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Abstract 

A fundamental question in systems and control theory con- 
cerns the characterization of the set of achievable closed- 
loop systems for a given plant system and a controller sys- 
tem to be designed. This problem, for example, shows up in 
assessing the ’limits of performance’ of a controlled sys- 
tem. Similar problems have been studied by researchers 
in automata theory and discrete event systems replacing 
the notion of closed-loop system by the composition of a 
given system and its controller. In this paper this prob- 
lem is addressed in a general behavioral context. Necessary 
and often sufficient conditions for a behavior to be achiev- 
able are given, and for any achievable behavior a canonical 
controller is defiued. These results generalize previously 
obtained results obtained for finite-dimensional linear sys- 
tems. Next these general results are applied to classes of 
automata and hybrid systems. 

1 Introduction 

One can compactly express a plenitude of problems by con- 
sidering the solution of equations of the form 

T l l e s s  (1) 

with P and 8 given, say continuous, discrete, or hybrid sys- 
tems, in the unknown system e. This equation lies at the 
heart of modularity; for analysis and design. Of course, in 
order to make sense of this equation one has to make precise 
the definition of system Composition (11) and system equivu- 
lence (E). 

Versions of this problem have been investigated (from dif- 
ferent points of view) by researchers in many m a s ,  includ- 
ing automata theory, several process algebra formalisms and 
control theory. For example, within systems and control 
theory the fundamental question of the ’limits of perfor- 
mance’ of a controlled system, and the parameterization of 
If, controllers for a given plant system, can be regarded as 
instances of this general problem, recognizing P as the plant 
system, S as the desired (closed-Imp) system behavior, and 
e as the controller to be constructed. 
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2 General behavioral results 

Consider a system 9 (the ‘plant’) with two types of exter- 
nal variables, namely the variables z which can be inter- 
connected to another system e (the ‘controller’) sharing the 
same variables Z. and remaining variables w which represent 
the interaction (or communication) of the system with (the 
rest of) its environmen$ see Figure 1. 

Figure 1: Plant controller configuration 

We consider 5’ and e to be systems in a general behavioral 
sense, that is, as a collection of allowable system mjecto- 
ries. Formally, let W be a general set where the variables 
w take value,,and let Z be the set where the variables L take 
value. FurthemKlre, let T be a general set denoting the time- 
axis. (Note that although we primarily think of T as R or 2 
we do not impose any conditions on the set T.) The plant 
system P is given as a collection of time-functions (w,z) 
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The general solvability of equation (1) has been addressed 
and solved within a general behavioral framework in [lo] 
(see also [7. 41) for finife-dimensional linear differential 
systems. In this version of the general problem P,S and 
e are all linear system behaviors (that is, the trajectories or 
‘traces’ generated by the finitedimensional linear system). 
Furthermore, in thin behavioral setting the system compo- 
sition ) [  denotes intersection of behaviors. while the system 
equivalence is just equality of behaviors. 

Very recently, the results of [lo] have been extended and 
generalized to genernl behavioral systems in [61; obtaining 
sufficient and often necessary conditions for solvability of 
(l), and, in case of solvability, the construction of a con- 
troller solving (1). In the current paper we will summarize 
and extend the results of [6] in Section 2, and then apply 
in Section 3 these results to the case when P,S and C are 
(subclasses of) automata and hybrid systems. 



with 
w : T + W ,  

z : T - t Z ,  
(2) 

that is, ? c (W x Z)r. Note that we do not require the 
spaces W and Z to be disjoint; indeed, some of the com- 
ponents of w and may coincide. 

Similarly, the controller system e is given as a collection of 
time-functions 

z : T - + Z  (3) 
that is, e C Z'. The composition of '3' and e via the shared 
variables Z. denoted Y I tz  e. is given by 

? 
(4) 

(Note that the sbared variables L become hidden variables 
in the composition.) A basic question in systems and con- 
trol theory is to characterize the set of composed behaviors 
? llz e that are achievable by selecting the controller system 
e in an appropriate way. This can be regarded as a funda- 
mental issue in characterizing the 'limits of performance' of 
a given plant system Y by considering all possible controller 
systems e. 
The following theorem has been recently derived in [a], 
generalizing a result obtained for linear finite-dimensional 
systems in [lo]. Denote by ~~('3') c WT the plant behavior 
projected on W', that is 

e=  {w : T + WI 3z : T + Zsuch that (w,z) E 'P,z E e) 

nw(Y) = { w :  T + W I 3: T -+Zsuchthat  ( w , ~ )  E ?} 
(5) 

Theorem 1 Let '9 C (W x 2)' be a givenpkani system and 
let e C Z' be a confmller system io be designed. Lei S c 
WT be a desired behavior men  there erisrs e such ihm 
Y /Iz e = S if 

(ij S c n,(Y) 

(iij The following implicaiion holds: for any 
(w,z) , (J ,z)  EYwheneverJtSihenalsowES. 

Proof Define the controller system ecm (called the canoni- 
cal controller) in the following implicit way; see Figure 2. 

Figure 2: Canonical controller e, 

We prove that 'P IIz ecm = S; see Figure 3. 
>:Letw~S.Becauseof(i)3z:T+Zsnchthat(w,r) E?. 
Hence also z E Gm (take $ = w), and thus w E P 
C: Let w E ? eCon. Thus L : T + 2.3 : T -t W such that 
(w,z) E ?,(G,Z) E ? and $ E S .  By (ii) this implies that 
W E S .  O 

e. 

CC, 

Figure 3: Composed behavior 

Remark 2 Note ihai alihough the resulis of Theorem 1 are 
fonnulaied in rems of the behaviors Y C (W x Z)',e C 
zT,S c wT, we did Mi really use ihe time-function sinu- 
iure of these sets. Indeed, all siaiemnis remain equally 
validifwereplace(W xZ)' =WT xZF,Z',WT bygeneral 
seis W x Z,Z,W, d c o m i d e r ? c  W x Z , e C  Z,S C W. 

Remark 3 In some sense the action ofthe canonical con- 
tmller ecm can be seen as 'inverting' ihe phnr ? and sub- 
siiiuiing the desired behavior S .  Note however that we have 
Mi split ihe variables z and w info input and ourput com- 
ponenis. Furthermore, e, is defmd in an implicii way 
(using the auxiliary variables J), and elimination of the 
variables J fmm ecm will resuli in a controller of quite a 
differenf form 

Remark 4 I t  immediately follows fmm ihe pmof of Theo- 
rem I ihai ifs only satisfies condition (i) then still 8 C,? 111 
em, while ifs onlysaiig5es condition (ii) then ? Iti e,, C 
S.  Thejirsi case g u a m e e s  a kind of livenesspmperty (the 
composed sysiem confains a desired behavior S),  while in 
the second case the composed sysiem ? 1l1  ecm satisfies at 
least ihe 'spec$caiions' given by S (see also [SI). 

Remark 5 In 161 it has been shown how Theorem 1 gener- 
alizes the resuli obtained forfniie-dimensional linear sys- 
tems in [IO]. 

As discussed in [q the conditions of Theorem I are often 
close to be necessary as well. Indeed, let ? Itz e = S for 
some controller e. Then it immediately follows that for ev- 
ery w E S = ? [ I T  e there exists z E e such that (w,z) E 9, 
and hence w E x,(Y). Thus condition (i) is a necessary 
condition as well. 

e, := { z :  T -+ Z I 3 : T + W such that (J , z )  E Y and 0 E 8 )  Necessity of condition (ii) is more subtle. Let ? 
(6) 

e = S .  
Then for every 3 E 8 = 7' [ I L  e there exists z' E e such that 
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W w 
U P H  P P 

(@A E '9. Let now (wJ') E ?. Then also w E P I l l  e = S .  
Hence condition (ii) is necessary for a non-empty subset of 
2 E Z r  suchthat(w,z'),(@,z') E?. 

Complete necessity of condition (ii) is ensured if the plant 

HW (see [6]):  

- 
S 

L I 

'9 satisfies the following additional 'homogeneity' property C, 

? satisfies Property HW if: Let (*,z), (w,z) E '9. Then if 
(rid) E '9 also (w,z') E '9. 

Remark6 A simple example where condition (ii) is not 
necessary is given as follows. We consider the set-theoretic 
sening of Remark 2, with W = {wl , wz} (two elements), and 
Z = {L~.LZ) (again nvo elements). Let the plnnt system be 
given as '9 = {(w~,~~J,(w~,zi),(w~,zz)} and the desired 
behwior as 8 = {w}. Then clearly condition (ii) is not 
satisfred(since ( W I , L I ) , ( W Z , L ~ )  E ?,w E 8 does m t  im- 
ply wi E S).  However; the contmller e := {zz} is such that 
P e = S.  Note that ?does satirfy Property HW. 

Funhemtore, it is clear that the canonical controller ecM 
does not do the required job, since it is given as ecan = 
k1,223.' 

In general, if there exists a controller system e such that 'J [I2 
e = S then there can be many dgerent controller systems e' 
also yielding '9 1 l 1  e' = S. Among all these controllers the 
canonical controller e, has the property of being the leasf 
restrictive controller (see [6]):  

Figure 4: ? e,, 3 8 

P P 

For more properties of the canonical controller Gm we refer 
to El. 

jFrom an implementation point of view a basic problem that 
remains in the construction of the canonical controllers con- 
cerns the presence of the auxiliary variables *. Indeed, we 
would like to have an algorithmic procedure for e l i n a t -  
ing these latent variables, and so to obtain an equivalent ex- 
plicit controller. For the linear time-invariant case this can 
be easily done (see [6]).  and extensions of this procedure to 
nonlinear systems are sketched in [a] .  
We conclude this section by giving the following extension 
of Theorem 1 where the controller system e is allowed to 
have additional external variables v : T -t V. 

Prnpositionl Consider the contmller system ecm such 
that '9 11 e,, = S. Let e be another contmller such that 
'9 IIz e = S .  Then for every L E e with ( W J )  E 3'. also 
2 E ecm 

ne canonical e, := 9 [ l W  S, with s any system, 
are 'universal' in the following sense. Let e be any con- 
troller, and denote S := '9 /Iz e. Then define := ? I I v  S. 
If ? satisfies the 'dual' homogeneity Property H': 

'9 satisfies Property Hz if: Let (w,?), ( w , ~ )  E ?. Then if 
(w',?) E Palso ( w ' , ~ )  E '9, 

then it follows that 

Figure 6: Plantsontroller interconnection described in Theorem 
8 

Theorem 8 Let ? c (W x Z)r  be a given plant system and 
let e c (Z  x V)' be a contmllersystem to be designed, with 
additional external variables v E V. see Figure 6. Let 8 C 
(W x V)' be a desired behavior. Then there exists e such 
that '9 / I L  e = 8 if 

Indeed, let w E 8. Then 3z E ecm with ( W J )  E '9. Therefore 
w E '9 I J L  eCm (see Figure 4). Conversely, let w E P I&. (ii) The following implicarion holdr: for any 
Then there exist z,@ and i such that ( W J )  E '9, (*,z) E (w,z),(J,z) E 9 whenever (*,v) E 8 then also 
'9, ($,Z)EP, iEe;seeFigure5. SinceYsatisfiesProperty 
Hz, it follows that also (ai) E '9, and hence w E P e = 8. 

(w, v )  E S.  

'We than)r ]an C. M U ~ M  for a w f u l  dimrim on this issue. Proof Define the canonical controller system e<.,,, as 
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e, := { z :  T + Z , v :  T -+V 1 3iu: T + W 
such that (iu,r) E ?and (iu,v) E 8) (7) 

In the same way as in the proof of Theorem 1 it is shown 
0 that 9 [Il e,. = S. 

3 Discreteevent and hybrid systems 

In this section we provide a preliminary discussion of ap- 
plications of the general results described in Section 2 to 
automata and hybrid systems. 

Most straightfoxward application of the results of Section 
2 are to discreteevent systems or automata represented in 
a purely %behavioral" form, that is as languages. Indeed, 
let us define an event set E := W x 2, and consider plant 
systems P to be given as a language over E, that is 

9CE' (8) 

with E' denoting as usual @e set of all finite strings of el- 
ements of E. Similarly, we consider the desired behavior 
S to be a language over W ,  that is S C W', and the to be 
wnsrmcted controller e to be a language over Z, that is, 
e c F. Then we immediately obtain the following version 
of Theorem 1: 

Proposition 9 Let 9 C (W x 2)' be a given plant system, 
and let e C T be a controller system to be designed Let 
S C W' be a desired behavior. Then there exists e such that 
9 ((,e =s if 

( i )  s c Z w ( 9 )  

(ii) 7 7 ~  following implication holds: for any 
(wJ),  (iu,z) E 9 whenever iu E S then also w E S. 

Remark 10 The only technical diferefice with Theorem I 
is that the time axis T is not the same for all strings (al- 
though we couldfo; this by letting T = Nand by ridding an 
exfra "sink" stare). In view of Remark 2 this however does 
no3 pose a problem 

Remark 11 The conditions of Proposition 9 can be com- 
pared io the solution of the supervisory control problem 
in the case of partial event observation, as derived in the 
fmmework developed by W o n l m  and R a d g e ;  see e.g. 
the exposition of the Controllability and Observability The- 
orem in [ I ] .  In order to do so one may associate with the 
shared variables z the events chat are both cornrollable and 
observable. Then condition ( i )  can be interpreted as a con- 
trollability condition on the required language S, and con- 
dition (ii) as an observability condition 
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Figure 7: The lattice in Example 12. Remarks :.black circle 
car, white circle =road sign. 

Example 12 Consider the following situation A dot is 
moving on a lattice of N by M points, as illustmted in Fig- 
ure 7. We can think of the nodes of the lattice as the states 
of an automaton, with the initial state ar, say, the lower 
lefi corner. Each state can be nafumlly named as a pair 
( i ,  j ) .  with 1 5 i 5 N,1 5 j 5 M. Let the set W consist 
of 2 x (N - I )  x (M - 1) transitions associated with move- 
menton the (N- 1) x (M- 1) vertices in the lanice. andlet 
Z =  {up,down,left,righr}.R isobviousthatevery t m ' -  
tion in this automaton can be nntiirally described as a pair 
(w,z) E W x Z. Imagine the lattice as, for example a street 
mop of a city and the dot as a car. The vertices are then 
streets. The events in Z are the tmnsifions at the disposal of 
the car driver: 

Referring to Proposition 9, we associate E,(?) with the 
language generated by the automaton. Using the car m i -  
gation interpretation, we can say that itw(?) represents all 
continuow trajectory originating fmm the initial state. W d  
also observe that each w E it,(?) is paired with exactly one 
z E T such that (w,z) E P. Hence. the second condition 
given in the proposifion is always satisfrd. The prdposition 
then implies that if a specification S consists of elements 
of the language genemted by the automaton (or continuous 
car trajectories), we canfnd a controller (or a driver) e 
thot realizes it. mis  implication is trivial. 

The most important limitation of Reposition 9 is that the 
eventr in W and 2 are assumed to be synchronized; indeed 
they appear inpairs ( W J )  E E. 

Consider on the other hand an automaton A, whose set of 
events E = W U Z. One somewhat artificial way of treating 
this case is to force W and Z to synchronize in the following 
way. Innoduce the extended sets of events 

ET := Z U {TI, 
Ew := W U {T) , 



and the mappings 4 : E  --t Ez and F, : E --t E, 

q a d W  
T, otherwise ' 

Fw(a) = { 
The symbol T denotes the silent event. 

Let A be the language generated by the automaton A. De- 
note each element of A as (al,az,a,,...) E E'. We now 
define the behavior of the synchronized plant system P as 
the collection of all traces ( ( w l ~ ~ ) ,  ( w ~ , z z ) ,  . . .) 
E (E, x E,)* such that (wi,zi) = (Fw(ai),Fz(oi)), i E N for 
some(al,a2,...) EA. 

Notice that we need to introduce the silent action T in order 
to have the forced synchronization between W and Z. 

The case where W and Z are not synchronized is somehow 
analogous to the case where not all variables are observ- 
able from the variables used for interconnection in linear 
behaviors. For example, in the case of full synchronization 
between W and Z,  it is possible to achieve the null hehav- 
ior (the one that contains no traces at all) as a specification 
by interconnecting the plant with a null behavior as a con- 
troller. In the non-synchronized case, this is not necessarily 
true. For linear behaviors, the null behavior is achieved by 
using the null controller (the one that contains only the zero 
trajectory). if and only if all variables are observable fmm 
the interconnection variables. 

Example 13 (continued) Refer to our car navigation ex- 
ample. If we assume that instead of driving the car; we 
contml its trajectory by using several rmflc lightshad 
signs on the lanice, a different appmach should be taken 
Suppose thai on every state (i,  j )  where i and j are both 
even, there is a mad sign we can cornmi. We refer to 
these stares as rhe even-even states. Hence, rhe command 
{up,down,lefr,righf) canonlybeg iven~thecar i s inan  
even-even state, and Z is the set of transitions originating 
fmm the even-even states. I t  is clear rhaf we do not have 
full synchmnization between W and Z anymore. It is fairly 
easy to see that if is not possible to reject the trajectory go- 
ing stmightfrom (1,l) 10 (N, l), even f t h e  most restricrive 
confmller (the null behwior) is used 

Indeed, we can easily observe that any z E E; can be paired 
with more than one w E E;. We can associate this situation 
with non-observability of the whole behavior fmm Z. 

The notion of observability for linear behaviors has been 
treated, for example in [3, 91. However, the extension of 
this notion to behaviors related to discrete automata is not 
hivial. Recall that in linear behaviors, partitioning of in- 
formation flow (i.e. the information that can k extracted 
from or fed to a behavior) is done based on partitioning of 

variables. This is not the case in discrete automata, where 
partitioning of events is done instead. We argue that flow 
of information is intimately related to the concept of con- 
trollability and observability, as controlling a behavior can 
be associated with feeding information to it and observing 
with extracting information from it. We suggest developing 
more general notions of conaollability and observability in 
the behavioral framework as a potentially fruitful course for 
further research. 

Another venue to the extension of Proposition 9 to the 
non-synchronized case is to replace the equality sign in 
P 1 l 1  e = 8 by an equivalence relation such as (weak) bisim- 
ulation ([2]). This will necessitate to extend the behavioral 
approach taken in this paper to non-deterministic automata, 
which are not completely specified by their generated lan- 
guages. We leave this as a topic for future research. 

The extension of Proposition 9 to hybrid behaviors, as de- 
fined in [ 5 ] ,  is again straightforward. In this context the time 
axis T is taken to be 5! (for the continuous-time behavior). 
punctuated by a discrete set C of rimes at which the events 
take place. (For simplicity of exposition we assume that 
there are no multiple events; see otherwise U].) Let us now 
define signal spaces W, and & for the confinuous variables 
w, and a. and signal spaces w d  and Z,j for the discrete vari- 
ables Wd and 41. The behavior of a plant system P is then 
defined by a quadruple (w,,w,j,zc,zd) with 

w,: x+ w,a : x+ ZCWd : e --t w,, : C +a. 
(Again this implies that the events in Wd and & are syn- 
chronized.) 

Similarly, the desired behavior 8 is defined by pairs (wc, wd) 
and the controller system e by pairs (&,a). The analogon 
of Proposition 9 reads (m self-explanatory notation) as 

Proposition 14 Ler P be a given p h n t  system, and let e 
be a controller system to be designed Let S be a desired 
behavior. Then there exists e such that 3' llz e = S if 

4 Open problems 

This paper exhibits some results in the application and ex- 
tension of the general behavioral results, as discussed in 
Section 2, to discrete-event and hybrid systems. However, 
there are still some issues left untreated, which are them- 
selves challenging. 

From the implementation point of view, we identify two 
issues IO be treated further. First we recognize that not 
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every controller behavior, which is created as a collection 
of trajectories, is suited for implementation. Some smc- 
N e s  need to be imposed. for example Linearity and time- 
invariance if we are interested in realization by differential 
systems. Second, even if we obtain an con- 
troller, there is no guarantee that the interconnection can he 
done properly. Other authors have addressed this issue. for 
example Willem in [9] introduced the notion of regularity 
of interconnections of linear behaviors. 

From the general behavior theoretical p i n t  of view, there 
are also things to be done. Many of the concepts and the- 
ory in the arsenal of tools of behavior theory were devel- 
opd for linear behaviors. We may need to generalize and 
extend the existing tools to be able to handle general behav- 
iors. General behavioral approach undoubtedly will overlap 
with the existing bodies of theory concerning the systems 
in consideration. To End and expose the relation between 
these more classical theories and the behavioral approach, 
as it has been done in linear systems, is an appealing re- 
search problem. In particular, we consider translating the 
conditions of Theorem 1 to a process-algebraic setting as 
one topic that matches this idea. 
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