear flow system (32)

Ẋ = A · X + B · U, (33)

A =





0 1 0
a21 a22 a23

a31 0.5 a33



 ,B =





0
c3

0



 ,

a21 = −c3 − c2x
∗

2g
′′

2 (x∗

3) + c4g
′

2(x
∗

3)[g
′

2(x
∗

3) − g
′

1(x
∗

3)],

a22 = −c1 − c2[g
′

1(x
∗

3) + g
′

2(x
∗

3)],

a23 = −c2x
∗

2[g
′′

1 (x∗

3) − g
′′

2 (x∗

3)] − c4[g
′2

2 (x∗

3) − g
′2

1 (x∗

3)]

a31 = c5 · g
′

2(x
∗

3), a33 = −c5 · g
′

1(x
∗

3) − c5 · g
′

2(x
∗

3).

The controllability matrix may be computed by

Qc = [B AB A2B]

=





0 c3 c3a22

c3 c3a22 c3a21 + c3a
2

22
+ 0.5c3a23

0 0.5c3 c3a31 + 0.5c3a22 + 0.5c3a33



 (34)

For two identical parallel channels, a23 = 0, a31 +0.5a33 =
0, the first and third rows of (34) are linearly dependent, thus

Qc is not of full rank. This means that the total mass flow

ṁ and the individual mass flow ṁ1 in a uniform parallel-

channel system are not fully controllable around the desired

equilibrium by using the upstream pump alone. However, it

is interesting to note that for the non-identical-channel flow

case (when the individual flow characteristics, gi, are not the

same), the overall flow system is controllable by just using

the pump without the individual valve control.

There is also the dual result on observability based on the

measurement of the total mass flow rate ṁ, i.e., x1. This

means C = [1 0 0], and the observability matrix can be

calculated as

Q1

o
= [CT (CA)T (CA2)T ]T

=





1 0 0
0 1 0

a21 a22 a23



 (35)

For two uniform parallel-channel flow system, a23 = 0;

hence, the overall flow system (32) is unobservable, and

the state x3 cannot be estimated based on x1. This implies

that individual channel flow dynamics cannot be predicted

from the total flow rate measurement. However, we can again

easily show that for the non-identical channel case, the full

state is observable from the total mass flow rate.

We have only included a simple simulation example for the

identical channel case. Consider the general model structure

(30) of the flow oscillation system. It is known from the

analysis in [11] that the oscillation amplitude is dependent

on the nonlinear damping function associated with dZ/dt.
Therefore, one can design the feedback control law to force

the nonlinear damping function to be always positive. To

demonstrate the effectiveness, the feedback control law,

ṁU
0

:= U + Z0 = Z0 −K0x2/c3 = Z0 −K0Ż · I/Cs (36)

is applied since the t = 200th second. The boundary

control gain, K0 = 14.93, is chosen based on the identified

oscillation model parameters in [11]. Active flow oscillation

control responses are shown in Fig. 4. Stable and uniform

flow distribution are observed, but when a pulse disturbance

is imposed on one of the channels, the flow mal-distribution

occurs with one channel dried out and the other flooded.

This simulation shows that for identical-parallel-channel

flow system, the inlet mass flow rate alone is not sufficient

to control both pressure-drop and parallel-channel flow in-

stabilities. With additional control device such as the inlet
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Fig. 4. Active control of pressure-drop flow oscillations coupled with
parallel-channel flow mal-distribution (inlet flow control ṁU

0
applied since

the 200-th second and pulse disturbance imposed at the 400-th second)

control valves as in Fig. 3, the operating state of identically-

distributed flows becomes stable as shown in Fig. 5.

0 100 200 300 400 500 600
0

5

10

15

ṁ
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Fig. 5. Active control of pressure-drop flow oscillations coupled with
parallel-channel flow mal-distribution (individual valve control Ai

v applied
at the t = 200sec and pulse disturbance imposed at the t = 400sec)

IV. CONCLUSIONS AND FUTURE WORKS

This paper analyzes the stability and control of parallel-

channel flow systems. By using an inlet control valve for

each individual channel, the parallel-channel instability can

be suppressed and the uniform two-phase flow distribution

is achieved. Although the valve-based control scheme is

effective, the drawback is that the flow system has to sustain

much higher pressure loss and the instrumentation is more

complex. When the upstream pump is used as the control

variable for an identical-channel flow system, it is only

possible for the control of pressure-drop flow oscillations

but not for the control of flow in the individual channels.

However, we demonstrate an interesting result that if the

channels are not identical, the system is full state control-

lable. There is also the dual result, that the channel flow

rates are not observable from the total flow rate under the

identical-channel case, but are observable when the channels

characteristics are different. This study is being extended to

more general N -channel cases. Most of microchannel heat

sinks are fabricated to have uniform multiple parallel chan-

nels. This paper shows that this is actually undesirable from

the control perspective. We are now actively pursuing this

research direction to exploit non-identical channel designs.
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