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Abstract— We develop a notion of approximate bisimulation
for a class of stochastic hybrid systems, namely, the jump linear
stochastic systems (JLSS). The idea is based on the construction
of the so called stochastic bisimulation function, which quantify
the distance between two jump linear stochastic systems. The
function is then used to quantify the distance between a given
JLSS and its abstraction, and hence quantify the quality of the
abstraction. We show that this idea can be applied to simplify
safety verification for JLSS. We also show that in the absence of
internal disturbances, we can pose the construction of quadratic
stochastic bisimulation functions as a tractable linear matrix
inequality problem.

I. INTRODUCTION

Abstraction of dynamical systems has been an active

research topic [22], [27], [26]. The main idea of abstract-

ing dynamical systems is, given a dynamical system, we

construct a relatively simpler system that is, in some sense,

equivalent to the original. Simpler system usually means a

system that can be analyzed with less computing effort. The

equivalence between the original system and its abstraction

guarantees that the result of the computation performed on

the abstraction can be carried over into the original system.

As systems that we deal with get more complex, abstrac-

tion is clearly a necessity, so that the available computation

tools will be able to cope with the ever increasing complexity.

The need to obtain an abstraction of complex systems leads

researchers to develop abstraction theories that allow for even

further abstraction. One of the ideas is to relax the require-

ment that the abstraction is equivalent to the original system,

and replace with that the abstraction is only approximately
equal to the original system (see, e.g. [29], [6], [12]). The key

ingredient to these theories is a metric that can quantify the

distance between the system and its abstraction, and hence

the quality of the abstraction.

The idea of abstraction of stochastic systems using some

notion of exact system equivalence has also been pursued

by researchers for the same motivation. See, for example,

[18], [3], [24]. Similarly, there is also an approximate ab-

straction theory for purely discrete stochastic systems. For

example, [7], [8] discuss the idea of exact and approximate

bisimulation for labelled Markov processes.

Following a series of previous work on approximate ab-

straction of dynamical systems [11], we extend the paradigm

This research is partially supported by the National Science Foundation
Presidential Early CAREER (PECASE) Grant 0132716 and the Région
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to handle a class of stochastic hybrid systems, namely, the

jump linear stochastic systems (JLSS). Jump linear stochastic

systems are widely applied, for example, in manufacturing

systems, aircraft control, target tracking, robotics, and power

systems [30].

In this paper, our aim is to develop a theory of approximate

bisimulation of JLSS, that can be used, for example in safety

and reachability analysis of the system. Moreover, we want

that the theory allows for tractable computation.

The field of stochastic hybrid systems is a very active

research area. The particular class of systems that we use

in this paper (JLSS) is only one of the various modelling

formalisms available [23]. For example, Hu et al [15] dis-

cuss a general type of stochastic hybrid systems, where

the dynamics within each location (discrete state) is gov-

erned by diffusion stochastic differential equations [21], and

switches happen when some invariant condition is violated.

Piecewise deterministic Markov processes (PDP) [5], [13] is

another modelling formalism for stochastic hybrid systems.

In this framework, the dynamics within each location is

non-stochastic. Stochasticity comes into the picture because

switches happen when either a Poisson process generates a

point or an invariant condition is violated. In that case, a

jump in the state occur according to a certain probabilistic

distribution. Continuous time Markov chains [4] can be

thought of as a special class of PDP. This framework is

extended by including possibility that such processes can

communicate through labelled events in [25]. There are

also other formalisms such that the polynomial stochastic

hybrid systems [14], discrete stochastic hybrid automata

[2], switched diffusion processes [10], etc. Research in the

field of stochastic hybrid systems has been directed towards

various topics, such as, stability analysis [1], control [4],

[16], [2], model reduction [30], system identification [28],

etc. This list is by no mean exhaustive.

There has been some research in the area of approximate

bisimulation of stochastic systems. However, our approach

differs from the others, in that we do not partition the state

space and use a metric to define distance between probabilis-

tic distributions, for example, as in [7], [8]. The approximate

abstraction that we study does not necessarily correspond to

an equivalence relation in the state space. There has been

also work on H∞ model reduction of Markovian jump linear

systems, for example in [30]. However, as we shall see in

the following section, for safety and reachability analysis,

our approach that is based on the L∞ distance between the

trajectories is more suitable.
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II. JUMP LINEAR STOCHASTIC SYSTEMS

A jump linear stochastic system (JLSS) can be modeled

as a stochastic system that satisfies the following stochastic

differential equation.

dxt = Axt dt + Bu(t) dt + F dwt + Rxt dpt, (1)

u(t) ∈ U ,∀t ∈ R+, (2)

yt = Cxt. (3)

Here, yt is the observation of the process xt, the signal u(t)
is an input taking value in a compact set U , the process wt

is a standard Brownian motion, while pt is a Poisson process

with a constant rate λ.

The input u can be thought of as a disturbance that

generates of nondeterminism in the systems, rather than

external control input.

Notation. We denote the class of locally integrable function

taking value in the compact set U as U.

A Poisson process with a constant rate λ is a piecewise

constant, monotonously nondecreasing process,

pt =

{
0, 0 ≤ t ≤ t1,

n, tn < t ≤ tn+1, n ∈ Z+,
(4)

where t1, (t2 − t1), (t3 − t2), · · · , (tn+1 − tn), · · · are inde-

pendent random variables with exponential distribution:

P {tn+1 − tn > α} = e−λα, n ∈ Z+. (5)

The random time instants tn are called event times. Poisson

processes are commonly used in modelling stochastic arrival

processes (see [5]).

The JLSS described in (1) then can be interpreted as

follows. In between the event times generated by the Poisson

process pt, the process behaves like a linear stochastic system

dxt = Axt dt + Bu(t) dt + F dwt, yt = Cxt. (6)

At the event time tn, the process undergoes a jump

lim
t↓tn

xt = (I + R)xtn
. (7)

Notice that with R we can parametrize any linear jump.

Hence the name, jump linear stochastic system.

We use a Poisson process to model the occurrences of an

event. The effect of an occurrence of the event is expressed

as the linear jump (7). However, it is possible that we need

to include more than just one kind of event in the model.

Thus, generally the model (1) can be slightly extended to

be:

dxt = Axt dt + Bu(t) dt + F dwt +

N∑
i=1

Rixt dpi
t. (8)

That is, we model N kinds of event whose occurrences

are independent one from the others. The matrices Ri, i =
1, . . . , N , parametrize the jump associated with event i. We

also assume that the Poisson process pi
t has the rate of λi.

III. ABSTRACTION OF JLSS

Given a JLSS of the following form.

dxt = Axt dt + Bu(t) dt + F dwt +

N∑
i=1

Rixt dpi
t, (9)

u ∈ U, yt = Cxt. (10)

There are a number of simplifications or model reductions

that we can perform on this system. For example, we can

1) Truncate some of the dimensions of the state, to create

a JLSS with smaller state space,

2) Neglect the term corresponding to the Brownian mo-

tion,

3) Neglect the occurrence of some of the events,

or a combination of them.

The approach we take is similar to that of the previous

work [12], [11]. Namely, we want to compute a bisimulation

function between two given JLSS. Simply said, the bisim-

ulation function is an instrument that measures the distance

between the two processes. It also guarantees that both

processes satisfy the same reachability and safety properties

within a certain bound.
Given two JLSS, for i = 1, 2,

Si :

8
<
:

dxit = Aixitdt + Biui(t)dt + Fidwt +
NP

j=1

Rijxtdp
j
t ,

ui ∈ Ui, yit = Cixit.
(11)

We define the following composite process

xt :=

[
x1t

x2t

]
, yt := y1t − y2t, u(t) :=

[
u1(t)
u2(t)

]
,

A :=

[
A1 0
0 A2

]
, B :=

[
B1 0
0 B2

]
, F :=

[
F1

F2

]
,

Rj :=

[
R1j 0
0 R2j

]
, C :=

[
C1 −C2

]
.

Hence we have the following process:

S :

j
dxt = Axtdt + Bu(t)dt + Fdwt +

PN
j=1 Rjxtdp

j
t ,

u ∈ U1 × U2, yt = Cxt.
(12)

Observe that if u(t) and the distribution of the initial state

x0 are known, then xt is a stochastic process.

Definition 1: A function φ(x) is called a stochastic
bisimulation function if

(i) φ(x) ≥ ‖Cx‖2
,∀x, and

(iia) for any u1 ∈ U1 there exists a u2 ∈ U2 such that the

process φ(xt) is a supermartingale1 for any distribution of

the initial state, and

(iib) for any u2 ∈ U2 there exists a u1 ∈ U1 such that the

process φ(xt) is a supermartingale for any distribution of the

initial state.

Remark 2: Bisimulation for nonstochastic systems is typ-

ically seen as a two-player tracking game [19], [11]. For

stochastic systems, one can think of the stochasticity as a

1i.e. its expectation is monotonously nonincreasing.
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third player in the game. In this point of view, there are

multiple interpretations about the order, with which the game

is played. That is, when the third player (stochasticity) makes

its decision. There are three possibilities, namely before the

other two players, in between, or after them. The definition

of bisimulation that we adopt in this paper is based on the

interpretation that the third player makes its decision after the

other two players, that is, the inputs u1 and u2. Our choice is

mainly based on computation consideration, although we can

see later that this choice also leads to a sensible relationship

between bisimulation and safety verification. That being said,

we will explore the relations between all three interpretations

in the future.

Remark 3: A function φ(x) that satisfies conditions (i)

and (iia) of Definition 1 is called a stochastic simulation

function of S1 by S2. Similarly, if it satisfies conditions (i)

and (iib) of Definition 1 is called a stochastic simulation

function of S2 by S1.

Definition 4: A stochastic bisimulation function φ(x) is

trivial if its value is +∞ everywhere.

Obviously, we are interested in nontrivial bisimulation

functions. The following theorem describes the relation be-

tween the bisimulation function and the difference between

the observations of S1 and S2.

Theorem 5: Given a system described by (12), and φ(·) a

bisimulation function. For any u1 ∈ U1 there exists a u2 ∈
U2 such that the following relation holds.

P

{
sup

0≤t<∞

‖yt‖
2 ≥ δ

∣∣∣∣ x0

}
≤

φ(x0)

δ
. (13)

Conversely, for any u2 ∈ U2 there exists a u1 ∈ U1 such that

(13) holds.

Theorem 5 tells us that the bisimulation function of JLSS

can be used to quantify the distance between the two systems

S1 and S2.

The idea of approximate bisimulation of JLSS can be

used as a tool for abstraction of JLSS that can be used in

conjunction with stochastic safety analysis. Given a complex

system S1 and its simpler abstraction S2. Suppose that φ(·) is

a stochastic bisimulation function between the two systems,

and that the initial condition of the composite system is

x0 = (x10, x20). Given the unsafe set for the original system

S1, unsafe1, we can construct another set unsafe2, which

is the δ neighborhood of unsafe1 for some δ > 0. That is,

unsafe2 = {y | ∃y′ ∈ unsafe1, ‖y − y′‖ ≤ δ} . (14)

If we define the events unsafe1(v) and unsafe2(v) as

functions of the external input signal, for i = 1, 2,

unsafei(v) := {∃t ≥ 0 s.t. yit ∈ unsafei | ui = v ∈ Ui},
(15)

then the following theorem holds.

Theorem 6:

sup
u1∈U1

P{unsafe1(u1)} ≤ sup
u2∈U2

P{unsafe2(u2)}+
φ(x0)

δ2
.

(16)

The term supu1∈U1
P{unsafe1(u1)} gives us the risk of

unsafety of S1 in the worst scenario. That is, we choose

the input so as to maximize the risk. Similarly, the term

supu2∈U2
P{unsafe2(u2)} gives us the risk of unsafety of

S2 in the worst scenario. Theorem 6 tells us that we can

get an upper bound of the risk of the complex system by

performing the risk calculation on the simple abstraction and

adding a factor that depends on the stochastic bisimulation

function.
Remark 7: Notice that the symmetric definition of

stochastic bisimulation functions implies that not only S2 can

be used to approximate S1, but also the converse is true (see

Theorem 5). If we only want to have one way approximation,

then a stochastic simulation function suffices.

IV. CONSTRUCTION OF THE BISIMULATION FUNCTION

In this paper, we assume that a stochastic bisimulation

function can be constructed as a quadratic function of the

(composite) state, that is, a function of the following form.

φ(x) = xT Mx, (17)

where M is symmetric nonnegative definite.
Recall that the composite xt satisfies (12). The stochastic

process φt := φ(xt) then satisfies the following stochastic

differential equation.

dφt =
∂φ

∂x
dxt +

1

2
dx

T
t

∂2φ

∂x2
dxt,

= 2x
T
t M

 
Axtdt + Bu(t)dt + Fdwt +

NX
j=1

Rjxtdp
j
t

!

+ trace
“
F

T
MF

”
dt +

X
i,j∈{1,··· ,N}

x
T
t R

T
i MRjxt dp

i
tdp

j
t .

(18)
Using the fact that the Poisson processes are independent

from each other, we can establish that the expectation of
the last term of the right hand side satisfies the following
relation,

E
h
x

T
t R

T
i MRjxt dp

i
tdp

j
t

i
= E

h
x

T
t R

T
i MRjxt

i
E
h
dp

i
tdp

j
t

i
,

=

j
E
ˆ
xT

t RT
i MRjxt

˜
λiλjdt2, i �= j,

E
ˆ
xT

t RT
j MRjxt

˜
(λjdt + λ2

jdt2), i = j.

The expectation of φt then satisfies the following equation.

dE[φt]

dt
= 2E

"
x

T

 
MA +

NX
j=1

λj

„
I +

Rj

2

«T

MRj

!
xt

#

+ 2E[xT
t ]MBu(t) + trace

“
F

T
MF

”
. (19)

Denote

Q := M

 
A +

NX
j=1

λjRj

!
+

 
A +

NX
j=1

λjRj

!T

M

+

NX
j=1

λjR
T
j MRj ,

then we have that

dE[φt]

dt
= E

[
xT

t Qxt

]
+2E[xT

t ]MBu(t)+trace
(
FT MF

)
.

(20)
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Lemma 8: The function φ is a stochastic bisimulation

function if and only if the following relations are satisfied.

M − CT C ≥ 0, (21)

and for almost all t ≥ 0,

sup
u1∈U1

inf
u2∈U2

E
[
xT

t Qxt

]
+ 2E[xT

t ]MBu(t)

+ trace
(
FT MF

)
≤ 0, (22a)

sup
u2∈U2

inf
u1∈U1

E
[
xT

t Qxt

]
+ 2E[xT

t ]MBu(t)

+ trace
(
FT MF

)
≤ 0, (22b)

for any distribution of the initial state x0.

In the remaining of the paper, we shall impose the

following assumption. The reason being that checking the

conditions in (22) will only involve linear matrix inequalities,

instead of games. This leads to more tractable computation

when we construct the desired stochastic bisimulation func-

tion.

Assumption. Hereafter, we assume that the disturbances are

absent. That is,

B =

[
B1 0
0 B2

]
= 0. (23)

In this case, the nondeterminism is not present, and hence

the composite system is essentially a stochastic process. A

function φ is a stochastic bisimulation function if and only

if M − CT C ≥ 0 and for almost all t ≥ 0,

E
[
xT

t Qxt

]
+ trace

(
FT MF

)
≤ 0. (24)

Lemma 9: Given two systems S1 and S2 as in (11) under

the assumption (23),

φ(x) := xT Mx, (25)

where M is symmetric nonnegative definite is a bisimulation

function if and only if

Q ≤ 0, M − CT C ≥ 0, MF = 0. (26)

It can be verified that the problem of constructing a matrix

M that satisfies (26) is a linear matrix inequality problem

(LMI) that can be solved using some available tools, such as

YALMIP [17].

Remark 10: If we think of the stochastic bisimulation

function (25) as a stochastic Lyapunov function, then (26)

guarantees that yt converges to 0 in probability [9].

A more general construction of the bisimulation function

can be achieved by using the so called truncated quadratic
function. That is, we consider bisimulation functions of the

following form.

φ(x) = max
(
α, xT Mx

)
, (27)

for some value α ≥ 0. The construction is thus parameterized

by M and α. This construction is potentially more powerful

than considering only quadratic functions alone. Suppose that

there exists a quadratic bisimulation function, the zero level

(the kernel) of the function gives us the composite states,

from which the output is always zero with probability one

(see Theorem 5). This implies perfect tracking, which might

be too restrictive. The implication does not hold for truncated

quadratic bisimulation functions, since the zero level might

be an empty set. Thus, potentially, we can find a stochastic

bisimulation function, even if perfect tracking is not possible.

Consider the following problem.

Problem 11: Given matrices A,F,C and (Rj)j=1,2,··· ,N .

Construct a truncated quadratic function φ(x), as in (27),

that satisfies

φ(x) ≥ ‖Cx‖2
, (28a)

Q ≤ 0, (28b)

xT Qx = 0 only if xT Mx = 0, (28c)

xT Qx + trace(F T MF ) ≤ 0, if xT Mx ≥ α. (28d)

The motivation behind this problem is that if we can

construct such a truncated function φ(x), then we can show

that φ(xt) is a supermartingale.

Let us first discuss the solution to Problem 11. The

solution to this problem can be constructed in two steps,

namely:

1) Construct a quadratic function φ̃(x) := xT Mx that

satisfies

M − CT C ≥ 0, (29)

Q ≤ 0, (30)

xT Qx = 0 only if xT Mx = 0. (31)

The procedure for this construction can be posed as an

LMI problem, and if a solution exists, it can be found

using some available LMI tools, such as YALMIP [17].

2) Determine the treshold α for the quadratic func-

tion designed in the previous step, so that φ(x) :=
max(α, φ̃(x)) satisfies (28d). We are interested in

getting as small α as possible.

Let us now discuss the second step. The smallest α that

satisfies (28d) can be expressed as the following optimization

problem.

α = max
xT Qx+trace(F T MF )≥0

xT Mx. (32)

Notice that since M is nonnegative definite, the optimal

solution lies on the boundary of the feasible set. Hence,

α = max
xT Qx+trace(F T MF )=0

xT Mx. (33)

We can solve this problem, for example, by using Lagrange’s

multiplier method. The optimality condition is that if the

optimal value is attained at x = x̄, then Qx̄ = λMx̄, for

some real number λ. If M is invertible, then by rearranging

the equation, we get M−1Qx̄ = λx̄. Thus, x̄ must be

an eigenvector of M−1Q. Since ker Q ⊂ ker M , Q is a

symmetric negative definite matrix. Therefore M−1Q has

real eigenvalues. We have reduced the optimization problem

(33) to an optimization problem with a finite countable set

of feasible points, which is easy to solve.

If M is not invertible, we project the optimization problem

to imM , which is the image of M . We denote the dimension
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of im M as m̃. Let Γ := [ γ1 γ2 ··· γm̃ ] be such that the

vectors (γi)1≤i≤m̃ span an orthonormal basis for imM . We

can find a positive definite matrix M̃ ∈ R
m̃×m̃ such that

xT Mx = xT ΓM̃ΓT x. Thus, we have that

α = max
vT ΓQΓT v+trace(F T MF )=0

vT M̃v, v ∈ R
m̃. (34)

Notice that (34) has the same form as (33), and M̃ is

invertible, so we can use the procedure discussed above to

find the optimal α.

Now that we have shown the construction of the truncated

quadratic function φ(x) as required by Problem 11, we have

the following result.

Theorem 12: Given a truncated quadratic function φ(x) =
max(α, xT Mx), as required by Problem 11. The stochastic

process φ(xt) is a supermartingale.

Therefore, using Definition 1, we can establish that φ(x)
is a stochastic bisimulation function.

V. SIMULATION RESULTS

In this section we present some simulation results of

approximate bisimulation. The original system is a JLSS with

sixth order linear dynamics. The system S is given as:

S :

{
dxt = Axt dt + F dwt + Rxt dpt,

yt = Cxt,
(35)

where

A = diag
([

−0.1 −1
1 −0.1

]
,
[
−0.2 −2

2 −0.1

]
,
[
−0.2 0

0 −0.25

])
,

F = [ 0.74 0.07 −0.62 −0.27 −0.86 0.65 ]
T

,

C =
[

0.84 −1.03 1.07 −0.88 0.5 0
−0.60 −1.35 −0.26 −0.27 0 −0.5

]
, R = 0.1I.

The rate of the Poisson process pt is 0.5.

We construct three kinds of abstraction, as mentioned

earlier in Section III, and for each case, compute a stochastic

bisimulation function. We then simulate several realizations

of the composite system for the first 500 seconds of the

evolution and plot the realizations of the error. In the

simulation, the initial states are chosen randomly.

Abstraction of the linear dynamics
We construct a JLSS with simpler linear dynamics. Namely,

we remove the last two modes of the original linear dynamics

and hence create a fourth order linear system. Thus, we

compute the stochastic bisimulation function between S and

S′ where

S′ :

{
dx′

t = A′x′
t dt + F ′ dwt + R′x′

t dpt,

y′
t = C ′x′

t,
(36)

A′ = diag
([

−0.1 −1
1 −0.1

]
,
[
−0.2 −2

2 −0.1

])
, F ′ =

[
0.74
0.07
−0.62
−0.27

]
,

C ′ =
[

0.84 −1.03 1.07 −0.88
−0.60 −1.35 −0.26 −0.27

]
, R′ = 0.1I.

Figure 1 shows the simulation results. On the top part of

the figure we see a realization of the observed process, yt and

y′
t. On the bottom part, we see ten realizations of (yt − y′

t).
The circle denotes the 90% confidence bound given by the

computed stochastic bisimulation function.
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Fig. 1. Top: One realization of yt (dashed) and y′
t (solid). Bottom: Ten

realizations of (yt − y′
t). The circle indicates the 90% confidence bound.
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Fig. 2. Top: One realization of yt (dashed) and ỹt (solid). Bottom: Ten
realizations of (yt − ỹt). The circle indicates the 90% confidence bound.

Abstraction of the Poisson process
We construct an abstraction of S with zero R. That is, in

the abstraction, we neglect the effect of the Poisson process.

We therefore create another system S̃, where

S̃ :

{
dx̃t = Ax̃t dt + F dwt,

ỹt = Cx̃t.

Figure 2 shows the simulation results. On the top part

of the figure, we see a realization of yt and ỹt. We can

see clearly that yt has jumps corresponding to the Poisson

process and ỹt does not. On the bottom part, ten realizations

of (yt − ỹt) are plotted with the 90% confidence bound.
Abstraction of the Brownian motion
We construct an abstraction of S by neglecting the Brownian
motion. We therefore create another system Ŝ, where

Ŝ :

j
dx̂t = Ax̂t dt + Rx̂t dpt,

ŷt = Cx̂t.

On the top part of Figure 3, we see a realization of yt

and ŷt. On the bottom part, ten realizations of (yt − ŷt) are

shown with the 90% confidence bound.
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Fig. 3. Top: One realization of yt (dashed) and ŷ (solid). Bottom: Ten
realizations of (yt − ŷt). The circle indicates the 90% confidence bound.

VI. CONCLUDING REMARKS

In this paper we develop the notion of approximate

bisimulation for a class of stochastic systems, namely, the

jump linear stochastic systems (JLSS). With approximate

bisimulation, we can quantify the quality of approximation

of the system, and we can establish approximate bisimulation

between two JLSS The concept of bisimulation function was

introduced in [12], [11].

The idea of approximate bisimulation using stochastic

bisimulation function amounts to finding a function that

satisfies some certain properties (see Definition 1). In the

approach discussed in this paper, we restrict our attention to

functions in the class of truncated quadratic functions, which

can be thought of as a generalization of quadratic functions.

For the computation, in this paper, we restrict our attention

to systems with no input. In this case, it is shown that the

construction of the stochastic bisimulation function can be

formulated as a Linear Matrix Inequality (LMI) problem,

which can be solved using available LMI tools. However, we

have not (yet) formulated necessary and sufficient conditions

for the existence for such stochastic bisimulation function.

From the theoretical point of view, we identify this problem

as an interesting direction for further research. Another

interesting research direction is to establish a computation

algorithm that can handle systems with nondeterminism (i.e.

the presence of inputs).
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