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V. CONCLUSION

We have addressed the problem of robust H∞ control for linear
NCSs. We have proposed a new Lyapunov–Krasovskii functional,
which is based on both the lower and upper bounds of time-varying
network-induced delay, to derive a new delay-dependent sufficient con-
dition on the existence of the H∞ controller. The sufficient condition has
been less conservative since we have successfully avoided: 1) overly
bounding for some terms; 2) employing model transformation and
bounding technique for some cross terms that are widely used in the
existing literature; and 3) introducing slack variables. The effective-
ness of the proposed results has been shown through two numerical
examples.
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[7] O. C. Imer, S. Yüksel, and T. Basar, “Optimal control of LTI systems over
unreliable communication links,” Automatica, vol. 42, no. 9, pp. 1429–
1439, Sep. 2006.

[8] D. Kim, Y. Lee, W. Kwon, and H. Park, “Maximum allowable delay
bounds of networked control systems,” Control Eng. Practice, vol. 11,
no. 11, pp. 1301–1313, Nov. 2003.

[9] F.-L. Lian, J. Moyne, and D. Tilbury, “Network design consideration for
distributed control systems,” IEEE Trans. Control Syst. Technol., vol. 10,
no. 2, pp. 297–307, Mar. 2002.

[10] H. Lin, G. Zhai, and P. J. Antsaklis, “Robust stability and disturbance
attenuation analysis for a class of networked control systems,” in Proc.
42nd IEEE Conf. Decis. Control (CDC 2003), Dec., pp. 1182–1187.

[11] B. Lincoln and B. Bernhardsson, “Optimal control over networks with long
random delays,” in Proc. Int. Symp. Math. Theory Netw. Syst. (MTNS),
2000.

[12] Q. Ling and M. D. Lemmon, “Optimal dropout compensation in networked
control systems,” in Proc. 42nd IEEE Conf. Decis. Control (CDC 2003),
Dec., pp. 670–675.

[13] X. Mao, N. Koroleva, and A. Rodkina, “Robust stability of uncertain
stochastic differential delay equations,” Syst. Control Lett., vol. 35, no. 5,
pp. 325–336, Dec. 1998.

[14] Y. Moon, P. Park, and W. Kwon, “Delay-dependent robust stabilization
of uncertain state-delayed systems,” Int. J. Control, vol. 74, no. 14,
pp. 1447–1455, Sep. 2001.

[15] J. Nilsson, “Real-time control systems with delays,” Ph.D. dissertation,
Lund Inst. Technol., Lund, Sweden, 1998.

[16] H. Park, Y. Kim, D. Kim, and W. Kwon, “A scheduling method for network
based control systems,” IEEE Trans. Control Syst. Technol., vol. 10,
no. 10, pp. 318–330, May 2002.

[17] D. Peaucelle and F. Gouaisbaut, “Discussion on: ‘Parameter-dependent
Lyapunov function approach to stability analysis and design for uncertain
systems with time-varying delay’,” Eur. J. Control, vol. 11, no. 1, pp. 69–
70, Jan. 2005.

[18] P. Seiler, “Coordinated control of unmanned aerial vehicles,”
Ph.D. dissertation, Univ. California, Berkeley, 2001.

[19] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Trans. Autom. Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004.

[20] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked
control systems,” IEEE Trans. Control Syst. Technol., vol. 10, no. 3,
pp. 438–446, May 2002.

[21] F. Yang, Z. Wang, Y. S. Hung, and M. Gani, “H∞ control for networked
systems with random communication delays,” IEEE Trans. Autom. Con-
trol, vol. 51, no. 3, pp. 511–518, Mar. 2006.

[22] T. Yang, “Networked control system: A brief survey,” in Inst. Electr. Eng.
Proc. Control Theory Appl., Jul. 2006, vol. 153, no. 4, pp. 403–411.

[23] D. Yue, Q.-L. Han, and C. Peng, “State feedback controller design of
networked control systems,” IEEE Trans. Circuits Syst.—II: Exp. Briefs,
vol. 51, no. 11, pp. 640–644, Nov. 2004.

[24] D. Yue, Q.-L. Han, and J. Lam, “Network-based robust H∞ control of
systems with uncertainty,” Automatica, vol. 41, no. 6, pp. 999–1007, Jun.
2005.

[25] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control
systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, Feb. 2001.

[26] M. Zhong, L. Jia, and J. Wang, “An LMI approach to H∞ control
of networked control systems,” Syst. Sci., vol. 29, no. 1, pp. 47–60,
2004.

Parametrization of the Regular Equivalences of the
Canonical Controller

A. Agung Julius, Jan Willem Polderman, and Arjan van der Schaft

Abstract—We study control problems for linear systems in the behav-
ioral framework. Our focus is a class of regular controllers that are equiv-
alent to the canonical controller. The canonical controller is a particular
controller that is guaranteed to solve the control problem whenever a so-
lution exists. However, it has been shown that, in most cases, the canonical
controller is not regular. The main result of the note is a parametrization
of all regular controllers that are equivalent to the canonical controller.
The parametrization is then used to solve two control problems. The first
problem is related to designing a regular controller that uses as few control
variables as possible. The second problem is to design a regular controller
that satisfies a predefined input–output partitioning constraint. In both
problems, based on the parametrization, we present algorithms for design-
ing the controllers.

Index Terms—Behavior, canonical controller, input–output partition,
regularity.

I. INTRODUCTION

In this note, we discuss control problems for linear differential sys-
tems in the behavioral approach. The behavior of the systems discussed
in this note is the set of solutions of the linear differential equations
that describe the systems [1]. In particular, we restrict our attention to
the class of infinitely differentiable functions C

∞. Thus, whenever a
differential equation is given, we assume its solution to be infinitely
differentiable.
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Standard control problems in the behavioral approach to systems
theory can be formulated as follows [2]–[4]. A plant to be controlled
that has two kinds of variables, to-be-controlled variables and control
variables, is given. Throughout this note, we denote the control vari-
ables by c and the to-be-controlled variables by w. The dimensions
of c and w are denoted by c and w, respectively. A behavioral model
of the plant system that captures the relevant relation between w and
c is called the full plant behavior, and is denoted by Pfu ll . The full
plant behavior can be compactly represented as the set of all signal
pairs (w, c) that are strong solutions to an associated system of linear
differential equations [1]

Pfu ll :=

{
(w, c) ∈ C

∞(R, Rw + c )|R
(

d

dt

)
w + M

(
d

dt

)
c = 0

}
(1)

where R and M are polynomial matrices of appropriate dimensions.
We denote the class of polynomial matrices with indeterminate ξ, g
rows, and q columns over the real field as R

g×q [ξ]. A representation
of the behavior in the form of (1) is called a kernel representation,
the reason being that the behavior is simply the kernel of a linear
differential operator.

A controller is a device that is attached to (or an algorithm that acts
on) the control variables and restricts their behavior. This restriction is
imposed on the plant via the control variables, such that it (indirectly)
affects the behavior of the to-be-controlled variables. A controller C is
thus a behavior containing all signals c allowed by the controller

C :=

{
c ∈ C

∞(R, Rc )|C
(

d

dt

)
c = 0

}
. (2)

The resulting behavior is called the controlled system. The controlled
behavior is then defined as

K := {w ∈ C
∞(R, Rw )|∃c ∈ C

∞(R, Rc )

such that(w, c) ∈ Pfu ll and c ∈ C}. (3)

The controlled behavior K is obtained by eliminating the control vari-
ables c from the following kernel representation

R

(
d

dt

)
M

(
d

dt

)
0 C

(
d

dt

)
[w

c

]
= 0. (4)

If we eliminate the control variables from the full behavior, we obtain
the so-called manifest behavior, which is denoted by P. Thus

P := {w ∈ C
∞(R, Rw )|∃c ∈ C

∞(R, Rc )

such that (w, c) ∈ Pfu ll}. (5)

As a part of the control problem, one is given a specification, which is
expressed in terms of the to-be-controlled variables. The specification
S is given by the following kernel representation

S :=

{
w ∈ C

∞(R, Rw )|S
(

d

dt

)
w = 0

}
. (6)

The objective of the control problem is to find a controller C such that
K = S. If such a controller exists, then the specification S is said to be
implementable and the controller C is said to implement S.

In [5] and [6], a particular controller design called the canonical
controller was introduced. This design has the nice property that it
implements the desired specification if and only if the specification is

implementable. However, an analysis on the regularity of the canoni-
cal controller reveals that it is maximally irregular [7]. Regularity is a
desirable property for the interconnection [2], [3], which we will ex-
plain in Section II. We show that there exist regular controllers that are
equivalent to the canonical controller, and we provide a parametrization
of all such controllers. This parametrization is then used to solve the
following two control problems.

1) The problem of control with minimal interaction [8]. This prob-
lem is about designing a regular controller that interacts with the
plant with as few control variables as possible. The motivation
behind this problem is as follows. Consider a situation where
the plant and the controller are separated by a large physical
distance. We need a communication link between the plant and
the controller to establish the interconnection. It is therefore fa-
vorable to have as few control variables as possible, so that the
amount of communication links/channels can be minimized.

2) The problem of control with input–output partitioning constraint.
This problem is about designing a regular controller, in which
some predetermined control variables remain free in the con-
troller.

II. BACKGROUND MATERIAL

Kernel representations of a given behavior are not unique. Neverthe-
less, for any behavior B, there is a unique integer p(B), which is the
minimum number of rows that a kernel representation of B can have.
This number is also the row rank of any kernel representation of the
behavior. A kernel representation with the minimum number of rows
(i.e., equal to its row rank) is called a minimal kernel representation.

Suppose that a behavior B is given by

B :=

{
w|R

(
d

dt

)
w = 0

}
(7)

where R is full row rank and has p(B) rows. We can permute and
partition the variables in w into w1 and w2 , such that (7) becomes

B :=

{
(w1 , w2 )|R1

(
d

dt

)
w1 + R2

(
d

dt

)
w2 = 0

}
(8)

where R1 is a square full row rank polynomial matrix. Such a partition
is called an input–output partition, where w1 is the output and w2 is the
input to the system. Notice that the number of outputs of B is p(B).

Given a control problem, the implementability of a specification S
is a property that depends on the specification itself as well as the plant.
The following result is proven in [9] and [10].

Lemma 1 (Willems’ lemma): Given Pfu ll as a kernel represen-
tation of (1). A specification S is implementable if and only if
N ⊆ S ⊆ P, where N is the hidden behavior defined by N := {w ∈
C
∞(R, Rw )|(w, 0) ∈ Pfu ll}.
Quite often, in addition to requiring that the controller implements

the desired specification, we also require that the controller possesses a
certain property with respect to the plant. A concept that has been quite
extensively studied is the so-called regularity property [3], [11]–[13].
A controller

C =

{
c ∈ C

∞(R, Rc )|C
(

d

dt

)
c = 0

}
(9)

where C is full row rank, to be regular if

rank

[
R M
0 C

]
= rank [ R M ] + rank C. (10)
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It can be proven that nonregular interconnections might affect the au-
tonomous part of the plant or the controller [2], [14], which, in many
cases would be undesirable or unrealistic.

If the specification S is such that there exists a regular controller
C that implements it, then S is said to be regularly implementable.
Necessary and sufficient conditions for regular implementability were
derived in [3].

Theorem 2: Given the full plant behavior Pfu ll , a specification S is
regularly implementable if and only if: 1) it is implementable, i.e.,N ⊆
S ⊆ P and 2)S + Pctr = P. The symbolPctr denotes the controllable
part of the manifest behavior P.

III. CANONICAL CONTROLLER AND ITS REGULAR EQUIVALENCES

In this section, we review the idea of the canonical controller and its
properties [6]. Given a full plant behavior Pfu ll and a specification S,
the behavior of the canonical controller Ccan is defined as

Ccan := {c ∈ C
∞(R, Rc )|∃w ∈ C

∞(R, Rw ) such that

(w, c) ∈ Pfu ll and w ∈ S}. (11)

A kernel representation of the canonical controller can be obtained by
eliminating w from the following kernel representation

R

(
d

dt

)
M

(
d

dt

)
S

(
d

dt

)
0

[w
c

]
= 0. (12)

For the canonical controller, the following result holds.
Theorem 3: (cf. [6]) The canonical controller Ccan implements the

specification S if and only if S is implementable.
We define the control manifest behavior of the plant as

Pc := {c ∈ C
∞(R, Rc )|∃w ∈ C

∞(R, Rw )

such that (w, c) ∈ Pfu ll}. (13)

A kernel representation of Pc can be obtained by eliminating w from
the kernel representation of Pfu ll .

Despite the nice property given in the previous theorem, the canon-
ical controller also has the property of being maximally irregular, in
the following sense.

Theorem 4: (cf. [7]) Assume that the specification S is imple-
mentable. The canonical controller Ccan is regular if and only if every
controller that implements S is regular.

In this note, we want to show that if the specification S is regularly
implementable at all, then, although the canonical controller itself is
maximally irregular, there exist regular controllers that are equivalent
to it. By equivalent controllers, we mean controllers that allow the same
set of c trajectories of the plant as the canonical controller does. The
class of such controllers is defined as follows.

Definition 5: The class of regular controllers that are equivalent to
the canonical controller is denoted by C

reg
can , and is defined as

C
reg
can := {C|C is regular and C ∩ Pc = Ccan ∩ Pc}. (14)

The following theorem provides necessary and sufficient conditions
for the nonemptyness of the class C

reg
can . This theorem is given without

proof due to space limitation. The reader is referred to [8] and [14] for
the proof, and to [15] and [16] for related results for nD behaviors.

Theorem 6: The class C
reg
can is nonempty if and only if the specifica-

tion S is regularly implementable.

In fact, regular implementability of the specification S also implies
that, for every regular controller that implements S, there exists a
superset of that controller in C

reg
can that implements S. This is the content

of the following theorem.
Theorem 7: [8], [14] Given a full plant behavior Pfu ll and a reg-

ularly implementable specification S. If C is a regular controller that
implements S, then there exists a regular controller C′ ∈ C

reg
can that

implements S and C ⊆ C′.
Given the importance of the set C

reg
can , in this note, we present a

parametrization of all controllers in C
reg
can . Before we can obtain the

parametrization, we need the following lemma.
Lemma 8: [8], [14] Let a plant P be given as the kernel of a full row

rank R (d/dt) and a regular controller C be given as the kernel of a full
row rank C (d/dt) . Denote the full interconnection by K := P ∩ C.
Let CK denote the set of all controllers (not necessarily regular ones)
that: 1) have at most as many outputs as C and 2) also implement K
when interconnected with P . A controller C′ ∈ CK if and only if its
kernel representation can be written as V R + C for some matrix V.
Moreover, every controller in C′ ∈ CK has the properties that: 1) C′ is
regular and 2) C′ has exactly as many outputs as C. Notice that the
number of outputs is p(K)− p(P).

If we pick any regular controller C ∈ C
reg
can , Lemma 8 can be used

to parametrize all other controllers in C
reg
can based on a kernel repre-

sentation of C. This is one of the main results of this note, which is
summarized in the following theorem.1

Theorem 9: [14] Let the control manifest behavior of the plant Pc

be the kernel of Pc (d/dt) and a controller C ∈ C
reg
can be the kernel

of C (d/dt). Assume that both Pc and C are full row rank. A con-
troller C′ is an element of C

reg
can if and only if it is the kernel of

V (d/dt) Pc (d/dt) + C (d/dt) for some polynomial matrix V (ξ).
Proof: The full plant behavior can be represented by

R̃

(
d

dt

)
M̃

(
d

dt

)
0 Pc

(
d

dt

)
[w

c

]
= 0 (15)

where R̃ is full row rank. It follows that a controller C′ represented as
the kernel of C ′ (d/dt) is regular if and only if

rank

[
Pc

C ′

]
= rank Pc + rank C ′. (16)

This is equivalent to saying that the interconnection of Pc and C′ is
regular. Therefore, we can apply Lemma 8 (by replacing K with Ccan

and P with Pc ) and obtain the parametrization of all elements in C
reg
can .

IV. CONTROL WITH MINIMAL INTERACTION

Consider the following definition of irrelevant variables.
Definition 10: Let a behavior B be given by the kernel representation

R1

(
d

dt

)
w1 + R2

(
d

dt

)
w2 = 0. (17)

The variables in w1 are said to be irrelevant to B if B can be written
as C

∞(R, Rw 1 )×B2 , where B2 is the behavior of w2 .
Notice that w1 being irrelevant to B in (17) is equivalent with

R1 = 0. The number of irrelevant variables in a behavior B is thus the
number of zero columns in a kernel representation of it. For any system

1We refer the reader to [17] for related results.
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B, denote the number of its irrelevant variables by i(B). It can be
proven that i(B) is independent of the choice of kernel representation
of B. The problem of control with minimal interaction that we are
addressing in this note can be formulated as follows.

Control with minimal interaction. Given are the full plant behavior
Pfu ll (1) and specification S. We assume that the specification S is
regularly implementable. Construct a regular controller C such that: 1)
C implements S and 2) if C′ is a regular controller that implements S,
then i(C) ≥ i(C′).

A controller that satisfies the aforementioned requirements is called
a controller with minimal interaction. When some control variables
are irrelevant to the controller, we can realize the controller without
using these variables. A controller with minimal interaction is thus a
controller that uses the fewest number of variables in its realization.
Notice that such a controller is generally not unique.

We use the parametrization of C
reg
can that we derived in the previous

section to solve the problem of control with minimal interaction. First,
consider the following lemma.

Lemma 11: Let B be a behavior, whose variables include the variable
w1 . If w1 is irrelevant to B, then it is also irrelevant to any B

′ ⊇B.
Lemma 11 and Theorem 7 tell us that it is sufficient to search for

a controller with minimal interaction in C
reg
can , instead of in the set of

all regular controllers. This is an advantage, since we can parametrize
all the controllers in C

reg
can , as shown in Theorem 9. To solve the prob-

lem of control with minimal interaction, we need to find an element
of C

reg
can with the maximal number of zero columns. Generally, since

there are finitely many columns, there is a maximal number of zero
columns that can be attained. However, there is no guarantee that this
number is attained by a unique controller. In fact, generally speaking,
it is not.

The procedure to compute a regular controller that implements S
and has the maximal number of irrelevant variables can be summarized
as follows.

Step 1) Construct the canonical controller Ccan for the problem.
SinceS is regularly implementable, we know that the canon-
ical controller implements S.

Step 2) Construct a controller C ∈ C
reg
can . Denote a kernel represen-

tation of C and the control manifest behaviorPc by C(d/dt)
and P (d/dt), respectively.

Step 3) The kernel representation of the controller with minimal
interaction can be found by finding a matrix V such that
C + V P has the maximal number of zero columns.

The algebraic problem related to the third step has a combinatorial
aspect in it, as we generally need to search for the answer by trying all
possible subsets of the columns. This situation gives rise to a compu-
tational challenge, namely to design an algorithm that can handle this
combinatorial problem efficiently. We refer the reader to [18] for an
algorithm that solves the combinatorial problem. The following lemma
establishes an upper bound for the number of irrelevant variables that
can be attained in the controller with minimal interaction.

Lemma 12: A controller with minimal interaction can have at most
c − p(C) irrelevant variables. Here, c denotes the number of all control
variables (the number of components of c) and p(C) denotes the number
of output variables in C, which is the same for all regular controllers
that implement S.

Proof: From the definition of regularity, we know that all regular
controllers that implement S have the same number of outputs, i.e.,
p(C). This is the number of rows in a minimal kernel representation
of the controller. It is easily seen that the number of columns is c. If
a regular controller has more than c − p(C) irrelevant variables, then
the nonzero entries of any kernel representation of it form a tall matrix,
and thus cannot be minimal. �

V. CONTROL PROBLEM WITH INPUT–OUTPUT PARTITION

CONSTRAINT

In some cases, it is physically necessary to require that in a controller,
some of the plant control variables are free variables, for example,
because these variables are sensor outputs. The control problem with
an input–output partitioning constraint for linear systems is formally
defined as follows.

Control with input–output partition constraint. Given a control prob-
lem, where the plant is

P =

{
(w, c1 , c2 )|R

(
d

dt

)
w + P

(
d

dt

)
c1 + Q

(
d

dt

)
c2 = 0

}
.

(18)
The control variables are c1 and c2 , the to-be-controlled variable is

w. The desired specification is given as

S =

{
w|S
(

d

dt

)
w = 0

}
. (19)

Find a regular controller C described as

C =

{
(c1 , c2 )|C1

(
d

dt

)
c1 + C2

(
d

dt

)
c2 = 0

}
(20)

such that C implements S and the variables in C can be input–output
partitioned such that c2 is free in C, i.e., for any c2 ∈ C

∞(R, Rc 2 ),
there exists a c1 ∈ C

∞(R, Rc 1 ) such that (c1 , c2 ) ∈ C.
To solve the problem, we assume that the specification S is regularly

implementable (otherwise the problem is clearly not solvable).
Notation 13: We denote the class of regular controllers that imple-

ments S as C
reg
S .

To find a solution to the problem, we need to use the following result.
Lemma 14: Given a system

C =

{
(c1 , c2 )|C1

(
d

dt

)
c1 + C2

(
d

dt

)
c2 = 0

}
. (21)

Without loss of generality, we assume that [C1 C2 ] is full row rank.
The variable c2 is free in C if and only if C1 is full row rank.

Using Lemma 14, we can reformulate the control problem as follows.
Problem. Find a controller C ∈ C

reg
S in the form of

C =

{
(c1 , c2 )|C1

(
d

dt

)
c1 + C2

(
d

dt

)
c2 = 0

}
where C1 is full row rank.

We shall use the following lemma to show that we can restrict our
attention to controllers in C

reg
can in solving the problem.

Lemma 15: Let X be a subset of C
reg
S such that for any C ∈Creg

S ,
there exists a C′ ∈ X such that C ⊆ C′. Then there exists a C ∈ C

reg
S that

solves the control problem with input–output partitioning constraint if
and only if there exists a C′ ∈ X that does so.

This lemma tells us that if we can construct a subset of C
reg
S with the

property of X , we do not need to search for the candidate controller in
the whole C

reg
S . Rather, we can restrict our attention in X .Theorem 7

shows that Creg
can has the desired property. Thus, we shall try to construct

the desired controller in C
reg
can , which we can parametrize according to

Theorem 9.
A solution to the control problem can be found by executing the

following steps.
Step 1) Construct the canonical controller Ccan for the problem.

SinceS is regularly implementable, we know that the canon-
ical controller implements S.
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Step 2) Construct a controller C ∈ C
reg
can . The proof of Theorem 6

contains information on how to construct C from a regular
controller. Denote the kernel representation of C and the
control manifest behavior Pc , respectively, by

C =

{
(c1 , c2 )|C1

(
d

dt

)
c1 + C2

(
d

dt

)
c2 = 0

}
(22a)

Pc =

{
(c1 , c2 )|P1

(
d

dt

)
c1 + P2

(
d

dt

)
c2 = 0

}
.

(22b)
Step 3) Following Theorem 9, any controller C′ in C

reg
can can be rep-

resented by

C′ =
{

(c1 , c2 )| (C1 + V P1 )

(
d

dt

)
c1+

(C2 + V P2 )

(
d

dt

)
c2 = 0

}
. (23)

The kernel representation of a controller in C
reg
can that satisfies

the input–output partitioning constraint can be found by
finding a matrix V such that C1 + V P1 is full row rank.

A necessary and sufficient condition for the existence of such a
matrix V is given in the following lemma.

Lemma 16: Given polynomial matrices C ∈ R
c×q [ξ] and P ∈

R
p×q [ξ]. There exists a polynomial matrix V ∈ R

c×p [ξ] such that
C + V P is full row rank if and only if

rank

[
P
C

]
≥ c.

We refer the reader to [18] for a proof of this lemma.
To conclude, the following is the algorithm to solve the control

problem with input–output partitioning constraint.
Algorithm 17: The following steps provide a solution to the problem

if and only if it is solvable.
1) Verify if the specification S is regularly achievable. If so, go to

step 2, otherwise the problem is not solvable.
2) Construct the canonical controller for this problem, and denote

it by Ccan .
3) Construct a regular controller C ∈ C

reg
can . Theorem 6 guarantees

that this can be done. The controller C and the control manifest
behavior Pc can be represented in the form shown in (22).

4) Verify if rank

[
M1

P1

]
≥ p(C), where p(C) denotes the number of

output variables of C. If this condition is satisfied, go to step 5,
otherwise the problem is not solvable.

5) Compute a V such that C1 + V P1 is full row rank. The existence
of such V is guaranteed by Lemma 16. A controller that solves
the control problem is given by

C′ =
{

(c1 , c2 )| (C1 + V P1 )

(
d

dt

)
c1

+ (C2 + V P2 )

(
d

dt

)
c2 = 0

}
. (24)

VI. CONCLUDING REMARKS

The main result of the note is a parametrization of all regular con-
trollers that are equivalent to the canonical controller C

reg
can . This class

of controllers has the following two nice properties.
1) All its members are regular controllers.

2) It acts as an upperbound to other regular controllers. This means,
any regular controller is a subset of an element of C

reg
can .

The special properties of the class C
reg
can and its parametrization are

used to solve two control problems in the behavioral framework. The
first control problem is related to designing a regular controller that
uses as few control variables as possible. The second problem is about
designing a regular controller that satisfies a predefined input–output
partitioning.

The use of the parametrization of C
reg
can is not necessarily limited

to the aforementioned problems. An interesting problem is, for exam-
ple, to use the parametrization to construct a regular controller with a
MacMillan degree as small as possible [2]. Such a result can potentially
lead to the solution to the long standing problem of regular feedback
implementability [19].
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